

Laravel	Documentation	-	7.x

https://laravel.com/docs/

eBook	compiled	from	the	source

https://github.com/laravel/docs/

by	david@mundosaparte.com

Get	the	latest	version	at	https://github.com/driade/laravel-book

Date:	Tuesday,	25-May-21	16:33:48	CEST

Laravel	Documentation	-	7.x	/	Title 2

https://github.com/laravel/docs/
mailto:david@mundosaparte.com
https://github.com/driade/laravel-book

Contents

Prologue

Release	Notes
Upgrade	Guide
Contribution	Guide

Getting	Started

Installation
Configuration
Directory	Structure
Homestead
Valet
Deployment

Architecture	Concepts

Request	Lifecycle
Service	Container
Service	Providers
Facades
Contracts

The	Basics

Routing
Middleware
CSRF	Protection
Controllers
Requests
Responses
Views
URL	Generation
Session
Validation
Error	Handling
Logging

Frontend

Blade	Templates
Localization
Frontend	Scaffolding
Compiling	Assets

Security

Authentication
Authorization
Email	Verification
Encryption
Hashing
Password	Reset

Digging	Deeper

Artisan	Console
Broadcasting
Cache

Laravel	Documentation	-	7.x	/	Title 3

Collections
Events
File	Storage
Helpers
HTTP	Client
Mail
Notifications
Package	Development
Queues
Task	Scheduling

Database

Getting	Started
Query	Builder
Pagination
Migrations
Seeding
Redis

Eloquent	ORM

Getting	Started
Relationships
Collections
Mutators
API	Resources
Serialization

Testing

Getting	Started
HTTP	Tests
Console	Tests
Browser	Tests
Database
Mocking

Official	Packages

Cashier	(Stripe)
Cashier	(Paddle)
Dusk
Envoy
Horizon
Passport
Sanctum
Scout
Telescope

Laravel	Documentation	-	7.x	/	Title 4

Prologue

Release	Notes
Versioning	Scheme
Support	Policy
Laravel	7

Versioning	Scheme

Laravel	and	its	other	first-party	packages	follow	Semantic	Versioning.	Major	framework	releases	are	released
every	six	months	(~February	and	~August),	while	minor	and	patch	releases	may	be	released	as	often	as	every
week.	Minor	and	patch	releases	should	never	contain	breaking	changes.

When	referencing	the	Laravel	framework	or	its	components	from	your	application	or	package,	you	should
always	use	a	version	constraint	such	as	^7.0,	since	major	releases	of	Laravel	do	include	breaking	changes.
However,	we	strive	to	always	ensure	you	may	update	to	a	new	major	release	in	one	day	or	less.

Support	Policy

For	LTS	releases,	such	as	Laravel	6,	bug	fixes	are	provided	for	2	years	and	security	fixes	are	provided	for	3
years.	These	releases	provide	the	longest	window	of	support	and	maintenance.	For	general	releases,	bug	fixes
are	provided	for	6	months	and	security	fixes	are	provided	for	1	year.	For	all	additional	libraries,	including
Lumen,	only	the	latest	release	receives	bug	fixes.	In	addition,	please	review	the	database	versions	supported	by
Laravel.

Version Release Bug	Fixes	Until Security	Fixes	Until

6	(LTS) September	3rd,	2019 September	3rd,	2021 September	3rd,	2022
7 March	3rd,	2020 September	10th,	2020 March	3rd,	2021
8 September	8th,	2020 March	8th,	2021 September	8th,	2021

Laravel	7

Laravel	7	continues	the	improvements	made	in	Laravel	6.x	by	introducing	Laravel	Sanctum,	routing	speed
improvements,	custom	Eloquent	casts,	Blade	component	tags,	fluent	string	operations,	a	developer	focused
HTTP	client,	first-party	CORS	support,	improved	scoping	for	route	model	binding,	stub	customization,
database	queue	improvements,	multiple	mail	drivers,	query-time	casts,	a	new	artisan	test	command,	and	a
variety	of	other	bug	fixes	and	usability	improvements.

Laravel	Sanctum

Laravel	Sanctum	was	built	by	Taylor	Otwell.

Laravel	Sanctum	provides	a	featherweight	authentication	system	for	SPAs	(single	page	applications),	mobile
applications,	and	simple,	token	based	APIs.	Sanctum	allows	each	user	of	your	application	to	generate	multiple
API	tokens	for	their	account.	These	tokens	may	be	granted	abilities	/	scopes	which	specify	which	actions	the
tokens	are	allowed	to	perform.

For	more	information	on	Laravel	Sanctum,	consult	the	Sanctum	documentation.

Custom	Eloquent	Casts

Custom	Eloquent	casts	was	contributed	by	Taylor	Otwell.

Laravel	has	a	variety	of	built-in,	helpful	cast	types;	however,	you	may	occasionally	need	to	define	your	own
cast	types.	You	may	now	accomplish	this	by	defining	a	class	that	implements	the	CastsAttributes	interface.

Laravel	Documentation	-	7.x	/	Prologue 5

https://semver.org
https://github.com/taylorotwell
https://github.com/taylorotwell

Classes	that	implement	this	interface	must	define	a	get	and	set	methods.	The	get	method	is	responsible	for
transforming	a	raw	value	from	the	database	into	a	cast	value,	while	the	set	method	should	transform	a	cast
value	into	a	raw	value	that	can	be	stored	in	the	database.	As	an	example,	we	will	re-implement	the	built-in	json
cast	type	as	a	custom	cast	type:

<?php

namespace	App\Casts;

use	Illuminate\Contracts\Database\Eloquent\CastsAttributes;

class	Json	implements	CastsAttributes

{

				/**

					*	Cast	the	given	value.

					*

					*	@param		\Illuminate\Database\Eloquent\Model		$model

					*	@param		string		$key

					*	@param		mixed		$value

					*	@param		array		$attributes

					*	@return	array

					*/

				public	function	get($model,	$key,	$value,	$attributes)

				{

								return	json_decode($value,	true);

				}

				/**

					*	Prepare	the	given	value	for	storage.

					*

					*	@param		\Illuminate\Database\Eloquent\Model		$model

					*	@param		string		$key

					*	@param		array		$value

					*	@param		array		$attributes

					*	@return	string

					*/

				public	function	set($model,	$key,	$value,	$attributes)

				{

								return	json_encode($value);

				}

}

Once	you	have	defined	a	custom	cast	type,	you	may	attach	it	to	a	model	attribute	using	its	class	name:

<?php

namespace	App;

use	App\Casts\Json;

use	Illuminate\Database\Eloquent\Model;

class	User	extends	Model

{

				/**

					*	The	attributes	that	should	be	cast	to	native	types.

					*

					*	@var	array

					*/

				protected	$casts	=	[

								'options'	=>	Json::class,

];

}

To	learn	how	to	write	custom	Eloquent	casts,	including	custom	casts	that	cast	to	value	objects,	please	consult
the	Eloquent	documentation.

Blade	Component	Tags	&	Improvements

Blade	component	tags	were	contributed	by	Spatie,	Marcel	Pociot,	Caleb	Porzio,	Dries	Vints,	and	Taylor	Otwell.

TIP	Blade	components	have	been	overhauled	to	allow	tag	based	rendering,	attribute	management,
component	classes,	inline	view	components,	and	more.	Since	the	overhaul	of	Blade	components	is	so
extensive,	please	consult	the	full	Blade	component	documentation	to	learn	about	this	feature.

Laravel	Documentation	-	7.x	/	Prologue 6

https://spatie.be/
https://twitter.com/marcelpociot
https://twitter.com/calebporzio
https://twitter.com/driesvints
https://github.com/taylorotwell

In	summary,	a	component	may	now	have	an	associated	class	which	specifies	the	data	it	accepts.	All	public
properties	and	methods	defined	on	the	component	class	will	automatically	be	made	available	to	the	component
view.	Any	additional	HTML	attributes	specified	on	the	component	may	be	managed	using	the	automatically
included	$attributes	variable,	which	is	an	attribute	bag	instance.

In	this	example,	we	will	assume	that	an	App\View\Components\Alert	component	has	been	defined	like	so:

<?php

namespace	App\View\Components;

use	Illuminate\View\Component;

class	Alert	extends	Component

{

				/**

					*	The	alert	type.

					*

					*	@var	string

					*/

				public	$type;

				/**

					*	Create	the	component	instance.

					*

					*	@param		string		$type

					*	@return	void

					*/

				public	function	__construct($type)

				{

								$this->type	=	$type;

				}

				/**

					*	Get	the	class	for	the	given	alert	type.

					*

					*	@return	string

					*/

				public	function	classForType()

				{

								return	$this->type	==	'danger'	?	'alert-danger'	:	'alert-warning';

				}

				/**

					*	Get	the	view	/	contents	that	represent	the	component.

					*

					*	@return	\Illuminate\View\View|string

					*/

				public	function	render()

				{

								return	view('components.alert');

				}

}

And,	assuming	the	component's	Blade	template	has	been	defined	like	so:

<!--	/resources/views/components/alert.blade.php	-->

<div	class="alert	{{	$classForType	}}"	{{	$attributes	}}>

				{{	$heading	}}

				{{	$slot	}}

</div>

The	component	may	be	rendered	in	another	Blade	view	using	the	component's	tag:

<x-alert	type="error"	class="mb-4">

				<x-slot	name="heading">

								Alert	content...

				</x-slot>

				Default	slot	content...

</x-alert>

As	mentioned,	this	is	just	a	very	small	sample	of	the	functionality	of	the	Blade	component	overhaul	in	Laravel
7	and	does	not	demonstrate	anonymous	components,	inline	view	components,	and	a	variety	of	other	features.

Laravel	Documentation	-	7.x	/	Prologue 7

Please	consult	the	full	Blade	component	documentation	to	learn	about	this	feature.

NOTE	The	previous	@component	syntax	for	Blade	components	has	not	and	will	not	be	removed.

HTTP	Client

The	HTTP	client	is	a	wrapper	of	Guzzle	and	was	contributed	by	Adam	Wathan,	Jason	McCreary,	and	Taylor
Otwell.

Laravel	now	provides	an	expressive,	minimal	API	around	the	Guzzle	HTTP	client,	allowing	you	to	quickly
make	outgoing	HTTP	requests	to	communicate	with	other	web	applications.	Laravel's	wrapper	around	Guzzle
is	focused	on	its	most	common	use	cases	and	a	wonderful	developer	experience.	For	example,	the	client	makes
it	a	breeze	to	POST	and	interface	with	JSON	data:

use	Illuminate\Support\Facades\Http;

$response	=	Http::withHeaders([

				'X-First'	=>	'foo',

				'X-Second'	=>	'bar'

])->post('http://test.com/users',	[

				'name'	=>	'Taylor',

]);

return	$response['id'];

In	addition,	the	HTTP	client	provides	fantastic,	ergonomic	testing	functionality:

Http::fake([

				//	Stub	a	JSON	response	for	GitHub	endpoints...

				'github.com/*'	=>	Http::response(['foo'	=>	'bar'],	200,	['Headers']),

				//	Stub	a	string	response	for	Google	endpoints...

				'google.com/*'	=>	Http::response('Hello	World',	200,	['Headers']),

				//	Stub	a	series	of	responses	for	Facebook	endpoints...

				'facebook.com/*'	=>	Http::sequence()

																												->push('Hello	World',	200)

																												->push(['foo'	=>	'bar'],	200)

																												->pushStatus(404),

]);

To	learn	more	about	all	of	the	features	of	the	HTTP	client,	please	consult	the	HTTP	client	documentation.

Fluent	String	Operations

Fluent	string	operations	were	contributed	by	Taylor	Otwell.

You	are	likely	familiar	with	Laravel's	existing	Illuminate\Support\Str	class,	which	provides	a	variety	of	helpful
string	manipulation	functions.	Laravel	7	now	offers	a	more	object-oriented,	fluent	string	manipulation	library
built	on	top	of	these	functions.	You	may	create	a	fluent	Illuminate\Support\Stringable	object	using	the	Str::of
method.	A	variety	of	methods	may	then	be	chained	onto	the	object	to	manipulate	the	string:

return	(string)	Str::of('		Laravel	Framework	6.x	')

																				->trim()

																				->replace('6.x',	'7.x')

																				->slug();

For	more	information	on	the	methods	available	via	fluent	string	manipulation,	please	consult	its	full
documentation.

Route	Model	Binding	Improvements

Route	model	binding	improvements	were	contributed	by	Taylor	Otwell.

Key	Customization

Sometimes	you	may	wish	to	resolve	Eloquent	models	using	a	column	other	than	id.	To	do	so,	Laravel	7	allows

Laravel	Documentation	-	7.x	/	Prologue 8

https://twitter.com/adamwathan
https://twitter.com/gonedark
https://github.com/taylorotwell
http://docs.guzzlephp.org/en/stable/
https://twitter.com/taylorotwell
https://twitter.com/taylorotwell

you	to	specify	the	column	in	the	route	parameter	definition:

Route::get('api/posts/{post:slug}',	function	(App\Post	$post)	{

				return	$post;

});

Automatic	Scoping

Sometimes,	when	implicitly	binding	multiple	Eloquent	models	in	a	single	route	definition,	you	may	wish	to
scope	the	second	Eloquent	model	such	that	it	must	be	a	child	of	the	first	Eloquent	model.	For	example,	consider
this	situation	that	retrieves	a	blog	post	by	slug	for	a	specific	user:

use	App\Post;

use	App\User;

Route::get('api/users/{user}/posts/{post:slug}',	function	(User	$user,	Post	$post)	{

				return	$post;

});

When	using	a	custom	keyed	implicit	binding	as	a	nested	route	parameter,	Laravel	7	will	automatically	scope	the
query	to	retrieve	the	nested	model	by	its	parent	using	conventions	to	guess	the	relationship	name	on	the	parent.
In	this	case,	it	will	be	assumed	that	the	User	model	has	a	relationship	named	posts	(the	plural	of	the	route
parameter	name)	which	can	be	used	to	retrieve	the	Post	model.

For	more	information	on	route	model	binding,	please	consult	the	routing	documentation.

Multiple	Mail	Drivers

Multiple	mail	driver	support	was	contributed	by	Taylor	Otwell.

Laravel	7	allows	the	configuration	of	multiple	"mailers"	for	a	single	application.	Each	mailer	configured	within
the	mail	configuration	file	may	have	its	own	options	and	even	its	own	unique	"transport",	allowing	your
application	to	use	different	email	services	to	send	certain	email	messages.	For	example,	your	application	might
use	Postmark	to	send	transactional	mail	while	using	Amazon	SES	to	send	bulk	mail.

By	default,	Laravel	will	use	the	mailer	configured	as	the	default	mailer	in	your	mail	configuration	file.
However,	you	may	use	the	mailer	method	to	send	a	message	using	a	specific	mailer	configuration:

Mail::mailer('postmark')

								->to($request->user())

								->send(new	OrderShipped($order));

Route	Caching	Speed	Improvements

The	route	caching	speed	improvements	were	contributed	by	upstream	Symfony	contributors	and	Dries	Vints.

Laravel	7	includes	a	new	method	of	matching	compiled,	cached	routes	that	have	been	cached	using	the	
route:cache	Artisan	command.	On	large	applications	(for	example,	applications	with	800	or	more	routes),	these
improvements	can	result	in	a	2x	speed	improvement	in	requests	per	second	on	a	simple	"Hello	World"
benchmark.	No	changes	to	your	application	are	required.

CORS	Support

CORS	support	was	contributed	by	Barry	vd.	Heuvel.

Laravel	7	includes	first-party	support	for	configuring	Cross-Origin	Resource	Sharing	(CORS)	OPTIONS	request
responses	by	integrating	the	popular	Laravel	CORS	package	written	by	Barry	vd.	Heuvel.	A	new	cors
configuration	is	included	in	the	default	Laravel	application	skeleton.

For	more	information	on	CORS	support	in	Laravel	7.x,	please	consult	the	CORS	documentation.

Query	Time	Casts

Laravel	Documentation	-	7.x	/	Prologue 9

https://twitter.com/taylorotwell
https://symfony.com
https://twitter.com/driesvints
https://twitter.com/barryvdh
https://github.com/laravel/laravel/blob/develop/config/cors.php

Query	time	casting	was	contributed	by	Matt	Barlow.

Sometimes	you	may	need	to	apply	casts	while	executing	a	query,	such	as	when	selecting	a	raw	value	from	a
table.	For	example,	consider	the	following	query:

use	App\Post;

use	App\User;

$users	=	User::select([

				'users.*',

				'last_posted_at'	=>	Post::selectRaw('MAX(created_at)')

												->whereColumn('user_id',	'users.id')

])->get();

The	last_posted_at	attribute	on	the	results	of	this	query	will	be	a	raw	string.	It	would	be	convenient	if	we	could
apply	a	date	cast	to	this	attribute	when	executing	the	query.	To	accomplish	this,	we	may	use	the	withCasts
method	provided	by	Laravel	7:

$users	=	User::select([

				'users.*',

				'last_posted_at'	=>	Post::selectRaw('MAX(created_at)')

												->whereColumn('user_id',	'users.id')

])->withCasts([

				'last_posted_at'	=>	'date'

])->get();

MySQL	8+	Database	Queue	Improvements

MySQL	database	queue	improvements	were	contributed	by	Mohamed	Said.

In	previous	releases	of	Laravel,	the	database	queue	was	not	considered	robust	enough	for	production	usage,	due
to	deadlocks.	However,	Laravel	7	provides	improvements	to	applications	using	MySQL	8+	as	their	database
backed	queue.	By	using	the	FOR	UPDATE	SKIP	LOCKED	clause	and	other	SQL	enhancements,	the	database	driver
may	now	safely	be	used	in	higher	volume	production	applications.

Artisan	test	Command

The	test	command	was	contributed	by	Nuno	Maduro.

In	addition	to	the	phpunit	command,	you	may	now	use	the	test	Artisan	command	to	run	your	tests.	The	Artisan
test	runner	provides	beautiful	console	UX	and	more	information	regarding	the	test	that	is	currently	running.	In
addition,	the	runner	will	automatically	stop	on	the	first	test	failure:

php	artisan	test

Laravel	Documentation	-	7.x	/	Prologue 10

https://github.com/mpbarlow
https://github.com/themsaid
https://twitter.com/enunomaduro

Any	arguments	that	can	be	passed	to	the	phpunit	command	may	also	be	passed	to	the	Artisan	test	command:

php	artisan	test	--group=feature

Markdown	Mail	Template	Improvements

Markdown	mail	template	improvements	were	contributed	by	Taylor	Otwell.

The	default	Markdown	mail	template	has	received	a	fresh,	more	modern	design	based	on	the	Tailwind	CSS
color	palette.	Of	course,	this	template	can	be	published	and	customized	according	to	your	application's	needs:

Laravel	Documentation	-	7.x	/	Prologue 11

https://twitter.com/taylorotwell

For	more	information	on	Markdown	mail,	please	consult	the	mail	documentation.

Stub	Customization

Stub	customization	was	contributed	by	Taylor	Otwell.

The	Artisan	console's	make	commands	are	used	to	create	a	variety	of	classes,	such	as	controllers,	jobs,
migrations,	and	tests.	These	classes	are	generated	using	"stub"	files	that	are	populated	with	values	based	on
your	input.	However,	you	may	sometimes	wish	to	make	small	changes	to	files	generated	by	Artisan.	To
accomplish	this,	Laravel	7	provides	the	stub:publish	command	to	publish	the	most	common	stubs	for
customization:

php	artisan	stub:publish

The	published	stubs	will	be	located	within	a	stubs	directory	in	the	root	of	your	application.	Any	changes	you
make	to	these	stubs	will	be	reflected	when	you	generate	their	corresponding	classes	using	Artisan	make
commands.

Queue	maxExceptions	Configuration

The	maxExceptions	property	was	contributed	by	Mohamed	Said.

Sometimes	you	may	wish	to	specify	that	a	job	may	be	attempted	many	times,	but	should	fail	if	the	retries	are
triggered	by	a	given	number	of	exceptions.	In	Laravel	7,	you	may	define	a	maxExceptions	property	on	your	job
class:

<?php

namespace	App\Jobs;

class	ProcessPodcast	implements	ShouldQueue

{

Laravel	Documentation	-	7.x	/	Prologue 12

https://twitter.com/taylorotwell
https://twitter.com/themsaid

				/**

					*	The	number	of	times	the	job	may	be	attempted.

					*

					*	@var	int

					*/

				public	$tries	=	25;

				/**

					*	The	maximum	number	of	exceptions	to	allow	before	failing.

					*

					*	@var	int

					*/

				public	$maxExceptions	=	3;

				/**

					*	Execute	the	job.

					*

					*	@return	void

					*/

				public	function	handle()

				{

								Redis::throttle('key')->allow(10)->every(60)->then(function	()	{

												//	Lock	obtained,	process	the	podcast...

								},	function	()	{

												//	Unable	to	obtain	lock...

												return	$this->release(10);

								});

				}

}

In	this	example,	the	job	is	released	for	ten	seconds	if	the	application	is	unable	to	obtain	a	Redis	lock	and	will
continue	to	be	retried	up	to	25	times.	However,	the	job	will	fail	if	three	unhandled	exceptions	are	thrown	by	the
job.

Laravel	Documentation	-	7.x	/	Prologue 13

Prologue

Upgrade	Guide
Upgrading	To	7.0	From	6.x

High	Impact	Changes

Authentication	Scaffolding
Date	Serialization
Symfony	5	Related	Upgrades

Medium	Impact	Changes

Blade	Components	&	"Blade	X"
CORS	Support
Factory	Types
Markdown	Mail	Template	Updates
The	Blade::component	Method
The	assertSee	Assertion
The	different	Validation	Rule
Unique	Route	Names

Upgrading	To	7.0	From	6.x

Estimated	Upgrade	Time:	15	Minutes

NOTE	We	attempt	to	document	every	possible	breaking	change.	Since	some	of	these	breaking	changes	are
in	obscure	parts	of	the	framework	only	a	portion	of	these	changes	may	actually	affect	your	application.

Symfony	5	Required

Likelihood	Of	Impact:	High

Laravel	7	upgraded	its	underlying	Symfony	components	to	the	5.x	series,	which	is	now	also	the	new	minimum
compatible	version.

PHP	7.2.5	Required

Likelihood	Of	Impact:	Low

The	new	minimum	PHP	version	is	now	7.2.5.

Updating	Dependencies

Update	the	following	dependencies	in	your	composer.json	file:

laravel/framework	to	^7.0
nunomaduro/collision	to	^4.1
phpunit/phpunit	to	^8.5
laravel/tinker	to	^2.0
facade/ignition	to	^2.0

The	following	first-party	packages	have	new	major	releases	to	support	Laravel	7.	If	there	are	any,	read	through
their	individual	upgrade	guides	before	upgrading:

Browser	Kit	Testing	v6.0

Laravel	Documentation	-	7.x	/	Upgrade	Guide 14

https://github.com/laravel/browser-kit-testing/blob/master/UPGRADE.md

Envoy	v2.0
Horizon	v4.0
Nova	v3.0
Passport	v9.0
Scout	v8.0
Telescope	v3.0
Tinker	v2.0
UI	v2.0	(No	changes	necessary)

Finally,	examine	any	other	third-party	packages	consumed	by	your	application	and	verify	you	are	using	the
proper	version	for	Laravel	7	support.

Symfony	5	Related	Upgrades

Likelihood	Of	Impact:	High

Laravel	7	utilizes	the	5.x	series	of	the	Symfony	components.	Some	minor	changes	to	your	application	are
required	to	accommodate	this	upgrade.

First,	the	report,	render,	shouldReport,	and	renderForConsole	methods	of	your	application's	
App\Exceptions\Handler	class	should	accept	instances	of	the	Throwable	interface	instead	of	Exception	instances:

use	Throwable;

public	function	report(Throwable	$exception);

public	function	shouldReport(Throwable	$exception);

public	function	render($request,	Throwable	$exception);

public	function	renderForConsole($output,	Throwable	$exception);

Next,	please	update	your	session	configuration	file's	secure	option	to	have	a	fallback	value	of	null:

'secure'	=>	env('SESSION_SECURE_COOKIE',	null),

Symfony	Console,	which	is	the	underlying	component	that	powers	Artisan,	expects	all	commands	to	return	an
integer.	Therefore,	you	should	ensure	that	any	of	your	commands	which	return	a	value	are	returning	integers:

public	function	handle()

{

				//	Before...

				return	true;

				//	After...

				return	0;

}

Authentication

Scaffolding

Likelihood	Of	Impact:	High

All	authentication	scaffolding	has	been	moved	to	the	laravel/ui	repository.	If	you	are	using	Laravel's
authentication	scaffolding,	you	should	install	the	^2.0	release	of	this	package	and	the	package	should	be
installed	in	all	environments.	If	you	were	previously	including	this	package	in	the	require-dev	portion	of	your
application's	composer.json	file,	you	should	move	it	to	the	require	section:

composer	require	laravel/ui	"^2.0"

The	TokenRepositoryInterface

Likelihood	Of	Impact:	Low

A	recentlyCreatedToken	method	has	been	added	to	the	Illuminate\Auth\Passwords\TokenRepositoryInterface
interface.	If	you	are	writing	a	custom	implementation	of	this	interface,	you	should	add	this	method	to	your
implementation.

Laravel	Documentation	-	7.x	/	Upgrade	Guide 15

https://github.com/laravel/envoy/blob/master/UPGRADE.md
https://github.com/laravel/horizon/blob/master/UPGRADE.md
https://nova.laravel.com/releases
https://github.com/laravel/passport/blob/master/UPGRADE.md
https://github.com/laravel/scout/blob/master/UPGRADE.md
https://github.com/laravel/telescope/releases
https://github.com/laravel/tinker/blob/2.x/CHANGELOG.md

Blade

The	component	Method

Likelihood	Of	Impact:	Medium

The	Blade::component	method	has	been	renamed	to	Blade::aliasComponent.	Please	update	your	calls	to	this
method	accordingly.

Blade	Components	&	"Blade	X"

Likelihood	Of	Impact:	Medium

Laravel	7	includes	first-party	support	for	Blade	"tag	components".	If	you	wish	to	disable	Blade's	built-in	tag
component	functionality,	you	may	call	the	withoutComponentTags	method	from	the	boot	method	of	your	
AppServiceProvider:

use	Illuminate\Support\Facades\Blade;

Blade::withoutComponentTags();

Eloquent

The	addHidden	/	addVisible	Methods

Likelihood	Of	Impact:	Low

The	undocumented	addHidden	and	addVisible	methods	have	been	removed.	Instead,	please	use	the	makeHidden
and	makeVisible	methods.

The	booting	/	booted	Methods

Likelihood	Of	Impact:	Low

The	booting	and	booted	methods	have	been	added	to	Eloquent	to	provide	a	place	to	conveniently	define	any
logic	that	should	execute	during	the	model	"boot"	process.	If	you	already	have	model	methods	with	these
names,	you	will	need	to	rename	your	methods	so	they	do	not	conflict	with	the	newly	added	methods.

Date	Serialization

Likelihood	Of	Impact:	High

Laravel	7	uses	a	new	date	serialization	format	when	using	the	toArray	or	toJson	method	on	Eloquent	models.
To	format	dates	for	serialization,	the	framework	now	uses	Carbon's	toJSON	method,	which	produces	an	ISO-
8601	compatible	date	including	timezone	information	and	fractional	seconds.	In	addition,	this	change	provides
better	support	and	integration	with	client-side	date	parsing	libraries.

Previously,	dates	would	be	serialized	to	a	format	like	the	following:	2019-12-02	20:01:00.	Dates	serialized	using
the	new	format	will	appear	like:	2019-12-02T20:01:00.283041Z.	Please	note	that	ISO-8601	dates	are	always
expressed	in	UTC.

If	you	would	like	to	keep	using	the	previous	behavior	you	can	override	the	serializeDate	method	on	your
model:

use	DateTimeInterface;

/**

	*	Prepare	a	date	for	array	/	JSON	serialization.

	*

	*	@param		\DateTimeInterface		$date

	*	@return	string

	*/

protected	function	serializeDate(DateTimeInterface	$date)

Laravel	Documentation	-	7.x	/	Upgrade	Guide 16

{

				return	$date->format('Y-m-d	H:i:s');

}

TIP	This	change	only	affects	serialization	of	models	and	model	collections	to	arrays	and	JSON.	This
change	has	no	effect	on	how	dates	are	stored	in	your	database.

Factory	Types

Likelihood	Of	Impact:	Medium

Laravel	7	removes	the	"factory	types"	feature.	This	feature	has	been	undocumented	since	October	2016.	If	you
are	still	using	this	feature,	you	should	upgrade	to	factory	states,	which	provide	more	flexibility.

The	getOriginal	Method

Likelihood	Of	Impact:	Low

The	$model->getOriginal()	method	will	now	respect	any	casts	and	mutators	defined	on	the	model.	Previously,
this	method	returned	the	uncast,	raw	attributes.	If	you	would	like	to	continue	retrieving	the	raw,	uncast	values,
you	may	use	the	getRawOriginal	method	instead.

Route	Binding

Likelihood	Of	Impact:	Low

The	resolveRouteBinding	method	of	the	Illuminate\Contracts\Routing\UrlRoutable	interface	now	accepts	a	
$field	argument.	If	you	were	implementing	this	interface	by	hand,	you	should	update	your	implementation.

In	addition,	the	resolveRouteBinding	method	of	the	Illuminate\Database\Eloquent\Model	class	also	now	accepts
a	$field	parameter.	If	you	were	overriding	this	method,	you	should	update	your	method	to	accept	this
argument.

Finally,	the	resolveRouteBinding	method	of	the	Illuminate\Http\Resources\DelegatesToResources	trait	also	now
accepts	a	$field	parameter.	If	you	were	overriding	this	method,	you	should	update	your	method	to	accept	this
argument.

HTTP

PSR-7	Compatibility

Likelihood	Of	Impact:	Low

The	Zend	Diactoros	library	for	generating	PSR-7	responses	has	been	deprecated.	If	you	are	using	this	package
for	PSR-7	compatibility,	please	install	the	nyholm/psr7	Composer	package	instead.	In	addition,	please	install	the
^2.0	release	of	the	symfony/psr-http-message-bridge	Composer	package.

Mail

Configuration	File	Changes

Likelihood	Of	Impact:	Optional

In	order	to	support	multiple	mailers,	the	default	mail	configuration	file	has	changed	in	Laravel	7.x	to	include	an
array	of	mailers.	However,	in	order	to	preserve	backwards	compatibility,	the	Laravel	6.x	format	of	this
configuration	file	is	still	supported.	So,	no	changes	are	required	when	upgrading	to	Laravel	7.x;	however,	you
may	wish	to	examine	the	new	mail	configuration	file	structure	and	update	your	file	to	reflect	the	changes.

In	addition,	the	MAIL_DRIVER	environment	variable	has	been	renamed	to	MAIL_MAILER.

Laravel	Documentation	-	7.x	/	Upgrade	Guide 17

https://github.com/laravel/laravel/blob/{{version}}/config/mail.php

Markdown	Mail	Template	Updates

Likelihood	Of	Impact:	Medium

The	default	Markdown	mail	templates	have	been	refreshed	with	a	more	professional	and	appealing	design.	In
addition,	the	undocumented	promotion	Markdown	mail	component	has	been	removed.

Because	indentation	has	special	meaning	within	Markdown,	Markdown	mail	templates	expect	unindented
HTML.	If	you've	previously	published	Laravel's	default	mail	templates,	you'll	need	to	re-publish	your	mail
templates	or	manually	unindent	them:

php	artisan	vendor:publish	--tag=laravel-mail	--force

Swift	Mailer	Bindings

Likelihood	Of	Impact:	Low

Laravel	7.x	doesn't	provide	swift.mailer	and	swift.transport	container	bindings.	You	may	now	access	these
objects	through	the	mailer	binding:

$swiftMailer	=	app('mailer')->getSwiftMailer();

$swiftTransport	=	$swiftMailer->getTransport();

Resources

The	Illuminate\Http\Resources\Json\Resource	Class

Likelihood	Of	Impact:	Low

The	deprecated	Illuminate\Http\Resources\Json\Resource	class	has	been	removed.	Your	resources	should
extend	the	Illuminate\Http\Resources\Json\JsonResource	class	instead.

Routing

The	Router	getRoutes	Method

Likelihood	Of	Impact:	Low

The	router's	getRoutes	method	now	returns	an	instance	of	Illuminate\Routing\RouteCollectionInterface	instead
of	Illuminate\Routing\RouteCollection.

Unique	Route	Names

Likelihood	Of	Impact:	Medium

Even	though	never	officially	documented,	previous	Laravel	releases	allow	you	to	define	two	different	routes
with	the	same	name.	In	Laravel	7	this	is	no	longer	possible	and	you	should	always	provide	unique	names	for
your	routes.	Routes	with	duplicate	names	can	cause	unexpected	behavior	in	multiple	areas	of	the	framework.

CORS	Support

Likelihood	Of	Impact:	Medium

Cross-Origin	Resource	Sharing	(CORS)	support	is	now	integrated	by	default.	If	you	are	using	any	third-party
CORS	libraries	you	are	now	advised	to	use	the	new	cors	configuration	file.

Next,	install	the	underlying	CORS	library	as	a	dependency	of	your	application:

composer	require	fruitcake/laravel-cors

Laravel	Documentation	-	7.x	/	Upgrade	Guide 18

https://github.com/laravel/laravel/blob/master/config/cors.php

Finally,	add	the	\Fruitcake\Cors\HandleCors::class	middleware	to	your	App\Http\Kernel	global	middleware	list.

Session

The	array	Session	Driver

Likelihood	Of	Impact:	Low

The	array	session	driver	data	is	now	persistent	for	the	current	request.	Previously,	data	stored	in	the	array
session	could	not	be	retrieved	even	during	the	current	request.

Testing

The	assertSee	Assertion

Likelihood	Of	Impact:	Medium

The	assertSee,	assertDontSee,	assertSeeText,	assertDontSeeText,	assertSeeInOrder	and	assertSeeTextInOrder
assertions	on	the	TestResponse	class	will	now	automatically	escape	values.	If	you	are	manually	escaping	any
values	passed	to	these	assertions	you	should	no	longer	do	so.	If	you	need	to	assert	unescaped	values,	you	may
pass	false	as	the	second	argument	to	the	method.

The	TestResponse	Class

Likelihood	Of	Impact:	Low

The	Illuminate\Foundation\Testing\TestResponse	class	has	been	renamed	to	Illuminate\Testing\TestResponse.
If	you're	extending	this	class,	make	sure	to	update	the	namespace.

The	Assert	Class

Likelihood	Of	Impact:	Low

The	Illuminate\Foundation\Testing\Assert	class	has	been	renamed	to	Illuminate\Testing\Assert.	If	you're
using	this	class,	make	sure	to	update	the	namespace.

Validation

The	different	Rule

Likelihood	Of	Impact:	Medium

The	different	rule	will	now	fail	if	one	of	the	specified	parameters	is	missing	from	the	request.

Miscellaneous

We	also	encourage	you	to	view	the	changes	in	the	laravel/laravel	GitHub	repository.	While	many	of	these
changes	are	not	required,	you	may	wish	to	keep	these	files	in	sync	with	your	application.	Some	of	these
changes	will	be	covered	in	this	upgrade	guide,	but	others,	such	as	changes	to	configuration	files	or	comments,
will	not	be.	You	can	easily	view	the	changes	with	the	GitHub	comparison	tool	and	choose	which	updates	are
important	to	you.

Laravel	Documentation	-	7.x	/	Upgrade	Guide 19

https://github.com/laravel/laravel
https://github.com/laravel/laravel/compare/6.x...7.x

Prologue

Contribution	Guide
Bug	Reports
Support	Questions
Core	Development	Discussion
Which	Branch?
Compiled	Assets
Security	Vulnerabilities
Coding	Style

PHPDoc
StyleCI

Code	of	Conduct

Bug	Reports

To	encourage	active	collaboration,	Laravel	strongly	encourages	pull	requests,	not	just	bug	reports.	"Bug
reports"	may	also	be	sent	in	the	form	of	a	pull	request	containing	a	failing	test.

However,	if	you	file	a	bug	report,	your	issue	should	contain	a	title	and	a	clear	description	of	the	issue.	You
should	also	include	as	much	relevant	information	as	possible	and	a	code	sample	that	demonstrates	the	issue.
The	goal	of	a	bug	report	is	to	make	it	easy	for	yourself	-	and	others	-	to	replicate	the	bug	and	develop	a	fix.

Remember,	bug	reports	are	created	in	the	hope	that	others	with	the	same	problem	will	be	able	to	collaborate
with	you	on	solving	it.	Do	not	expect	that	the	bug	report	will	automatically	see	any	activity	or	that	others	will
jump	to	fix	it.	Creating	a	bug	report	serves	to	help	yourself	and	others	start	on	the	path	of	fixing	the	problem.	If
you	want	to	chip	in,	you	can	help	out	by	fixing	any	bugs	listed	in	our	issue	trackers.

The	Laravel	source	code	is	managed	on	GitHub,	and	there	are	repositories	for	each	of	the	Laravel	projects:

Laravel	Application
Laravel	Art
Laravel	Documentation
Laravel	Dusk
Laravel	Cashier	Stripe
Laravel	Cashier	Paddle
Laravel	Echo
Laravel	Envoy
Laravel	Framework
Laravel	Homestead
Laravel	Homestead	Build	Scripts
Laravel	Horizon
Laravel	Passport
Laravel	Sanctum
Laravel	Scout
Laravel	Socialite
Laravel	Telescope
Laravel	Website
Laravel	UI

Support	Questions

Laravel's	GitHub	issue	trackers	are	not	intended	to	provide	Laravel	help	or	support.	Instead,	use	one	of	the
following	channels:

GitHub	Discussions
Laracasts	Forums
Laravel.io	Forums

Laravel	Documentation	-	7.x	/	Contribution	Guide 20

https://github.com/issues?q=is%3Aopen+is%3Aissue+label%3Abug+user%3Alaravel+-repo%3Alaravel%2Fnova-issues
https://github.com/laravel/laravel
https://github.com/laravel/art
https://github.com/laravel/docs
https://github.com/laravel/dusk
https://github.com/laravel/cashier
https://github.com/laravel/cashier-paddle
https://github.com/laravel/echo
https://github.com/laravel/envoy
https://github.com/laravel/framework
https://github.com/laravel/homestead
https://github.com/laravel/settler
https://github.com/laravel/horizon
https://github.com/laravel/passport
https://github.com/laravel/sanctum
https://github.com/laravel/scout
https://github.com/laravel/socialite
https://github.com/laravel/telescope
https://github.com/laravel/laravel.com-next
https://github.com/laravel/ui
https://github.com/laravel/framework/discussions
https://laracasts.com/discuss
https://laravel.io/forum

StackOverflow
Discord
Larachat
IRC

Core	Development	Discussion

You	may	propose	new	features	or	improvements	of	existing	Laravel	behavior	in	the	Laravel	Ideas	issue	board.
If	you	propose	a	new	feature,	please	be	willing	to	implement	at	least	some	of	the	code	that	would	be	needed	to
complete	the	feature.

Informal	discussion	regarding	bugs,	new	features,	and	implementation	of	existing	features	takes	place	in	the	
#internals	channel	of	the	Laravel	Discord	server.	Taylor	Otwell,	the	maintainer	of	Laravel,	is	typically	present
in	the	channel	on	weekdays	from	8am-5pm	(UTC-06:00	or	America/Chicago),	and	sporadically	present	in	the
channel	at	other	times.

Which	Branch?

All	bug	fixes	should	be	sent	to	the	latest	stable	branch	or	to	the	current	LTS	branch.	Bug	fixes	should	never	be
sent	to	the	master	branch	unless	they	fix	features	that	exist	only	in	the	upcoming	release.

Minor	features	that	are	fully	backward	compatible	with	the	current	release	may	be	sent	to	the	latest	stable
branch.

Major	new	features	should	always	be	sent	to	the	master	branch,	which	contains	the	upcoming	release.

If	you	are	unsure	if	your	feature	qualifies	as	a	major	or	minor,	please	ask	Taylor	Otwell	in	the	#internals
channel	of	the	Laravel	Discord	server.

Compiled	Assets

If	you	are	submitting	a	change	that	will	affect	a	compiled	file,	such	as	most	of	the	files	in	resources/sass	or	
resources/js	of	the	laravel/laravel	repository,	do	not	commit	the	compiled	files.	Due	to	their	large	size,	they
cannot	realistically	be	reviewed	by	a	maintainer.	This	could	be	exploited	as	a	way	to	inject	malicious	code	into
Laravel.	In	order	to	defensively	prevent	this,	all	compiled	files	will	be	generated	and	committed	by	Laravel
maintainers.

Security	Vulnerabilities

If	you	discover	a	security	vulnerability	within	Laravel,	please	send	an	email	to	Taylor	Otwell	at
taylor@laravel.com.	All	security	vulnerabilities	will	be	promptly	addressed.

Coding	Style

Laravel	follows	the	PSR-2	coding	standard	and	the	PSR-4	autoloading	standard.

PHPDoc

Below	is	an	example	of	a	valid	Laravel	documentation	block.	Note	that	the	@param	attribute	is	followed	by	two
spaces,	the	argument	type,	two	more	spaces,	and	finally	the	variable	name:

/**

	*	Register	a	binding	with	the	container.

	*

	*	@param		string|array		$abstract

	*	@param		\Closure|string|null		$concrete

	*	@param		bool		$shared

	*	@return	void

	*

	*	@throws	\Exception

Laravel	Documentation	-	7.x	/	Contribution	Guide 21

https://stackoverflow.com/questions/tagged/laravel
https://discordapp.com/invite/KxwQuKb
https://larachat.co
https://webchat.freenode.net/?nick=artisan&channels=%23laravel&prompt=1
https://github.com/laravel/ideas/issues
https://discordapp.com/invite/mPZNm7A
https://discordapp.com/invite/mPZNm7A
mailto:taylor@laravel.com
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-2-coding-style-guide.md
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md

	*/

public	function	bind($abstract,	$concrete	=	null,	$shared	=	false)

{

				//

}

StyleCI

Don't	worry	if	your	code	styling	isn't	perfect!	StyleCI	will	automatically	merge	any	style	fixes	into	the	Laravel
repository	after	pull	requests	are	merged.	This	allows	us	to	focus	on	the	content	of	the	contribution	and	not	the
code	style.

Code	of	Conduct

The	Laravel	code	of	conduct	is	derived	from	the	Ruby	code	of	conduct.	Any	violations	of	the	code	of	conduct
may	be	reported	to	Taylor	Otwell	(taylor@laravel.com):

Participants	will	be	tolerant	of	opposing	views.
Participants	must	ensure	that	their	language	and	actions	are	free	of	personal	attacks	and	disparaging
personal	remarks.
When	interpreting	the	words	and	actions	of	others,	participants	should	always	assume	good	intentions.
Behavior	that	can	be	reasonably	considered	harassment	will	not	be	tolerated.

Laravel	Documentation	-	7.x	/	Contribution	Guide 22

https://styleci.io/

Getting	Started

Installation
Installation

Server	Requirements
Installing	Laravel
Configuration

Web	Server	Configuration
Directory	Configuration
Pretty	URLs

Installation

Server	Requirements

The	Laravel	framework	has	a	few	system	requirements.	All	of	these	requirements	are	satisfied	by	the	Laravel
Homestead	virtual	machine,	so	it's	highly	recommended	that	you	use	Homestead	as	your	local	Laravel
development	environment.

However,	if	you	are	not	using	Homestead,	you	will	need	to	make	sure	your	server	meets	the	following
requirements:

PHP	>=	7.2.5
BCMath	PHP	Extension
Ctype	PHP	Extension
Fileinfo	PHP	extension
JSON	PHP	Extension
Mbstring	PHP	Extension
OpenSSL	PHP	Extension
PDO	PHP	Extension
Tokenizer	PHP	Extension
XML	PHP	Extension

Installing	Laravel

Laravel	utilizes	Composer	to	manage	its	dependencies.	So,	before	using	Laravel,	make	sure	you	have
Composer	installed	on	your	machine.

Via	Laravel	Installer

First,	download	the	Laravel	installer	using	Composer:

composer	global	require	laravel/installer

Make	sure	to	place	Composer's	system-wide	vendor	bin	directory	in	your	$PATH	so	the	laravel	executable	can	be
located	by	your	system.	This	directory	exists	in	different	locations	based	on	your	operating	system;	however,
some	common	locations	include:

macOS:	$HOME/.composer/vendor/bin
Windows:	%USERPROFILE%\AppData\Roaming\Composer\vendor\bin
GNU	/	Linux	Distributions:	$HOME/.config/composer/vendor/bin	or	$HOME/.composer/vendor/bin

You	could	also	find	the	composer's	global	installation	path	by	running	composer	global	about	and	looking	up
from	the	first	line.

Once	installed,	the	laravel	new	command	will	create	a	fresh	Laravel	installation	in	the	directory	you	specify.
For	instance,	laravel	new	blog	will	create	a	directory	named	blog	containing	a	fresh	Laravel	installation	with
all	of	Laravel's	dependencies	already	installed:

Laravel	Documentation	-	7.x	/	Getting	Started 23

https://getcomposer.org

laravel	new	blog

Via	Composer	Create-Project

Alternatively,	you	may	also	install	Laravel	by	issuing	the	Composer	create-project	command	in	your	terminal:

composer	create-project	--prefer-dist	laravel/laravel:^7.0	blog

Local	Development	Server

If	you	have	PHP	installed	locally	and	you	would	like	to	use	PHP's	built-in	development	server	to	serve	your
application,	you	may	use	the	serve	Artisan	command.	This	command	will	start	a	development	server	at	
http://localhost:8000:

php	artisan	serve

More	robust	local	development	options	are	available	via	Homestead	and	Valet.

Configuration

Public	Directory

After	installing	Laravel,	you	should	configure	your	web	server's	document	/	web	root	to	be	the	public	directory.
The	index.php	in	this	directory	serves	as	the	front	controller	for	all	HTTP	requests	entering	your	application.

Configuration	Files

All	of	the	configuration	files	for	the	Laravel	framework	are	stored	in	the	config	directory.	Each	option	is
documented,	so	feel	free	to	look	through	the	files	and	get	familiar	with	the	options	available	to	you.

Directory	Permissions

After	installing	Laravel,	you	may	need	to	configure	some	permissions.	Directories	within	the	storage	and	the	
bootstrap/cache	directories	should	be	writable	by	your	web	server	or	Laravel	will	not	run.	If	you	are	using	the
Homestead	virtual	machine,	these	permissions	should	already	be	set.

Application	Key

The	next	thing	you	should	do	after	installing	Laravel	is	set	your	application	key	to	a	random	string.	If	you
installed	Laravel	via	Composer	or	the	Laravel	installer,	this	key	has	already	been	set	for	you	by	the	php	artisan	
key:generate	command.

Typically,	this	string	should	be	32	characters	long.	The	key	can	be	set	in	the	.env	environment	file.	If	you	have
not	copied	the	.env.example	file	to	a	new	file	named	.env,	you	should	do	that	now.	If	the	application	key	is	not
set,	your	user	sessions	and	other	encrypted	data	will	not	be	secure!

Additional	Configuration

Laravel	needs	almost	no	other	configuration	out	of	the	box.	You	are	free	to	get	started	developing!	However,
you	may	wish	to	review	the	config/app.php	file	and	its	documentation.	It	contains	several	options	such	as	
timezone	and	locale	that	you	may	wish	to	change	according	to	your	application.

You	may	also	want	to	configure	a	few	additional	components	of	Laravel,	such	as:

Cache
Database
Session

Web	Server	Configuration

Laravel	Documentation	-	7.x	/	Getting	Started 24

Directory	Configuration

Laravel	should	always	be	served	out	of	the	root	of	the	"web	directory"	configured	for	your	web	server.	You
should	not	attempt	to	serve	a	Laravel	application	out	of	a	subdirectory	of	the	"web	directory".	Attempting	to	do
so	could	expose	sensitive	files	present	within	your	application.

Pretty	URLs

Apache

Laravel	includes	a	public/.htaccess	file	that	is	used	to	provide	URLs	without	the	index.php	front	controller	in
the	path.	Before	serving	Laravel	with	Apache,	be	sure	to	enable	the	mod_rewrite	module	so	the	.htaccess	file
will	be	honored	by	the	server.

If	the	.htaccess	file	that	ships	with	Laravel	does	not	work	with	your	Apache	installation,	try	this	alternative:

Options	+FollowSymLinks	-Indexes

RewriteEngine	On

RewriteCond	%{HTTP:Authorization}	.

RewriteRule	.*	-	[E=HTTP_AUTHORIZATION:%{HTTP:Authorization}]

RewriteCond	%{REQUEST_FILENAME}	!-d

RewriteCond	%{REQUEST_FILENAME}	!-f

RewriteRule	^	index.php	[L]

Nginx

If	you	are	using	Nginx,	the	following	directive	in	your	site	configuration	will	direct	all	requests	to	the	index.php
front	controller:

location	/	{

				try_files	$uri	$uri/	/index.php?$query_string;

}

When	using	Homestead	or	Valet,	pretty	URLs	will	be	automatically	configured.

Laravel	Documentation	-	7.x	/	Getting	Started 25

Getting	Started

Configuration
Introduction
Environment	Configuration

Environment	Variable	Types
Retrieving	Environment	Configuration
Determining	The	Current	Environment
Hiding	Environment	Variables	From	Debug	Pages

Accessing	Configuration	Values
Configuration	Caching
Maintenance	Mode

Introduction

All	of	the	configuration	files	for	the	Laravel	framework	are	stored	in	the	config	directory.	Each	option	is
documented,	so	feel	free	to	look	through	the	files	and	get	familiar	with	the	options	available	to	you.

Environment	Configuration

It	is	often	helpful	to	have	different	configuration	values	based	on	the	environment	where	the	application	is
running.	For	example,	you	may	wish	to	use	a	different	cache	driver	locally	than	you	do	on	your	production
server.

To	make	this	a	cinch,	Laravel	utilizes	the	DotEnv	PHP	library	by	Vance	Lucas.	In	a	fresh	Laravel	installation,
the	root	directory	of	your	application	will	contain	a	.env.example	file.	If	you	install	Laravel	via	Composer,	this
file	will	automatically	be	copied	to	.env.	Otherwise,	you	should	copy	the	file	manually.

Your	.env	file	should	not	be	committed	to	your	application's	source	control,	since	each	developer	/	server	using
your	application	could	require	a	different	environment	configuration.	Furthermore,	this	would	be	a	security	risk
in	the	event	an	intruder	gains	access	to	your	source	control	repository,	since	any	sensitive	credentials	would	get
exposed.

If	you	are	developing	with	a	team,	you	may	wish	to	continue	including	a	.env.example	file	with	your
application.	By	putting	placeholder	values	in	the	example	configuration	file,	other	developers	on	your	team	can
clearly	see	which	environment	variables	are	needed	to	run	your	application.	You	may	also	create	a	.env.testing
file.	This	file	will	override	the	.env	file	when	running	PHPUnit	tests	or	executing	Artisan	commands	with	the	-
-env=testing	option.

TIP	Any	variable	in	your	.env	file	can	be	overridden	by	external	environment	variables	such	as	server-
level	or	system-level	environment	variables.

Environment	Variable	Types

All	variables	in	your	.env	files	are	parsed	as	strings,	so	some	reserved	values	have	been	created	to	allow	you	to
return	a	wider	range	of	types	from	the	env()	function:

.env	Value env()	Value

true (bool)	true
(true) (bool)	true
false (bool)	false
(false) (bool)	false
empty (string)	''
(empty) (string)	''
null (null)	null
(null) (null)	null

Laravel	Documentation	-	7.x	/	Configuration 26

https://github.com/vlucas/phpdotenv

If	you	need	to	define	an	environment	variable	with	a	value	that	contains	spaces,	you	may	do	so	by	enclosing	the
value	in	double	quotes.

APP_NAME="My	Application"

Retrieving	Environment	Configuration

All	of	the	variables	listed	in	this	file	will	be	loaded	into	the	$_ENV	PHP	super-global	when	your	application
receives	a	request.	However,	you	may	use	the	env	helper	to	retrieve	values	from	these	variables	in	your
configuration	files.	In	fact,	if	you	review	the	Laravel	configuration	files,	you	will	notice	several	of	the	options
already	using	this	helper:

'debug'	=>	env('APP_DEBUG',	false),

The	second	value	passed	to	the	env	function	is	the	"default	value".	This	value	will	be	used	if	no	environment
variable	exists	for	the	given	key.

Determining	The	Current	Environment

The	current	application	environment	is	determined	via	the	APP_ENV	variable	from	your	.env	file.	You	may	access
this	value	via	the	environment	method	on	the	App	facade:

$environment	=	App::environment();

You	may	also	pass	arguments	to	the	environment	method	to	check	if	the	environment	matches	a	given	value.
The	method	will	return	true	if	the	environment	matches	any	of	the	given	values:

if	(App::environment('local'))	{

				//	The	environment	is	local

}

if	(App::environment(['local',	'staging']))	{

				//	The	environment	is	either	local	OR	staging...

}

TIP	The	current	application	environment	detection	can	be	overridden	by	a	server-level	APP_ENV
environment	variable.	This	can	be	useful	when	you	need	to	share	the	same	application	for	different
environment	configurations,	so	you	can	set	up	a	given	host	to	match	a	given	environment	in	your	server's
configurations.

Hiding	Environment	Variables	From	Debug	Pages

When	an	exception	is	uncaught	and	the	APP_DEBUG	environment	variable	is	true,	the	debug	page	will	show	all
environment	variables	and	their	contents.	In	some	cases	you	may	want	to	obscure	certain	variables.	You	may	do
this	by	updating	the	debug_hide	option	in	your	config/app.php	configuration	file.

Some	variables	are	available	in	both	the	environment	variables	and	the	server	/	request	data.	Therefore,	you
may	need	to	hide	them	for	both	$_ENV	and	$_SERVER:

return	[

				//	...

				'debug_hide'	=>	[

								'_ENV'	=>	[

												'APP_KEY',

												'DB_PASSWORD',

],

								'_SERVER'	=>	[

												'APP_KEY',

												'DB_PASSWORD',

],

								'_POST'	=>	[

												'password',

],

],

Laravel	Documentation	-	7.x	/	Configuration 27

];

Accessing	Configuration	Values

You	may	easily	access	your	configuration	values	using	the	global	config	helper	function	from	anywhere	in	your
application.	The	configuration	values	may	be	accessed	using	"dot"	syntax,	which	includes	the	name	of	the	file
and	option	you	wish	to	access.	A	default	value	may	also	be	specified	and	will	be	returned	if	the	configuration
option	does	not	exist:

$value	=	config('app.timezone');

//	Retrieve	a	default	value	if	the	configuration	value	does	not	exist...

$value	=	config('app.timezone',	'Asia/Seoul');

To	set	configuration	values	at	runtime,	pass	an	array	to	the	config	helper:

config(['app.timezone'	=>	'America/Chicago']);

Configuration	Caching

To	give	your	application	a	speed	boost,	you	should	cache	all	of	your	configuration	files	into	a	single	file	using
the	config:cache	Artisan	command.	This	will	combine	all	of	the	configuration	options	for	your	application	into
a	single	file	which	will	be	loaded	quickly	by	the	framework.

You	should	typically	run	the	php	artisan	config:cache	command	as	part	of	your	production	deployment
routine.	The	command	should	not	be	run	during	local	development	as	configuration	options	will	frequently
need	to	be	changed	during	the	course	of	your	application's	development.

NOTE	If	you	execute	the	config:cache	command	during	your	deployment	process,	you	should	be	sure	that
you	are	only	calling	the	env	function	from	within	your	configuration	files.	Once	the	configuration	has	been
cached,	the	.env	file	will	not	be	loaded	and	all	calls	to	the	env	function	will	return	null.

Maintenance	Mode

When	your	application	is	in	maintenance	mode,	a	custom	view	will	be	displayed	for	all	requests	into	your
application.	This	makes	it	easy	to	"disable"	your	application	while	it	is	updating	or	when	you	are	performing
maintenance.	A	maintenance	mode	check	is	included	in	the	default	middleware	stack	for	your	application.	If	the
application	is	in	maintenance	mode,	a	MaintenanceModeException	will	be	thrown	with	a	status	code	of	503.

To	enable	maintenance	mode,	execute	the	down	Artisan	command:

php	artisan	down

You	may	also	provide	message	and	retry	options	to	the	down	command.	The	message	value	may	be	used	to
display	or	log	a	custom	message,	while	the	retry	value	will	be	set	as	the	Retry-After	HTTP	header's	value:

php	artisan	down	--message="Upgrading	Database"	--retry=60

Even	while	in	maintenance	mode,	specific	IP	addresses	or	networks	may	be	allowed	to	access	the	application
using	the	command's	allow	option:

php	artisan	down	--allow=127.0.0.1	--allow=192.168.0.0/16

To	disable	maintenance	mode,	use	the	up	command:

php	artisan	up

TIP	You	may	customize	the	default	maintenance	mode	template	by	defining	your	own	template	at	
resources/views/errors/503.blade.php.

Maintenance	Mode	&	Queues

While	your	application	is	in	maintenance	mode,	no	queued	jobs	will	be	handled.	The	jobs	will	continue	to	be

Laravel	Documentation	-	7.x	/	Configuration 28

handled	as	normal	once	the	application	is	out	of	maintenance	mode.

Alternatives	To	Maintenance	Mode

Since	maintenance	mode	requires	your	application	to	have	several	seconds	of	downtime,	consider	alternatives
like	Envoyer	to	accomplish	zero-downtime	deployment	with	Laravel.

Laravel	Documentation	-	7.x	/	Configuration 29

https://envoyer.io

Getting	Started

Directory	Structure
Introduction
The	Root	Directory

The	app	Directory
The	bootstrap	Directory
The	config	Directory
The	database	Directory
The	public	Directory
The	resources	Directory
The	routes	Directory
The	storage	Directory
The	tests	Directory
The	vendor	Directory

The	App	Directory
The	Broadcasting	Directory
The	Console	Directory
The	Events	Directory
The	Exceptions	Directory
The	Http	Directory
The	Jobs	Directory
The	Listeners	Directory
The	Mail	Directory
The	Notifications	Directory
The	Policies	Directory
The	Providers	Directory
The	Rules	Directory

Introduction

The	default	Laravel	application	structure	is	intended	to	provide	a	great	starting	point	for	both	large	and	small
applications.	But	you	are	free	to	organize	your	application	however	you	like.	Laravel	imposes	almost	no
restrictions	on	where	any	given	class	is	located	-	as	long	as	Composer	can	autoload	the	class.

Where	Is	The	Models	Directory?

When	getting	started	with	Laravel,	many	developers	are	confused	by	the	lack	of	a	models	directory.	However,
the	lack	of	such	a	directory	is	intentional.	We	find	the	word	"models"	ambiguous	since	it	means	many	different
things	to	many	different	people.	Some	developers	refer	to	an	application's	"model"	as	the	totality	of	all	of	its
business	logic,	while	others	refer	to	"models"	as	classes	that	interact	with	a	relational	database.

For	this	reason,	we	choose	to	place	Eloquent	models	in	the	app	directory	by	default,	and	allow	the	developer	to
place	them	somewhere	else	if	they	choose.

The	Root	Directory

The	App	Directory

The	app	directory	contains	the	core	code	of	your	application.	We'll	explore	this	directory	in	more	detail	soon;
however,	almost	all	of	the	classes	in	your	application	will	be	in	this	directory.

The	Bootstrap	Directory

The	bootstrap	directory	contains	the	app.php	file	which	bootstraps	the	framework.	This	directory	also	houses	a	
cache	directory	which	contains	framework	generated	files	for	performance	optimization	such	as	the	route	and
services	cache	files.

Laravel	Documentation	-	7.x	/	Directory	Structure 30

The	Config	Directory

The	config	directory,	as	the	name	implies,	contains	all	of	your	application's	configuration	files.	It's	a	great	idea
to	read	through	all	of	these	files	and	familiarize	yourself	with	all	of	the	options	available	to	you.

The	Database	Directory

The	database	directory	contains	your	database	migrations,	model	factories,	and	seeds.	If	you	wish,	you	may
also	use	this	directory	to	hold	an	SQLite	database.

The	Public	Directory

The	public	directory	contains	the	index.php	file,	which	is	the	entry	point	for	all	requests	entering	your
application	and	configures	autoloading.	This	directory	also	houses	your	assets	such	as	images,	JavaScript,	and
CSS.

The	Resources	Directory

The	resources	directory	contains	your	views	as	well	as	your	raw,	un-compiled	assets	such	as	LESS,	SASS,	or
JavaScript.	This	directory	also	houses	all	of	your	language	files.

The	Routes	Directory

The	routes	directory	contains	all	of	the	route	definitions	for	your	application.	By	default,	several	route	files	are
included	with	Laravel:	web.php,	api.php,	console.php	and	channels.php.

The	web.php	file	contains	routes	that	the	RouteServiceProvider	places	in	the	web	middleware	group,	which
provides	session	state,	CSRF	protection,	and	cookie	encryption.	If	your	application	does	not	offer	a	stateless,
RESTful	API,	all	of	your	routes	will	most	likely	be	defined	in	the	web.php	file.

The	api.php	file	contains	routes	that	the	RouteServiceProvider	places	in	the	api	middleware	group,	which
provides	rate	limiting.	These	routes	are	intended	to	be	stateless,	so	requests	entering	the	application	through
these	routes	are	intended	to	be	authenticated	via	tokens	and	will	not	have	access	to	session	state.

The	console.php	file	is	where	you	may	define	all	of	your	Closure	based	console	commands.	Each	Closure	is
bound	to	a	command	instance	allowing	a	simple	approach	to	interacting	with	each	command's	IO	methods.
Even	though	this	file	does	not	define	HTTP	routes,	it	defines	console	based	entry	points	(routes)	into	your
application.

The	channels.php	file	is	where	you	may	register	all	of	the	event	broadcasting	channels	that	your	application
supports.

The	Storage	Directory

The	storage	directory	contains	your	compiled	Blade	templates,	file	based	sessions,	file	caches,	and	other	files
generated	by	the	framework.	This	directory	is	segregated	into	app,	framework,	and	logs	directories.	The	app
directory	may	be	used	to	store	any	files	generated	by	your	application.	The	framework	directory	is	used	to	store
framework	generated	files	and	caches.	Finally,	the	logs	directory	contains	your	application's	log	files.

The	storage/app/public	directory	may	be	used	to	store	user-generated	files,	such	as	profile	avatars,	that	should
be	publicly	accessible.	You	should	create	a	symbolic	link	at	public/storage	which	points	to	this	directory.	You
may	create	the	link	using	the	php	artisan	storage:link	command.

The	Tests	Directory

The	tests	directory	contains	your	automated	tests.	An	example	PHPUnit	test	is	provided	out	of	the	box.	Each
test	class	should	be	suffixed	with	the	word	Test.	You	may	run	your	tests	using	the	phpunit	or	php	
vendor/bin/phpunit	commands.

Laravel	Documentation	-	7.x	/	Directory	Structure 31

https://phpunit.de/

The	Vendor	Directory

The	vendor	directory	contains	your	Composer	dependencies.

The	App	Directory

The	majority	of	your	application	is	housed	in	the	app	directory.	By	default,	this	directory	is	namespaced	under	
App	and	is	autoloaded	by	Composer	using	the	PSR-4	autoloading	standard.

The	app	directory	contains	a	variety	of	additional	directories	such	as	Console,	Http,	and	Providers.	Think	of	the	
Console	and	Http	directories	as	providing	an	API	into	the	core	of	your	application.	The	HTTP	protocol	and	CLI
are	both	mechanisms	to	interact	with	your	application,	but	do	not	actually	contain	application	logic.	In	other
words,	they	are	two	ways	of	issuing	commands	to	your	application.	The	Console	directory	contains	all	of	your
Artisan	commands,	while	the	Http	directory	contains	your	controllers,	middleware,	and	requests.

A	variety	of	other	directories	will	be	generated	inside	the	app	directory	as	you	use	the	make	Artisan	commands
to	generate	classes.	So,	for	example,	the	app/Jobs	directory	will	not	exist	until	you	execute	the	make:job	Artisan
command	to	generate	a	job	class.

TIP	Many	of	the	classes	in	the	app	directory	can	be	generated	by	Artisan	via	commands.	To	review	the
available	commands,	run	the	php	artisan	list	make	command	in	your	terminal.

The	Broadcasting	Directory

The	Broadcasting	directory	contains	all	of	the	broadcast	channel	classes	for	your	application.	These	classes	are
generated	using	the	make:channel	command.	This	directory	does	not	exist	by	default,	but	will	be	created	for	you
when	you	create	your	first	channel.	To	learn	more	about	channels,	check	out	the	documentation	on	event
broadcasting.

The	Console	Directory

The	Console	directory	contains	all	of	the	custom	Artisan	commands	for	your	application.	These	commands	may
be	generated	using	the	make:command	command.	This	directory	also	houses	your	console	kernel,	which	is	where
your	custom	Artisan	commands	are	registered	and	your	scheduled	tasks	are	defined.

The	Events	Directory

This	directory	does	not	exist	by	default,	but	will	be	created	for	you	by	the	event:generate	and	make:event
Artisan	commands.	The	Events	directory	houses	event	classes.	Events	may	be	used	to	alert	other	parts	of	your
application	that	a	given	action	has	occurred,	providing	a	great	deal	of	flexibility	and	decoupling.

The	Exceptions	Directory

The	Exceptions	directory	contains	your	application's	exception	handler	and	is	also	a	good	place	to	place	any
exceptions	thrown	by	your	application.	If	you	would	like	to	customize	how	your	exceptions	are	logged	or
rendered,	you	should	modify	the	Handler	class	in	this	directory.

The	Http	Directory

The	Http	directory	contains	your	controllers,	middleware,	and	form	requests.	Almost	all	of	the	logic	to	handle
requests	entering	your	application	will	be	placed	in	this	directory.

The	Jobs	Directory

This	directory	does	not	exist	by	default,	but	will	be	created	for	you	if	you	execute	the	make:job	Artisan
command.	The	Jobs	directory	houses	the	queueable	jobs	for	your	application.	Jobs	may	be	queued	by	your
application	or	run	synchronously	within	the	current	request	lifecycle.	Jobs	that	run	synchronously	during	the
current	request	are	sometimes	referred	to	as	"commands"	since	they	are	an	implementation	of	the	command

Laravel	Documentation	-	7.x	/	Directory	Structure 32

https://getcomposer.org
https://www.php-fig.org/psr/psr-4/
https://en.wikipedia.org/wiki/Command_pattern

pattern.

The	Listeners	Directory

This	directory	does	not	exist	by	default,	but	will	be	created	for	you	if	you	execute	the	event:generate	or	
make:listener	Artisan	commands.	The	Listeners	directory	contains	the	classes	that	handle	your	events.	Event
listeners	receive	an	event	instance	and	perform	logic	in	response	to	the	event	being	fired.	For	example,	a	
UserRegistered	event	might	be	handled	by	a	SendWelcomeEmail	listener.

The	Mail	Directory

This	directory	does	not	exist	by	default,	but	will	be	created	for	you	if	you	execute	the	make:mail	Artisan
command.	The	Mail	directory	contains	all	of	your	classes	that	represent	emails	sent	by	your	application.	Mail
objects	allow	you	to	encapsulate	all	of	the	logic	of	building	an	email	in	a	single,	simple	class	that	may	be	sent
using	the	Mail::send	method.

The	Notifications	Directory

This	directory	does	not	exist	by	default,	but	will	be	created	for	you	if	you	execute	the	make:notification
Artisan	command.	The	Notifications	directory	contains	all	of	the	"transactional"	notifications	that	are	sent	by
your	application,	such	as	simple	notifications	about	events	that	happen	within	your	application.	Laravel's
notification	features	abstracts	sending	notifications	over	a	variety	of	drivers	such	as	email,	Slack,	SMS,	or
stored	in	a	database.

The	Policies	Directory

This	directory	does	not	exist	by	default,	but	will	be	created	for	you	if	you	execute	the	make:policy	Artisan
command.	The	Policies	directory	contains	the	authorization	policy	classes	for	your	application.	Policies	are
used	to	determine	if	a	user	can	perform	a	given	action	against	a	resource.	For	more	information,	check	out	the
authorization	documentation.

The	Providers	Directory

The	Providers	directory	contains	all	of	the	service	providers	for	your	application.	Service	providers	bootstrap
your	application	by	binding	services	in	the	service	container,	registering	events,	or	performing	any	other	tasks
to	prepare	your	application	for	incoming	requests.

In	a	fresh	Laravel	application,	this	directory	will	already	contain	several	providers.	You	are	free	to	add	your
own	providers	to	this	directory	as	needed.

The	Rules	Directory

This	directory	does	not	exist	by	default,	but	will	be	created	for	you	if	you	execute	the	make:rule	Artisan
command.	The	Rules	directory	contains	the	custom	validation	rule	objects	for	your	application.	Rules	are	used
to	encapsulate	complicated	validation	logic	in	a	simple	object.	For	more	information,	check	out	the	validation
documentation.

Laravel	Documentation	-	7.x	/	Directory	Structure 33

Getting	Started

Laravel	Homestead
Introduction
Installation	&	Setup

First	Steps
Configuring	Homestead
Launching	The	Vagrant	Box
Per	Project	Installation
Installing	Optional	Features
Aliases

Daily	Usage
Accessing	Homestead	Globally
Connecting	Via	SSH
Connecting	To	Databases
Database	Backups
Database	Snapshots
Adding	Additional	Sites
Environment	Variables
Wildcard	SSL
Configuring	Cron	Schedules
Configuring	Mailhog
Configuring	Minio
Ports
Sharing	Your	Environment
Multiple	PHP	Versions
Web	Servers
Mail

Debugging	&	Profiling
Debugging	Web	Requests	With	Xdebug
Debugging	CLI	Applications
Profiling	Applications	with	Blackfire

Network	Interfaces
Extending	Homestead
Updating	Homestead
Provider	Specific	Settings

VirtualBox

Introduction

Laravel	strives	to	make	the	entire	PHP	development	experience	delightful,	including	your	local	development
environment.	Vagrant	provides	a	simple,	elegant	way	to	manage	and	provision	Virtual	Machines.

Laravel	Homestead	is	an	official,	pre-packaged	Vagrant	box	that	provides	you	a	wonderful	development
environment	without	requiring	you	to	install	PHP,	a	web	server,	and	any	other	server	software	on	your	local
machine.	No	more	worrying	about	messing	up	your	operating	system!	Vagrant	boxes	are	completely
disposable.	If	something	goes	wrong,	you	can	destroy	and	re-create	the	box	in	minutes!

Homestead	runs	on	any	Windows,	Mac,	or	Linux	system,	and	includes	Nginx,	PHP,	MySQL,	PostgreSQL,
Redis,	Memcached,	Node,	and	all	of	the	other	goodies	you	need	to	develop	amazing	Laravel	applications.

NOTE	If	you	are	using	Windows,	you	may	need	to	enable	hardware	virtualization	(VT-x).	It	can	usually	be
enabled	via	your	BIOS.	If	you	are	using	Hyper-V	on	a	UEFI	system	you	may	additionally	need	to	disable
Hyper-V	in	order	to	access	VT-x.

Included	Software

Ubuntu	18.04

Laravel	Documentation	-	7.x	/	Homestead 34

https://www.vagrantup.com

Git
PHP	7.4
PHP	7.3
PHP	7.2
PHP	7.1
PHP	7.0
PHP	5.6
Nginx
MySQL
lmm	for	MySQL	or	MariaDB	database	snapshots
Sqlite3
PostgreSQL	(9.6,	10,	11,	12)
Composer
Node	(With	Yarn,	Bower,	Grunt,	and	Gulp)
Redis
Memcached
Beanstalkd
Mailhog
avahi
ngrok
Xdebug
XHProf	/	Tideways	/	XHGui
wp-cli

Optional	Software

Apache
Blackfire
Cassandra
Chronograf
CouchDB
Crystal	&	Lucky	Framework
Docker
Elasticsearch
Gearman
Go
Grafana
InfluxDB
MariaDB
MinIO
MongoDB
MySQL	8
Neo4j
Oh	My	Zsh
Open	Resty
PM2
Python
RabbitMQ
Solr
Webdriver	&	Laravel	Dusk	Utilities

Installation	&	Setup

First	Steps

Before	launching	your	Homestead	environment,	you	must	install	VirtualBox	6.x,	VMWare,	Parallels	or	Hyper-
V	as	well	as	Vagrant.	All	of	these	software	packages	provide	easy-to-use	visual	installers	for	all	popular
operating	systems.

Laravel	Documentation	-	7.x	/	Homestead 35

https://www.virtualbox.org/wiki/Downloads
https://www.vmware.com
https://www.parallels.com/products/desktop/
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/quick-start/enable-hyper-v
https://www.vagrantup.com/downloads.html

To	use	the	VMware	provider,	you	will	need	to	purchase	both	VMware	Fusion	/	Workstation	and	the	VMware
Vagrant	plug-in.	Though	it	is	not	free,	VMware	can	provide	faster	shared	folder	performance	out	of	the	box.

To	use	the	Parallels	provider,	you	will	need	to	install	Parallels	Vagrant	plug-in.	It	is	free	of	charge.

Because	of	Vagrant	limitations,	The	Hyper-V	provider	ignores	all	networking	settings.

Installing	The	Homestead	Vagrant	Box

Once	VirtualBox	/	VMware	and	Vagrant	have	been	installed,	you	should	add	the	laravel/homestead	box	to	your
Vagrant	installation	using	the	following	command	in	your	terminal.	It	will	take	a	few	minutes	to	download	the
box,	depending	on	your	Internet	connection	speed:

vagrant	box	add	laravel/homestead

If	this	command	fails,	make	sure	your	Vagrant	installation	is	up	to	date.

NOTE	Homestead	periodically	issues	"alpha"	/	"beta"	boxes	for	testing,	which	may	interfere	with	the	
vagrant	box	add	command.	If	you	are	having	issues	running	vagrant	box	add,	you	may	run	the	vagrant	up
command	and	the	correct	box	will	be	downloaded	when	Vagrant	attempts	to	start	the	virtual	machine.

Installing	Homestead

You	may	install	Homestead	by	cloning	the	repository	onto	your	host	machine.	Consider	cloning	the	repository
into	a	Homestead	folder	within	your	"home"	directory,	as	the	Homestead	box	will	serve	as	the	host	to	all	of	your
Laravel	projects:

git	clone	https://github.com/laravel/homestead.git	~/Homestead

You	should	check	out	a	tagged	version	of	Homestead	since	the	master	branch	may	not	always	be	stable.	You
can	find	the	latest	stable	version	on	the	GitHub	Release	Page.	Alternatively,	you	may	checkout	the	release
branch	which	always	contains	the	latest	stable	release:

cd	~/Homestead

git	checkout	release

Once	you	have	cloned	the	Homestead	repository,	run	the	bash	init.sh	command	from	the	Homestead	directory
to	create	the	Homestead.yaml	configuration	file.	The	Homestead.yaml	file	will	be	placed	in	the	Homestead
directory:

//	Mac	/	Linux...

bash	init.sh

//	Windows...

init.bat

Configuring	Homestead

Setting	Your	Provider

The	provider	key	in	your	Homestead.yaml	file	indicates	which	Vagrant	provider	should	be	used:	virtualbox,	
vmware_fusion,	vmware_workstation,	parallels	or	hyperv.	You	may	set	this	to	the	provider	you	prefer:

provider:	virtualbox

Configuring	Shared	Folders

The	folders	property	of	the	Homestead.yaml	file	lists	all	of	the	folders	you	wish	to	share	with	your	Homestead
environment.	As	files	within	these	folders	are	changed,	they	will	be	kept	in	sync	between	your	local	machine
and	the	Homestead	environment.	You	may	configure	as	many	shared	folders	as	necessary:

folders:

				-	map:	~/code/project1

Laravel	Documentation	-	7.x	/	Homestead 36

https://www.vagrantup.com/vmware
https://github.com/Parallels/vagrant-parallels
https://www.vagrantup.com/docs/hyperv/limitations.html
https://github.com/laravel/homestead/releases

						to:	/home/vagrant/project1

NOTE	Windows	users	should	not	use	the	~/	path	syntax	and	instead	should	use	the	full	path	to	their
project,	such	as	C:\Users\user\Code\project1.

You	should	always	map	individual	projects	to	their	own	folder	mapping	instead	of	mapping	your	entire	~/code
folder.	When	you	map	a	folder	the	virtual	machine	must	keep	track	of	all	disk	IO	for	every	file	in	the	folder.
This	leads	to	performance	issues	if	you	have	a	large	number	of	files	in	a	folder.

folders:

				-	map:	~/code/project1

						to:	/home/vagrant/project1

				-	map:	~/code/project2

						to:	/home/vagrant/project2

NOTE	You	should	never	mount	.	(the	current	directory)	when	using	Homestead.	This	causes	Vagrant	to
not	map	the	current	folder	to	/vagrant	and	will	break	optional	features	and	cause	unexpected	results	while
provisioning.

To	enable	NFS,	you	only	need	to	add	a	simple	flag	to	your	synced	folder	configuration:

folders:

				-	map:	~/code/project1

						to:	/home/vagrant/project1

						type:	"nfs"

NOTE	When	using	NFS	on	Windows,	you	should	consider	installing	the	vagrant-winnfsd	plug-in.	This
plug-in	will	maintain	the	correct	user	/	group	permissions	for	files	and	directories	within	the	Homestead
box.

You	may	also	pass	any	options	supported	by	Vagrant's	Synced	Folders	by	listing	them	under	the	options	key:

folders:

				-	map:	~/code/project1

						to:	/home/vagrant/project1

						type:	"rsync"

						options:

										rsync__args:	["--verbose",	"--archive",	"--delete",	"-zz"]

										rsync__exclude:	["node_modules"]

Configuring	Nginx	Sites

Not	familiar	with	Nginx?	No	problem.	The	sites	property	allows	you	to	easily	map	a	"domain"	to	a	folder	on
your	Homestead	environment.	A	sample	site	configuration	is	included	in	the	Homestead.yaml	file.	Again,	you
may	add	as	many	sites	to	your	Homestead	environment	as	necessary.	Homestead	can	serve	as	a	convenient,
virtualized	environment	for	every	Laravel	project	you	are	working	on:

sites:

				-	map:	homestead.test

						to:	/home/vagrant/project1/public

If	you	change	the	sites	property	after	provisioning	the	Homestead	box,	you	should	re-run	vagrant	reload	--
provision	to	update	the	Nginx	configuration	on	the	virtual	machine.

NOTE	Homestead	scripts	are	built	to	be	as	idempotent	as	possible.	However,	if	you	are	experiencing
issues	while	provisioning	you	should	destroy	and	rebuild	the	machine	via	vagrant	destroy	&&	vagrant	up.

Enable	/	Disable	Services

Homestead	starts	several	services	by	default;	however,	you	may	customize	which	services	are	enabled	or
disabled	during	provisioning.	For	example,	you	may	enable	PostgreSQL	and	disable	MySQL:

services:

				-	enabled:

								-	"postgresql@12-main"

				-	disabled:

								-	"mysql"

Laravel	Documentation	-	7.x	/	Homestead 37

https://www.vagrantup.com/docs/synced-folders/nfs.html
https://github.com/winnfsd/vagrant-winnfsd
https://www.vagrantup.com/docs/synced-folders/basic_usage.html

The	specified	services	will	be	started	or	stopped	based	on	their	order	in	the	enabled	and	disabled	directives.

Hostname	Resolution

Homestead	publishes	hostnames	over	mDNS	for	automatic	host	resolution.	If	you	set	hostname:	homestead	in	your	
Homestead.yaml	file,	the	host	will	be	available	at	homestead.local.	MacOS,	iOS,	and	Linux	desktop	distributions
include	mDNS	support	by	default.	Windows	requires	installing	Bonjour	Print	Services	for	Windows.

Using	automatic	hostnames	works	best	for	"per	project"	installations	of	Homestead.	If	you	host	multiple	sites
on	a	single	Homestead	instance,	you	may	add	the	"domains"	for	your	web	sites	to	the	hosts	file	on	your
machine.	The	hosts	file	will	redirect	requests	for	your	Homestead	sites	into	your	Homestead	machine.	On	Mac
and	Linux,	this	file	is	located	at	/etc/hosts.	On	Windows,	it	is	located	at	
C:\Windows\System32\drivers\etc\hosts.	The	lines	you	add	to	this	file	will	look	like	the	following:

192.168.10.10		homestead.test

Make	sure	the	IP	address	listed	is	the	one	set	in	your	Homestead.yaml	file.	Once	you	have	added	the	domain	to
your	hosts	file	and	launched	the	Vagrant	box	you	will	be	able	to	access	the	site	via	your	web	browser:

http://homestead.test

Launching	The	Vagrant	Box

Once	you	have	edited	the	Homestead.yaml	to	your	liking,	run	the	vagrant	up	command	from	your	Homestead
directory.	Vagrant	will	boot	the	virtual	machine	and	automatically	configure	your	shared	folders	and	Nginx
sites.

To	destroy	the	machine,	you	may	use	the	vagrant	destroy	--force	command.

Per	Project	Installation

Instead	of	installing	Homestead	globally	and	sharing	the	same	Homestead	box	across	all	of	your	projects,	you
may	instead	configure	a	Homestead	instance	for	each	project	you	manage.	Installing	Homestead	per	project
may	be	beneficial	if	you	wish	to	ship	a	Vagrantfile	with	your	project,	allowing	others	working	on	the	project	to
vagrant	up.

To	install	Homestead	directly	into	your	project,	require	it	using	Composer:

composer	require	laravel/homestead	--dev

Once	Homestead	has	been	installed,	use	the	make	command	to	generate	the	Vagrantfile	and	Homestead.yaml	file
in	your	project	root.	The	make	command	will	automatically	configure	the	sites	and	folders	directives	in	the	
Homestead.yaml	file.

Mac	/	Linux:

php	vendor/bin/homestead	make

Windows:

vendor\\bin\\homestead	make

Next,	run	the	vagrant	up	command	in	your	terminal	and	access	your	project	at	http://homestead.test	in	your
browser.	Remember,	you	will	still	need	to	add	an	/etc/hosts	file	entry	for	homestead.test	or	the	domain	of	your
choice	if	you	are	not	using	automatic	hostname	resolution.

Installing	Optional	Features

Optional	software	is	installed	using	the	"features"	setting	in	your	Homestead	configuration	file.	Most	features
can	be	enabled	or	disabled	with	a	boolean	value,	while	some	features	allow	multiple	configuration	options:

features:

				-	blackfire:

Laravel	Documentation	-	7.x	/	Homestead 38

https://support.apple.com/kb/DL999?viewlocale=en_US&locale=en_US

								server_id:	"server_id"

								server_token:	"server_value"

								client_id:	"client_id"

								client_token:	"client_value"

				-	cassandra:	true

				-	chronograf:	true

				-	couchdb:	true

				-	crystal:	true

				-	docker:	true

				-	elasticsearch:

								version:	7.9.0

				-	gearman:	true

				-	golang:	true

				-	grafana:	true

				-	influxdb:	true

				-	mariadb:	true

				-	minio:	true

				-	mongodb:	true

				-	mysql8:	true

				-	neo4j:	true

				-	ohmyzsh:	true

				-	openresty:	true

				-	pm2:	true

				-	python:	true

				-	rabbitmq:	true

				-	solr:	true

				-	webdriver:	true

MariaDB

Enabling	MariaDB	will	remove	MySQL	and	install	MariaDB.	MariaDB	serves	as	a	drop-in	replacement	for
MySQL,	so	you	should	still	use	the	mysql	database	driver	in	your	application's	database	configuration.

MongoDB

The	default	MongoDB	installation	will	set	the	database	username	to	homestead	and	the	corresponding	password
to	secret.

Elasticsearch

You	may	specify	a	supported	version	of	Elasticsearch,	which	may	be	a	major	version	or	an	exact	version
number	(major.minor.patch).	The	default	installation	will	create	a	cluster	named	'homestead'.	You	should	never
give	Elasticsearch	more	than	half	of	the	operating	system's	memory,	so	make	sure	your	Homestead	machine	has
at	least	twice	the	Elasticsearch	allocation.

TIP	Check	out	the	Elasticsearch	documentation	to	learn	how	to	customize	your	configuration.

Neo4j

The	default	Neo4j	installation	will	set	the	database	username	to	homestead	and	corresponding	password	to	
secret.	To	access	the	Neo4j	browser,	visit	http://homestead.test:7474	via	your	web	browser.	The	ports	7687
(Bolt),	7474	(HTTP),	and	7473	(HTTPS)	are	ready	to	serve	requests	from	the	Neo4j	client.

Aliases

You	may	add	Bash	aliases	to	your	Homestead	machine	by	modifying	the	aliases	file	within	your	Homestead
directory:

alias	c='clear'

alias	..='cd	..'

After	you	have	updated	the	aliases	file,	you	should	re-provision	the	Homestead	machine	using	the	vagrant	
reload	--provision	command.	This	will	ensure	that	your	new	aliases	are	available	on	the	machine.

Daily	Usage

Laravel	Documentation	-	7.x	/	Homestead 39

https://www.elastic.co/guide/en/elasticsearch/reference/current

Accessing	Homestead	Globally

Sometimes	you	may	want	to	vagrant	up	your	Homestead	machine	from	anywhere	on	your	filesystem.	You	can
do	this	on	Mac	/	Linux	systems	by	adding	a	Bash	function	to	your	Bash	profile.	On	Windows,	you	may
accomplish	this	by	adding	a	"batch"	file	to	your	PATH.	These	scripts	will	allow	you	to	run	any	Vagrant	command
from	anywhere	on	your	system	and	will	automatically	point	that	command	to	your	Homestead	installation:

Mac	/	Linux

function	homestead()	{

				(cd	~/Homestead	&&	vagrant	$*)

}

Make	sure	to	tweak	the	~/Homestead	path	in	the	function	to	the	location	of	your	actual	Homestead	installation.
Once	the	function	is	installed,	you	may	run	commands	like	homestead	up	or	homestead	ssh	from	anywhere	on
your	system.

Windows

Create	a	homestead.bat	batch	file	anywhere	on	your	machine	with	the	following	contents:

@echo	off

set	cwd=%cd%

set	homesteadVagrant=C:\Homestead

cd	/d	%homesteadVagrant%	&&	vagrant	%*

cd	/d	%cwd%

set	cwd=

set	homesteadVagrant=

Make	sure	to	tweak	the	example	C:\Homestead	path	in	the	script	to	the	actual	location	of	your	Homestead
installation.	After	creating	the	file,	add	the	file	location	to	your	PATH.	You	may	then	run	commands	like	
homestead	up	or	homestead	ssh	from	anywhere	on	your	system.

Connecting	Via	SSH

You	can	SSH	into	your	virtual	machine	by	issuing	the	vagrant	ssh	terminal	command	from	your	Homestead
directory.

But,	since	you	will	probably	need	to	SSH	into	your	Homestead	machine	frequently,	consider	adding	the
"function"	described	above	to	your	host	machine	to	quickly	SSH	into	the	Homestead	box.

Connecting	To	Databases

A	homestead	database	is	configured	for	both	MySQL	and	PostgreSQL	out	of	the	box.	To	connect	to	your
MySQL	or	PostgreSQL	database	from	your	host	machine's	database	client,	you	should	connect	to	127.0.0.1	and
port	33060	(MySQL)	or	54320	(PostgreSQL).	The	username	and	password	for	both	databases	is	homestead	/	
secret.

NOTE	You	should	only	use	these	non-standard	ports	when	connecting	to	the	databases	from	your	host
machine.	You	will	use	the	default	3306	and	5432	ports	in	your	Laravel	database	configuration	file	since
Laravel	is	running	within	the	virtual	machine.

Database	Backups

Homestead	can	automatically	backup	your	database	when	your	Vagrant	box	is	destroyed.	To	utilize	this	feature,
you	must	be	using	Vagrant	2.1.0	or	greater.	Or,	if	you	are	using	an	older	version	of	Vagrant,	you	must	install	the
vagrant-triggers	plug-in.	To	enable	automatic	database	backups,	add	the	following	line	to	your	Homestead.yaml
file:

backup:	true

Laravel	Documentation	-	7.x	/	Homestead 40

Once	configured,	Homestead	will	export	your	databases	to	mysql_backup	and	postgres_backup	directories	when
the	vagrant	destroy	command	is	executed.	These	directories	can	be	found	in	the	folder	where	you	cloned
Homestead	or	in	the	root	of	your	project	if	you	are	using	the	per	project	installation	method.

Database	Snapshots

Homestead	supports	freezing	the	state	of	MySQL	and	MariaDB	databases	and	branching	between	them	using
Logical	MySQL	Manager.	For	example,	imagine	working	on	a	site	with	a	multi-gigabyte	database.	You	can
import	the	database	and	take	a	snapshot.	After	doing	some	work	and	creating	some	test	content	locally,	you
may	quickly	restore	back	to	the	original	state.

Under	the	hood,	LMM	uses	LVM's	thin	snapshot	functionality	with	copy-on-write	support.	In	practice,	this
means	that	changing	a	single	row	in	a	table	will	only	cause	the	changes	you	made	to	be	written	to	disk,	saving
significant	time	and	disk	space	during	restores.

Since	lmm	interacts	with	LVM,	it	must	be	run	as	root.	To	see	all	available	commands,	run	sudo	lmm	inside	your
Vagrant	box.	A	common	workflow	looks	like	the	following:

1.	 Import	a	database	into	the	default	master	lmm	branch.
2.	 Save	a	snapshot	of	the	unchanged	database	using	sudo	lmm	branch	prod-YYYY-MM-DD.
3.	 Modify	the	database.
4.	 Run	sudo	lmm	merge	prod-YYYY-MM-DD	to	undo	all	changes.
5.	 Run	sudo	lmm	delete	<branch>	to	delete	unneeded	branches.

Adding	Additional	Sites

Once	your	Homestead	environment	is	provisioned	and	running,	you	may	want	to	add	additional	Nginx	sites	for
your	Laravel	applications.	You	can	run	as	many	Laravel	installations	as	you	wish	on	a	single	Homestead
environment.	To	add	an	additional	site,	add	the	site	to	your	Homestead.yaml	file:

sites:

				-	map:	homestead.test

						to:	/home/vagrant/project1/public

				-	map:	another.test

						to:	/home/vagrant/project2/public

If	Vagrant	is	not	automatically	managing	your	"hosts"	file,	you	may	need	to	add	the	new	site	to	that	file	as	well:

192.168.10.10		homestead.test

192.168.10.10		another.test

Once	the	site	has	been	added,	run	the	vagrant	reload	--provision	command	from	your	Homestead	directory.

Site	Types

Homestead	supports	several	types	of	sites	which	allow	you	to	easily	run	projects	that	are	not	based	on	Laravel.
For	example,	we	may	easily	add	a	Symfony	application	to	Homestead	using	the	symfony2	site	type:

sites:

				-	map:	symfony2.test

						to:	/home/vagrant/my-symfony-project/web

						type:	"symfony2"

The	available	site	types	are:	apache,	apigility,	expressive,	laravel	(the	default),	proxy,	silverstripe,	statamic,	
symfony2,	symfony4,	and	zf.

Site	Parameters

You	may	add	additional	Nginx	fastcgi_param	values	to	your	site	via	the	params	site	directive.	For	example,	we'll
add	a	FOO	parameter	with	a	value	of	BAR:

sites:

				-	map:	homestead.test

						to:	/home/vagrant/project1/public

Laravel	Documentation	-	7.x	/	Homestead 41

https://github.com/Lullabot/lmm

						params:

										-	key:	FOO

												value:	BAR

Environment	Variables

You	can	set	global	environment	variables	by	adding	them	to	your	Homestead.yaml	file:

variables:

				-	key:	APP_ENV

						value:	local

				-	key:	FOO

						value:	bar

After	updating	the	Homestead.yaml,	be	sure	to	re-provision	the	machine	by	running	vagrant	reload	--provision.
This	will	update	the	PHP-FPM	configuration	for	all	of	the	installed	PHP	versions	and	also	update	the
environment	for	the	vagrant	user.

Wildcard	SSL

Homestead	configures	a	self-signed	SSL	certificate	for	each	site	defined	in	the	sites:	section	of	your	
Homestead.yaml	file.	If	you	would	like	to	generate	a	wildcard	SSL	certificate	for	a	site	you	may	add	a	wildcard
option	to	that	site's	configuration.	By	default,	the	site	will	use	the	wildcard	certificate	instead	of	the	specific
domain	certificate:

-	map:	foo.domain.test

		to:	/home/vagrant/domain

		wildcard:	"yes"

If	the	use_wildcard	option	is	set	to	no,	the	wildcard	certificate	will	be	generated	but	will	not	be	used:

-	map:	foo.domain.test

		to:	/home/vagrant/domain

		wildcard:	"yes"

		use_wildcard:	"no"

Configuring	Cron	Schedules

Laravel	provides	a	convenient	way	to	schedule	Cron	jobs	by	scheduling	a	single	schedule:run	Artisan
command	to	be	run	every	minute.	The	schedule:run	command	will	examine	the	job	schedule	defined	in	your	
App\Console\Kernel	class	to	determine	which	jobs	should	be	run.

If	you	would	like	the	schedule:run	command	to	be	run	for	a	Homestead	site,	you	may	set	the	schedule	option	to
true	when	defining	the	site:

sites:

				-	map:	homestead.test

						to:	/home/vagrant/project1/public

						schedule:	true

The	Cron	job	for	the	site	will	be	defined	in	the	/etc/cron.d	folder	of	the	virtual	machine.

Configuring	Mailhog

Mailhog	allows	you	to	easily	catch	your	outgoing	email	and	examine	it	without	actually	sending	the	mail	to	its
recipients.	To	get	started,	update	your	.env	file	to	use	the	following	mail	settings:

MAIL_MAILER=smtp

MAIL_HOST=localhost

MAIL_PORT=1025

MAIL_USERNAME=null

MAIL_PASSWORD=null

MAIL_ENCRYPTION=null

Once	Mailhog	has	been	configured,	you	may	access	the	Mailhog	dashboard	at	http://localhost:8025.

Laravel	Documentation	-	7.x	/	Homestead 42

Configuring	Minio

Minio	is	an	open	source	object	storage	server	with	an	Amazon	S3	compatible	API.	To	install	Minio,	update
your	Homestead.yaml	file	with	the	following	configuration	option	in	the	features	section:

minio:	true

By	default,	Minio	is	available	on	port	9600.	You	may	access	the	Minio	control	panel	by	visiting	
http://localhost:9600/.	The	default	access	key	is	homestead,	while	the	default	secret	key	is	secretkey.	When
accessing	Minio,	you	should	always	use	region	us-east-1.

In	order	to	use	Minio	you	will	need	to	adjust	the	S3	disk	configuration	in	your	config/filesystems.php
configuration	file.	You	will	need	to	add	the	use_path_style_endpoint	option	to	the	disk	configuration,	as	well	as
change	the	url	key	to	endpoint:

's3'	=>	[

				'driver'	=>	's3',

				'key'	=>	env('AWS_ACCESS_KEY_ID'),

				'secret'	=>	env('AWS_SECRET_ACCESS_KEY'),

				'region'	=>	env('AWS_DEFAULT_REGION'),

				'bucket'	=>	env('AWS_BUCKET'),

				'endpoint'	=>	env('AWS_URL'),

				'use_path_style_endpoint'	=>	true,

]

Finally,	ensure	your	.env	file	has	the	following	options:

AWS_ACCESS_KEY_ID=homestead

AWS_SECRET_ACCESS_KEY=secretkey

AWS_DEFAULT_REGION=us-east-1

AWS_URL=http://localhost:9600

To	provision	buckets,	add	a	buckets	directive	to	your	Homestead	configuration	file:

buckets:

				-	name:	your-bucket

						policy:	public

				-	name:	your-private-bucket

						policy:	none

Supported	policy	values	include:	none,	download,	upload,	and	public.

Ports

By	default,	the	following	ports	are	forwarded	to	your	Homestead	environment:

SSH:	2222	→	Forwards	To	22
ngrok	UI:	4040	→	Forwards	To	4040
HTTP:	8000	→	Forwards	To	80
HTTPS:	44300	→	Forwards	To	443
MySQL:	33060	→	Forwards	To	3306
PostgreSQL:	54320	→	Forwards	To	5432
MongoDB:	27017	→	Forwards	To	27017
Mailhog:	8025	→	Forwards	To	8025
Minio:	9600	→	Forwards	To	9600

Forwarding	Additional	Ports

If	you	wish,	you	may	forward	additional	ports	to	the	Vagrant	box,	as	well	as	specify	their	protocol:

ports:

				-	send:	50000

						to:	5000

				-	send:	7777

						to:	777

						protocol:	udp

Laravel	Documentation	-	7.x	/	Homestead 43

Sharing	Your	Environment

Sometimes	you	may	wish	to	share	what	you're	currently	working	on	with	coworkers	or	a	client.	Vagrant	has	a
built-in	way	to	support	this	via	vagrant	share;	however,	this	will	not	work	if	you	have	multiple	sites	configured
in	your	Homestead.yaml	file.

To	solve	this	problem,	Homestead	includes	its	own	share	command.	To	get	started,	SSH	into	your	Homestead
machine	via	vagrant	ssh	and	run	share	homestead.test.	This	will	share	the	homestead.test	site	from	your	
Homestead.yaml	configuration	file.	You	may	substitute	any	of	your	other	configured	sites	for	homestead.test:

share	homestead.test

After	running	the	command,	you	will	see	an	Ngrok	screen	appear	which	contains	the	activity	log	and	the
publicly	accessible	URLs	for	the	shared	site.	If	you	would	like	to	specify	a	custom	region,	subdomain,	or	other
Ngrok	runtime	option,	you	may	add	them	to	your	share	command:

share	homestead.test	-region=eu	-subdomain=laravel

NOTE	Remember,	Vagrant	is	inherently	insecure	and	you	are	exposing	your	virtual	machine	to	the	Internet
when	running	the	share	command.

Multiple	PHP	Versions

Homestead	6	introduced	support	for	multiple	versions	of	PHP	on	the	same	virtual	machine.	You	may	specify
which	version	of	PHP	to	use	for	a	given	site	within	your	Homestead.yaml	file.	The	available	PHP	versions	are:
"5.6",	"7.0",	"7.1",	"7.2",	"7.3",	and	"7.4"	(the	default):

sites:

				-	map:	homestead.test

						to:	/home/vagrant/project1/public

						php:	"7.1"

In	addition,	you	may	use	any	of	the	supported	PHP	versions	via	the	CLI:

php5.6	artisan	list

php7.0	artisan	list

php7.1	artisan	list

php7.2	artisan	list

php7.3	artisan	list

php7.4	artisan	list

You	may	also	update	the	default	CLI	version	by	issuing	the	following	commands	from	within	your	Homestead
virtual	machine:

php56

php70

php71

php72

php73

php74

Web	Servers

Homestead	uses	the	Nginx	web	server	by	default.	However,	it	can	install	Apache	if	apache	is	specified	as	a	site
type.	While	both	web	servers	can	be	installed	at	the	same	time,	they	cannot	both	be	running	at	the	same	time.
The	flip	shell	command	is	available	to	ease	the	process	of	switching	between	web	servers.	The	flip	command
automatically	determines	which	web	server	is	running,	shuts	it	off,	and	then	starts	the	other	server.	To	use	this
command,	SSH	into	your	Homestead	machine	and	run	the	command	in	your	terminal:

flip

Mail

Homestead	includes	the	Postfix	mail	transfer	agent,	which	is	listening	on	port	1025	by	default.	So,	you	may
instruct	your	application	to	use	the	smtp	mail	driver	on	localhost	port	1025.	Then,	all	sent	mail	will	be	handled

Laravel	Documentation	-	7.x	/	Homestead 44

by	Postfix	and	caught	by	Mailhog.	To	view	your	sent	emails,	open	http://localhost:8025	in	your	web	browser.

Debugging	&	Profiling

Debugging	Web	Requests	With	Xdebug

Homestead	includes	support	for	step	debugging	using	Xdebug.	For	example,	you	can	load	a	web	page	from	a
browser,	and	PHP	will	connect	to	your	IDE	to	allow	inspection	and	modification	of	the	running	code.

By	default	Xdebug	is	already	running	and	ready	to	accept	connections.	If	you	need	to	enable	Xdebug	on	the
CLI	run	the	sudo	phpenmod	xdebug	command	within	your	Vagrant	box.	Next,	follow	your	IDE's	instructions	to
enable	debugging.	Finally,	configure	your	browser	to	trigger	Xdebug	with	an	extension	or	bookmarklet.

NOTE	Xdebug	causes	PHP	to	run	significantly	slower.	To	disable	Xdebug,	run	sudo	phpdismod	xdebug
within	your	Vagrant	box	and	restart	the	FPM	service.

Debugging	CLI	Applications

To	debug	a	PHP	CLI	application,	use	the	xphp	shell	alias	inside	your	Vagrant	box:

xphp	path/to/script

Autostarting	Xdebug

When	debugging	functional	tests	that	make	requests	to	the	web	server,	it	is	easier	to	autostart	debugging	rather
than	modifying	tests	to	pass	through	a	custom	header	or	cookie	to	trigger	debugging.	To	force	Xdebug	to	start
automatically,	modify	/etc/php/7.x/fpm/conf.d/20-xdebug.ini	inside	your	Vagrant	box	and	add	the	following
configuration:

;	If	Homestead.yaml	contains	a	different	subnet	for	the	IP	address,	this	address	may	be	different...

xdebug.remote_host	=	192.168.10.1

xdebug.remote_autostart	=	1

Profiling	Applications	with	Blackfire

Blackfire	is	a	SaaS	service	for	profiling	web	requests	and	CLI	applications	and	writing	performance	assertions.
It	offers	an	interactive	user	interface	which	displays	profile	data	in	call-graphs	and	timelines.	It	is	built	for	use
in	development,	staging,	and	production,	with	no	overhead	for	end	users.	It	provides	performance,	quality,	and
security	checks	on	code	and	php.ini	configuration	settings.

The	Blackfire	Player	is	an	open-source	Web	Crawling,	Web	Testing	and	Web	Scraping	application	which	can
work	jointly	with	Blackfire	in	order	to	script	profiling	scenarios.

To	enable	Blackfire,	use	the	"features"	setting	in	your	Homestead	configuration	file:

features:

				-	blackfire:

								server_id:	"server_id"

								server_token:	"server_value"

								client_id:	"client_id"

								client_token:	"client_value"

Blackfire	server	credentials	and	client	credentials	require	a	user	account.	Blackfire	offers	various	options	to
profile	an	application,	including	a	CLI	tool	and	browser	extension.	Please	review	the	Blackfire	documentation
for	more	details.

Profiling	PHP	Performance	Using	XHGui

XHGui	is	a	user	interface	for	exploring	the	performance	of	your	PHP	applications.	To	enable	XHGui,	add	
xhgui:	'true'	to	your	site	configuration:

sites:

Laravel	Documentation	-	7.x	/	Homestead 45

http://localhost:8025
https://xdebug.org
https://www.jetbrains.com/phpstorm/marklets/
https://blackfire.io/docs/introduction
https://blackfire.io/docs/player/index
https://blackfire.io/signup
https://blackfire.io/docs/cookbooks/index
https://www.github.com/perftools/xhgui

				-

								map:	your-site.test

								to:	/home/vagrant/your-site/public

								type:	"apache"

								xhgui:	'true'

If	the	site	already	exists,	make	sure	to	run	vagrant	provision	after	updating	your	configuration.

To	profile	a	web	request,	add	xhgui=on	as	a	query	parameter	to	a	request.	XHGui	will	automatically	attach	a
cookie	to	the	response	so	that	subsequent	requests	do	not	need	the	query	string	value.	You	may	view	your
application	profile	results	by	browsing	to	http://your-site.test/xhgui.

To	profile	a	CLI	request	using	XHGui,	prefix	the	command	with	XHGUI=on:

XHGUI=on	path/to/script

CLI	profile	results	may	be	viewed	in	the	same	way	as	web	profile	results.

Note	that	the	act	of	profiling	slows	down	script	execution,	and	absolute	times	may	be	as	much	as	twice	as	real-
world	requests.	Therefore,	always	compare	percentage	improvements	and	not	absolute	numbers.	Also,	be	aware
the	execution	time	includes	any	time	spent	paused	in	a	debugger.

Since	performance	profiles	take	up	significant	disk	space,	they	are	deleted	automatically	after	a	few	days.

Network	Interfaces

The	networks	property	of	the	Homestead.yaml	configures	network	interfaces	for	your	Homestead	environment.
You	may	configure	as	many	interfaces	as	necessary:

networks:

				-	type:	"private_network"

						ip:	"192.168.10.20"

To	enable	a	bridged	interface,	configure	a	bridge	setting	and	change	the	network	type	to	public_network:

networks:

				-	type:	"public_network"

						ip:	"192.168.10.20"

						bridge:	"en1:	Wi-Fi	(AirPort)"

To	enable	DHCP,	just	remove	the	ip	option	from	your	configuration:

networks:

				-	type:	"public_network"

						bridge:	"en1:	Wi-Fi	(AirPort)"

Extending	Homestead

You	may	extend	Homestead	using	the	after.sh	script	in	the	root	of	your	Homestead	directory.	Within	this	file,
you	may	add	any	shell	commands	that	are	necessary	to	properly	configure	and	customize	your	virtual	machine.

When	customizing	Homestead,	Ubuntu	may	ask	you	if	you	would	like	to	keep	a	package's	original
configuration	or	overwrite	it	with	a	new	configuration	file.	To	avoid	this,	you	should	use	the	following
command	when	installing	packages	to	avoid	overwriting	any	configuration	previously	written	by	Homestead:

sudo	apt-get	-y	\

				-o	Dpkg::Options::="--force-confdef"	\

				-o	Dpkg::Options::="--force-confold"	\

				install	your-package

User	Customizations

When	using	Homestead	in	a	team	setting,	you	may	want	to	tweak	Homestead	to	better	fit	your	personal
development	style.	You	may	create	a	user-customizations.sh	file	in	the	root	of	your	Homestead	directory	(The
same	directory	containing	your	Homestead.yaml).	Within	this	file,	you	may	make	any	customization	you	would
like;	however,	the	user-customizations.sh	should	not	be	version	controlled.

Laravel	Documentation	-	7.x	/	Homestead 46

https://www.vagrantup.com/docs/networking/public_network.html
https://www.vagrantup.com/docs/networking/public_network.html

Updating	Homestead

Before	you	begin	updating	Homestead	ensure	you	have	removed	your	current	virtual	machine	by	running	the
following	command	in	your	Homestead	directory:

vagrant	destroy

Next,	you	need	to	update	the	Homestead	source	code.	If	you	cloned	the	repository	you	can	run	the	following
commands	at	the	location	you	originally	cloned	the	repository:

git	fetch

git	pull	origin	release

These	commands	pull	the	latest	Homestead	code	from	the	GitHub	repository,	fetches	the	latest	tags,	and	then
checks	out	the	latest	tagged	release.	You	can	find	the	latest	stable	release	version	on	the	GitHub	releases	page.

If	you	have	installed	Homestead	via	your	project's	composer.json	file,	you	should	ensure	your	composer.json	file
contains	"laravel/homestead":	"^11"	and	update	your	dependencies:

composer	update

Then,	you	should	update	the	Vagrant	box	using	the	vagrant	box	update	command:

vagrant	box	update

Next,	you	should	run	the	bash	init.sh	command	from	the	Homestead	directory	in	order	to	update	some
additional	configuration	files.	You	will	be	asked	whether	you	wish	to	overwrite	your	existing	Homestead.yaml,	
after.sh,	and	aliases	files:

//	Mac	/	Linux...

bash	init.sh

//	Windows...

init.bat

Finally,	you	will	need	to	regenerate	your	Homestead	box	to	utilize	the	latest	Vagrant	installation:

vagrant	up

Provider	Specific	Settings

VirtualBox

natdnshostresolver

By	default,	Homestead	configures	the	natdnshostresolver	setting	to	on.	This	allows	Homestead	to	use	your	host
operating	system's	DNS	settings.	If	you	would	like	to	override	this	behavior,	add	the	following	lines	to	your	
Homestead.yaml	file:

provider:	virtualbox

natdnshostresolver:	'off'

Symbolic	Links	On	Windows

If	symbolic	links	are	not	working	properly	on	your	Windows	machine,	you	may	need	to	add	the	following
block	to	your	Vagrantfile:

config.vm.provider	"virtualbox"	do	|v|

				v.customize	["setextradata",	:id,	"VBoxInternal2/SharedFoldersEnableSymlinksCreate/v-root",	"1"]

end

Laravel	Documentation	-	7.x	/	Homestead 47

https://github.com/laravel/homestead/releases

Getting	Started

Laravel	Valet
Introduction

Valet	Or	Homestead
Installation

Upgrading
Serving	Sites

The	"Park"	Command
The	"Link"	Command
Securing	Sites	With	TLS
Serving	a	Default	Site

Sharing	Sites
Site	Specific	Environment	Variables
Proxying	Services
Custom	Valet	Drivers

Local	Drivers
Other	Valet	Commands
Valet	Directories	&	Files

Introduction

Valet	is	a	Laravel	development	environment	for	Mac	minimalists.	No	Vagrant,	no	/etc/hosts	file.	You	can	even
share	your	sites	publicly	using	local	tunnels.	Yeah,	we	like	it	too.

Laravel	Valet	configures	your	Mac	to	always	run	Nginx	in	the	background	when	your	machine	starts.	Then,
using	DnsMasq,	Valet	proxies	all	requests	on	the	*.test	domain	to	point	to	sites	installed	on	your	local
machine.

In	other	words,	a	blazing	fast	Laravel	development	environment	that	uses	roughly	7	MB	of	RAM.	Valet	isn't	a
complete	replacement	for	Vagrant	or	Homestead,	but	provides	a	great	alternative	if	you	want	flexible	basics,
prefer	extreme	speed,	or	are	working	on	a	machine	with	a	limited	amount	of	RAM.

Out	of	the	box,	Valet	support	includes,	but	is	not	limited	to:

Laravel
Lumen
Bedrock
CakePHP	3
Concrete5
Contao
Craft
Drupal
ExpressionEngine
Jigsaw
Joomla
Katana
Kirby
Magento
OctoberCMS
Sculpin
Slim
Statamic
Static	HTML
Symfony
WordPress
Zend

However,	you	may	extend	Valet	with	your	own	custom	drivers.

Laravel	Documentation	-	7.x	/	Valet 48

https://www.nginx.com/
https://en.wikipedia.org/wiki/Dnsmasq
https://laravel.com
https://lumen.laravel.com
https://roots.io/bedrock/
https://cakephp.org
https://www.concrete5.org/
https://contao.org/en/
https://craftcms.com
https://www.drupal.org/
https://www.expressionengine.com/
https://jigsaw.tighten.co
https://www.joomla.org/
https://github.com/themsaid/katana
https://getkirby.com/
https://magento.com/
https://octobercms.com/
https://sculpin.io/
https://www.slimframework.com
https://statamic.com
https://symfony.com
https://wordpress.org
https://framework.zend.com

Valet	Or	Homestead

As	you	may	know,	Laravel	offers	Homestead,	another	local	Laravel	development	environment.	Homestead	and
Valet	differ	in	regards	to	their	intended	audience	and	their	approach	to	local	development.	Homestead	offers	an
entire	Ubuntu	virtual	machine	with	automated	Nginx	configuration.	Homestead	is	a	wonderful	choice	if	you
want	a	fully	virtualized	Linux	development	environment	or	are	on	Windows	/	Linux.

Valet	only	supports	Mac,	and	requires	you	to	install	PHP	and	a	database	server	directly	onto	your	local
machine.	This	is	easily	achieved	by	using	Homebrew	with	commands	like	brew	install	php	and	brew	install	
mysql.	Valet	provides	a	blazing	fast	local	development	environment	with	minimal	resource	consumption,	so	it's
great	for	developers	who	only	require	PHP	/	MySQL	and	do	not	need	a	fully	virtualized	development
environment.

Both	Valet	and	Homestead	are	great	choices	for	configuring	your	Laravel	development	environment.	Which
one	you	choose	will	depend	on	your	personal	taste	and	your	team's	needs.

Installation

Valet	requires	macOS	and	Homebrew.	Before	installation,	you	should	make	sure	that	no	other	programs
such	as	Apache	or	Nginx	are	binding	to	your	local	machine's	port	80.

Install	or	update	Homebrew	to	the	latest	version	using	brew	update.
Install	PHP	7.4	using	Homebrew	via	brew	install	php.
Install	Composer.
Install	Valet	with	Composer	via	composer	global	require	laravel/valet.	Make	sure	the	
~/.composer/vendor/bin	directory	is	in	your	system's	"PATH".
Run	the	valet	install	command.	This	will	configure	and	install	Valet	and	DnsMasq,	and	register	Valet's
daemon	to	launch	when	your	system	starts.

Once	Valet	is	installed,	try	pinging	any	*.test	domain	on	your	terminal	using	a	command	such	as	ping	
foobar.test.	If	Valet	is	installed	correctly	you	should	see	this	domain	responding	on	127.0.0.1.

Valet	will	automatically	start	its	daemon	each	time	your	machine	boots.	There	is	no	need	to	run	valet	start	or	
valet	install	ever	again	once	the	initial	Valet	installation	is	complete.

Using	Another	Domain

By	default,	Valet	serves	your	projects	using	the	.test	TLD.	If	you'd	like	to	use	another	domain,	you	can	do	so
using	the	valet	tld	tld-name	command.

For	example,	if	you'd	like	to	use	.app	instead	of	.test,	run	valet	tld	app	and	Valet	will	start	serving	your
projects	at	*.app	automatically.

Database

If	you	need	a	database,	try	MySQL	by	running	brew	install	mysql@5.7	on	your	command	line.	Once	MySQL
has	been	installed,	you	may	start	it	using	the	brew	services	start	mysql@5.7	command.	You	can	then	connect	to
the	database	at	127.0.0.1	using	the	root	username	and	an	empty	string	for	the	password.

PHP	Versions

Valet	allows	you	to	switch	PHP	versions	using	the	valet	use	php@version	command.	Valet	will	install	the
specified	PHP	version	via	Brew	if	it	is	not	already	installed:

valet	use	php@7.2

valet	use	php

NOTE	Valet	only	serves	one	PHP	version	at	a	time,	even	if	you	have	multiple	PHP	versions	installed.

Laravel	Documentation	-	7.x	/	Valet 49

https://brew.sh/
https://brew.sh/
https://brew.sh/
https://getcomposer.org

Resetting	Your	Installation

If	you	are	having	trouble	getting	your	Valet	installation	to	run	properly,	executing	the	composer	global	update
command	followed	by	valet	install	will	reset	your	installation	and	can	solve	a	variety	of	problems.	In	rare
cases	it	may	be	necessary	to	"hard	reset"	Valet	by	executing	valet	uninstall	--force	followed	by	valet	
install.

Upgrading

You	may	update	your	Valet	installation	using	the	composer	global	update	command	in	your	terminal.	After
upgrading,	it	is	good	practice	to	run	the	valet	install	command	so	Valet	can	make	additional	upgrades	to	your
configuration	files	if	necessary.

Serving	Sites

Once	Valet	is	installed,	you're	ready	to	start	serving	sites.	Valet	provides	two	commands	to	help	you	serve	your
Laravel	sites:	park	and	link.

The	park	Command

Create	a	new	directory	on	your	Mac	by	running	something	like	mkdir	~/Sites.	Next,	cd	~/Sites	and	run	
valet	park.	This	command	will	register	your	current	working	directory	as	a	path	that	Valet	should	search
for	sites.
Next,	create	a	new	Laravel	site	within	this	directory:	laravel	new	blog.
Open	http://blog.test	in	your	browser.

That's	all	there	is	to	it.	Now,	any	Laravel	project	you	create	within	your	"parked"	directory	will	automatically
be	served	using	the	http://folder-name.test	convention.

The	link	Command

The	link	command	may	also	be	used	to	serve	your	Laravel	sites.	This	command	is	useful	if	you	want	to	serve	a
single	site	in	a	directory	and	not	the	entire	directory.

To	use	the	command,	navigate	to	one	of	your	projects	and	run	valet	link	app-name	in	your	terminal.
Valet	will	create	a	symbolic	link	in	~/.config/valet/Sites	which	points	to	your	current	working
directory.
After	running	the	link	command,	you	can	access	the	site	in	your	browser	at	http://app-name.test.

To	see	a	listing	of	all	of	your	linked	directories,	run	the	valet	links	command.	You	may	use	valet	unlink	app-
name	to	destroy	the	symbolic	link.

TIP	You	can	use	valet	link	to	serve	the	same	project	from	multiple	(sub)domains.	To	add	a	subdomain	or
another	domain	to	your	project	run	valet	link	subdomain.app-name	from	the	project	folder.

Securing	Sites	With	TLS

By	default,	Valet	serves	sites	over	plain	HTTP.	However,	if	you	would	like	to	serve	a	site	over	encrypted	TLS
using	HTTP/2,	use	the	secure	command.	For	example,	if	your	site	is	being	served	by	Valet	on	the	laravel.test
domain,	you	should	run	the	following	command	to	secure	it:

valet	secure	laravel

To	"unsecure"	a	site	and	revert	back	to	serving	its	traffic	over	plain	HTTP,	use	the	unsecure	command.	Like	the	
secure	command,	this	command	accepts	the	host	name	that	you	wish	to	unsecure:

valet	unsecure	laravel

Serving	A	Default	Site

Laravel	Documentation	-	7.x	/	Valet 50

Sometimes,	you	may	wish	to	configure	Valet	to	serve	a	"default"	site	instead	of	a	404	when	visiting	an	unknown
test	domain.	To	accomplish	this,	you	may	add	a	default	option	to	your	~/.config/valet/config.json
configuration	file	containing	the	path	to	the	site	that	should	serve	as	your	default	site:

"default":	"/Users/Sally/Sites/foo",

Sharing	Sites

Valet	even	includes	a	command	to	share	your	local	sites	with	the	world,	providing	an	easy	way	to	test	your	site
on	mobile	devices	or	share	it	with	team	members	and	clients.	No	additional	software	installation	is	required
once	Valet	is	installed.

Sharing	Sites	Via	Ngrok

To	share	a	site,	navigate	to	the	site's	directory	in	your	terminal	and	run	the	valet	share	command.	A	publicly
accessible	URL	will	be	inserted	into	your	clipboard	and	is	ready	to	paste	directly	into	your	browser	or	share
with	your	team.

To	stop	sharing	your	site,	hit	Control	+	C	to	cancel	the	process.

TIP	You	may	pass	additional	parameters	to	the	share	command,	such	as	valet	share	--region=eu.	For
more	information,	consult	the	ngrok	documentation.

Sharing	Sites	Via	Expose

If	you	have	Expose	installed,	you	can	share	your	site	by	navigating	to	the	site's	directory	in	your	terminal	and
running	the	expose	command.	Consult	the	expose	documentation	for	additional	command-line	parameters	it
supports.	After	sharing	the	site,	Expose	will	display	the	sharable	URL	that	you	may	use	on	your	other	devices
or	amongst	team	members.

To	stop	sharing	your	site,	hit	Control	+	C	to	cancel	the	process.

Sharing	Sites	On	Your	Local	Network

Valet	restricts	incoming	traffic	to	the	internal	127.0.0.1	interface	by	default.	This	way	your	development
machine	isn't	exposed	to	security	risks	from	the	Internet.

If	you	wish	to	allow	other	devices	on	your	local	network	to	access	the	Valet	sites	on	your	machine	via	your
machine's	IP	address	(eg:	192.168.1.10/app-name.test),	you	will	need	to	manually	edit	the	appropriate	Nginx
configuration	file	for	that	site	to	remove	the	restriction	on	the	listen	directive	by	removing	the	127.0.0.1:
prefix	on	the	directive	for	ports	80	and	443.

If	you	have	not	run	valet	secure	on	the	project,	you	can	open	up	network	access	for	all	non-HTTPS	sites	by
editing	the	/usr/local/etc/nginx/valet/valet.conf	file.	However,	if	you're	serving	the	project	site	over	HTTPS
(you	have	run	valet	secure	for	the	site)	then	you	should	edit	the	~/.config/valet/Nginx/app-name.test	file.

Once	you	have	updated	your	Nginx	configuration,	run	the	valet	restart	command	to	apply	the	configuration
changes.

Site	Specific	Environment	Variables

Some	applications	using	other	frameworks	may	depend	on	server	environment	variables	but	do	not	provide	a
way	for	those	variables	to	be	configured	within	your	project.	Valet	allows	you	to	configure	site	specific
environment	variables	by	adding	a	.valet-env.php	file	within	the	root	of	your	project.	These	variables	will	be
added	to	the	$_SERVER	global	array:

<?php

//	Set	$_SERVER['key']	to	"value"	for	the	foo.test	site...

return	[

				'foo'	=>	[

Laravel	Documentation	-	7.x	/	Valet 51

https://ngrok.com/docs
https://beyondco.de/docs/expose

								'key'	=>	'value',

],

];

//	Set	$_SERVER['key']	to	"value"	for	all	sites...

return	[

				'*'	=>	[

								'key'	=>	'value',

],

];

Proxying	Services

Sometimes	you	may	wish	to	proxy	a	Valet	domain	to	another	service	on	your	local	machine.	For	example,	you
may	occasionally	need	to	run	Valet	while	also	running	a	separate	site	in	Docker;	however,	Valet	and	Docker
can't	both	bind	to	port	80	at	the	same	time.

To	solve	this,	you	may	use	the	proxy	command	to	generate	a	proxy.	For	example,	you	may	proxy	all	traffic	from
http://elasticsearch.test	to	http://127.0.0.1:9200:

valet	proxy	elasticsearch	http://127.0.0.1:9200

You	may	remove	a	proxy	using	the	unproxy	command:

valet	unproxy	elasticsearch

You	may	use	the	proxies	command	to	list	all	site	configuration	that	are	proxied:

valet	proxies

Custom	Valet	Drivers

You	can	write	your	own	Valet	"driver"	to	serve	PHP	applications	running	on	another	framework	or	CMS	that	is
not	natively	supported	by	Valet.	When	you	install	Valet,	a	~/.config/valet/Drivers	directory	is	created	which
contains	a	SampleValetDriver.php	file.	This	file	contains	a	sample	driver	implementation	to	demonstrate	how	to
write	a	custom	driver.	Writing	a	driver	only	requires	you	to	implement	three	methods:	serves,	isStaticFile,	and
frontControllerPath.

All	three	methods	receive	the	$sitePath,	$siteName,	and	$uri	values	as	their	arguments.	The	$sitePath	is	the
fully	qualified	path	to	the	site	being	served	on	your	machine,	such	as	/Users/Lisa/Sites/my-project.	The	
$siteName	is	the	"host"	/	"site	name"	portion	of	the	domain	(my-project).	The	$uri	is	the	incoming	request	URI
(/foo/bar).

Once	you	have	completed	your	custom	Valet	driver,	place	it	in	the	~/.config/valet/Drivers	directory	using	the	
FrameworkValetDriver.php	naming	convention.	For	example,	if	you	are	writing	a	custom	valet	driver	for
WordPress,	your	file	name	should	be	WordPressValetDriver.php.

Let's	take	a	look	at	a	sample	implementation	of	each	method	your	custom	Valet	driver	should	implement.

The	serves	Method

The	serves	method	should	return	true	if	your	driver	should	handle	the	incoming	request.	Otherwise,	the	method
should	return	false.	So,	within	this	method	you	should	attempt	to	determine	if	the	given	$sitePath	contains	a
project	of	the	type	you	are	trying	to	serve.

For	example,	let's	pretend	we	are	writing	a	WordPressValetDriver.	Our	serves	method	might	look	something	like
this:

/**

	*	Determine	if	the	driver	serves	the	request.

	*

	*	@param		string		$sitePath

	*	@param		string		$siteName

	*	@param		string		$uri

	*	@return	bool

	*/

Laravel	Documentation	-	7.x	/	Valet 52

public	function	serves($sitePath,	$siteName,	$uri)

{

				return	is_dir($sitePath.'/wp-admin');

}

The	isStaticFile	Method

The	isStaticFile	should	determine	if	the	incoming	request	is	for	a	file	that	is	"static",	such	as	an	image	or	a
stylesheet.	If	the	file	is	static,	the	method	should	return	the	fully	qualified	path	to	the	static	file	on	disk.	If	the
incoming	request	is	not	for	a	static	file,	the	method	should	return	false:

/**

	*	Determine	if	the	incoming	request	is	for	a	static	file.

	*

	*	@param		string		$sitePath

	*	@param		string		$siteName

	*	@param		string		$uri

	*	@return	string|false

	*/

public	function	isStaticFile($sitePath,	$siteName,	$uri)

{

				if	(file_exists($staticFilePath	=	$sitePath.'/public/'.$uri))	{

								return	$staticFilePath;

				}

				return	false;

}

NOTE	The	isStaticFile	method	will	only	be	called	if	the	serves	method	returns	true	for	the	incoming
request	and	the	request	URI	is	not	/.

The	frontControllerPath	Method

The	frontControllerPath	method	should	return	the	fully	qualified	path	to	your	application's	"front	controller",
which	is	typically	your	"index.php"	file	or	equivalent:

/**

	*	Get	the	fully	resolved	path	to	the	application's	front	controller.

	*

	*	@param		string		$sitePath

	*	@param		string		$siteName

	*	@param		string		$uri

	*	@return	string

	*/

public	function	frontControllerPath($sitePath,	$siteName,	$uri)

{

				return	$sitePath.'/public/index.php';

}

Local	Drivers

If	you	would	like	to	define	a	custom	Valet	driver	for	a	single	application,	create	a	LocalValetDriver.php	in	the
application's	root	directory.	Your	custom	driver	may	extend	the	base	ValetDriver	class	or	extend	an	existing
application	specific	driver	such	as	the	LaravelValetDriver:

class	LocalValetDriver	extends	LaravelValetDriver

{

				/**

					*	Determine	if	the	driver	serves	the	request.

					*

					*	@param		string		$sitePath

					*	@param		string		$siteName

					*	@param		string		$uri

					*	@return	bool

					*/

				public	function	serves($sitePath,	$siteName,	$uri)

				{

								return	true;

				}

				/**

					*	Get	the	fully	resolved	path	to	the	application's	front	controller.

Laravel	Documentation	-	7.x	/	Valet 53

					*

					*	@param		string		$sitePath

					*	@param		string		$siteName

					*	@param		string		$uri

					*	@return	string

					*/

				public	function	frontControllerPath($sitePath,	$siteName,	$uri)

				{

								return	$sitePath.'/public_html/index.php';

				}

}

Other	Valet	Commands

Command Description
valet	forget Run	this	command	from	a	"parked"	directory	to	remove	it	from	the	parked	directory	list.
valet	log View	a	list	of	logs	which	are	written	by	Valet's	services.
valet	paths View	all	of	your	"parked"	paths.
valet	restart Restart	the	Valet	daemon.
valet	start Start	the	Valet	daemon.
valet	stop Stop	the	Valet	daemon.
valet	trust Add	sudoers	files	for	Brew	and	Valet	to	allow	Valet	commands	to	be	run	without	prompting	for	passwords.
valet	

uninstall

Uninstall	Valet:	Shows	instructions	for	manual	uninstall;	or	pass	the	--force	parameter	to	aggressively	delete	all
of	Valet.

Valet	Directories	&	Files

You	may	find	the	following	directory	and	file	information	helpful	while	troubleshooting	issues	with	your	Valet
environment:

File	/	Path Description

~/.config/valet/
Contains	all	of	Valet's	configuration.	You	may	wish	to
maintain	a	backup	of	this	folder.

~/.config/valet/dnsmasq.d/ Contains	DNSMasq's	configuration.
~/.config/valet/Drivers/ Contains	custom	Valet	drivers.
~/.config/valet/Extensions/ Contains	custom	Valet	extensions	/	commands.

~/.config/valet/Nginx/

Contains	all	Valet	generated	Nginx	site	configurations.
These	files	are	rebuilt	when	running	the	install,	secure,
and	tld	commands.

~/.config/valet/Sites/ Contains	all	symbolic	links	for	linked	projects.
~/.config/valet/config.json Valet's	master	configuration	file

~/.config/valet/valet.sock
The	PHP-FPM	socket	used	by	Valet's	Nginx	configuration.
This	will	only	exist	if	PHP	is	running	properly.

~/.config/valet/Log/fpm-php.www.log User	log	for	PHP	errors.
~/.config/valet/Log/nginx-error.log User	log	for	Nginx	errors.
/usr/local/var/log/php-fpm.log System	log	for	PHP-FPM	errors.
/usr/local/var/log/nginx Contains	Nginx	access	and	error	logs.
/usr/local/etc/php/X.X/conf.d Contains	*.ini	files	for	various	PHP	configuration	settings.
/usr/local/etc/php/X.X/php-fpm.d/valet-fpm.conf PHP-FPM	pool	configuration	file.

~/.composer/vendor/laravel/valet/cli/stubs/secure.valet.conf
The	default	Nginx	configuration	used	for	building	site
certificates.

Laravel	Documentation	-	7.x	/	Valet 54

Getting	Started

Deployment
Introduction
Server	Configuration

Nginx
Optimization

Autoloader	Optimization
Optimizing	Configuration	Loading
Optimizing	Route	Loading
Optimizing	View	Loading

Deploying	With	Forge	/	Vapor

Introduction

When	you're	ready	to	deploy	your	Laravel	application	to	production,	there	are	some	important	things	you	can
do	to	make	sure	your	application	is	running	as	efficiently	as	possible.	In	this	document,	we'll	cover	some	great
starting	points	for	making	sure	your	Laravel	application	is	deployed	properly.

Server	Configuration

Nginx

If	you	are	deploying	your	application	to	a	server	that	is	running	Nginx,	you	may	use	the	following
configuration	file	as	a	starting	point	for	configuring	your	web	server.	Most	likely,	this	file	will	need	to	be
customized	depending	on	your	server's	configuration.	If	you	would	like	assistance	in	managing	your	server,
consider	using	a	service	such	as	Laravel	Forge:

server	{

				listen	80;

				server_name	example.com;

				root	/srv/example.com/public;

				add_header	X-Frame-Options	"SAMEORIGIN";

				add_header	X-XSS-Protection	"1;	mode=block";

				add_header	X-Content-Type-Options	"nosniff";

				index	index.php;

				charset	utf-8;

				location	/	{

								try_files	$uri	$uri/	/index.php?$query_string;

				}

				location	=	/favicon.ico	{	access_log	off;	log_not_found	off;	}

				location	=	/robots.txt		{	access_log	off;	log_not_found	off;	}

				error_page	404	/index.php;

				location	~	\.php$	{

								fastcgi_pass	unix:/var/run/php/php7.4-fpm.sock;

								fastcgi_param	SCRIPT_FILENAME	$realpath_root$fastcgi_script_name;

								include	fastcgi_params;

				}

				location	~	/\.(?!well-known).*	{

								deny	all;

				}

}

Optimization

Autoloader	Optimization

Laravel	Documentation	-	7.x	/	Deployment 55

https://forge.laravel.com

When	deploying	to	production,	make	sure	that	you	are	optimizing	Composer's	class	autoloader	map	so
Composer	can	quickly	find	the	proper	file	to	load	for	a	given	class:

composer	install	--optimize-autoloader	--no-dev

TIP	In	addition	to	optimizing	the	autoloader,	you	should	always	be	sure	to	include	a	composer.lock	file	in
your	project's	source	control	repository.	Your	project's	dependencies	can	be	installed	much	faster	when	a	
composer.lock	file	is	present.

Optimizing	Configuration	Loading

When	deploying	your	application	to	production,	you	should	make	sure	that	you	run	the	config:cache	Artisan
command	during	your	deployment	process:

php	artisan	config:cache

This	command	will	combine	all	of	Laravel's	configuration	files	into	a	single,	cached	file,	which	greatly	reduces
the	number	of	trips	the	framework	must	make	to	the	filesystem	when	loading	your	configuration	values.

NOTE	If	you	execute	the	config:cache	command	during	your	deployment	process,	you	should	be	sure	that
you	are	only	calling	the	env	function	from	within	your	configuration	files.	Once	the	configuration	has	been
cached,	the	.env	file	will	not	be	loaded	and	all	calls	to	the	env	function	will	return	null.

Optimizing	Route	Loading

If	you	are	building	a	large	application	with	many	routes,	you	should	make	sure	that	you	are	running	the	
route:cache	Artisan	command	during	your	deployment	process:

php	artisan	route:cache

This	command	reduces	all	of	your	route	registrations	into	a	single	method	call	within	a	cached	file,	improving
the	performance	of	route	registration	when	registering	hundreds	of	routes.

NOTE	Since	this	feature	uses	PHP	serialization,	you	may	only	cache	the	routes	for	applications	that
exclusively	use	controller	based	routes.	PHP	is	not	able	to	serialize	Closures.

Optimizing	View	Loading

When	deploying	your	application	to	production,	you	should	make	sure	that	you	run	the	view:cache	Artisan
command	during	your	deployment	process:

php	artisan	view:cache

This	command	precompiles	all	your	Blade	views	so	they	are	not	compiled	on	demand,	improving	the
performance	of	each	request	that	returns	a	view.

Deploying	With	Forge	/	Vapor

If	you	aren't	quite	ready	to	manage	your	own	server	configuration	or	aren't	comfortable	configuring	all	of	the
various	services	needed	to	run	a	robust	Laravel	application,	Laravel	Forge	is	a	wonderful	alternative.

Laravel	Forge	can	create	servers	on	various	infrastructure	providers	such	as	DigitalOcean,	Linode,	AWS,	and
more.	In	addition,	Forge	installs	and	manages	all	of	the	tools	needed	to	build	robust	Laravel	applications,	such
as	Nginx,	MySQL,	Redis,	Memcached,	Beanstalk,	and	more.

Laravel	Vapor

If	you	would	like	a	totally	serverless,	auto-scaling	deployment	platform	tuned	for	Laravel,	check	out	Laravel
Vapor.	Laravel	Vapor	is	a	serverless	deployment	platform	for	Laravel,	powered	by	AWS.	Launch	your	Laravel
infrastructure	on	Vapor	and	fall	in	love	with	the	scalable	simplicity	of	serverless.	Laravel	Vapor	is	fine-tuned	by
Laravel's	creators	to	work	seamlessly	with	the	framework	so	you	can	keep	writing	your	Laravel	applications

Laravel	Documentation	-	7.x	/	Deployment 56

https://forge.laravel.com
https://vapor.laravel.com

exactly	like	you're	used	to.

Laravel	Documentation	-	7.x	/	Deployment 57

Architecture	Concepts

Request	Lifecycle
Introduction
Lifecycle	Overview
Focus	On	Service	Providers

Introduction

When	using	any	tool	in	the	"real	world",	you	feel	more	confident	if	you	understand	how	that	tool	works.
Application	development	is	no	different.	When	you	understand	how	your	development	tools	function,	you	feel
more	comfortable	and	confident	using	them.

The	goal	of	this	document	is	to	give	you	a	good,	high-level	overview	of	how	the	Laravel	framework	works.	By
getting	to	know	the	overall	framework	better,	everything	feels	less	"magical"	and	you	will	be	more	confident
building	your	applications.	If	you	don't	understand	all	of	the	terms	right	away,	don't	lose	heart!	Just	try	to	get	a
basic	grasp	of	what	is	going	on,	and	your	knowledge	will	grow	as	you	explore	other	sections	of	the
documentation.

Lifecycle	Overview

First	Things

The	entry	point	for	all	requests	to	a	Laravel	application	is	the	public/index.php	file.	All	requests	are	directed	to
this	file	by	your	web	server	(Apache	/	Nginx)	configuration.	The	index.php	file	doesn't	contain	much	code.
Rather,	it	is	a	starting	point	for	loading	the	rest	of	the	framework.

The	index.php	file	loads	the	Composer	generated	autoloader	definition,	and	then	retrieves	an	instance	of	the
Laravel	application	from	bootstrap/app.php	script.	The	first	action	taken	by	Laravel	itself	is	to	create	an
instance	of	the	application	/	service	container.

HTTP	/	Console	Kernels

Next,	the	incoming	request	is	sent	to	either	the	HTTP	kernel	or	the	console	kernel,	depending	on	the	type	of
request	that	is	entering	the	application.	These	two	kernels	serve	as	the	central	location	that	all	requests	flow
through.	For	now,	let's	just	focus	on	the	HTTP	kernel,	which	is	located	in	app/Http/Kernel.php.

The	HTTP	kernel	extends	the	Illuminate\Foundation\Http\Kernel	class,	which	defines	an	array	of	
bootstrappers	that	will	be	run	before	the	request	is	executed.	These	bootstrappers	configure	error	handling,
configure	logging,	detect	the	application	environment,	and	perform	other	tasks	that	need	to	be	done	before	the
request	is	actually	handled.

The	HTTP	kernel	also	defines	a	list	of	HTTP	middleware	that	all	requests	must	pass	through	before	being
handled	by	the	application.	These	middleware	handle	reading	and	writing	the	HTTP	session,	determining	if	the
application	is	in	maintenance	mode,	verifying	the	CSRF	token,	and	more.

The	method	signature	for	the	HTTP	kernel's	handle	method	is	quite	simple:	receive	a	Request	and	return	a	
Response.	Think	of	the	Kernel	as	being	a	big	black	box	that	represents	your	entire	application.	Feed	it	HTTP
requests	and	it	will	return	HTTP	responses.

Service	Providers

One	of	the	most	important	Kernel	bootstrapping	actions	is	loading	the	service	providers	for	your	application.
All	of	the	service	providers	for	the	application	are	configured	in	the	config/app.php	configuration	file's	
providers	array.	First,	the	register	method	will	be	called	on	all	providers,	then,	once	all	providers	have	been
registered,	the	boot	method	will	be	called.

Laravel	Documentation	-	7.x	/	Architecture	Concepts 58

Service	providers	are	responsible	for	bootstrapping	all	of	the	framework's	various	components,	such	as	the
database,	queue,	validation,	and	routing	components.	Since	they	bootstrap	and	configure	every	feature	offered
by	the	framework,	service	providers	are	the	most	important	aspect	of	the	entire	Laravel	bootstrap	process.

Dispatch	Request

Once	the	application	has	been	bootstrapped	and	all	service	providers	have	been	registered,	the	Request	will	be
handed	off	to	the	router	for	dispatching.	The	router	will	dispatch	the	request	to	a	route	or	controller,	as	well	as
run	any	route	specific	middleware.

Focus	On	Service	Providers

Service	providers	are	truly	the	key	to	bootstrapping	a	Laravel	application.	The	application	instance	is	created,
the	service	providers	are	registered,	and	the	request	is	handed	to	the	bootstrapped	application.	It's	really	that
simple!

Having	a	firm	grasp	of	how	a	Laravel	application	is	built	and	bootstrapped	via	service	providers	is	very
valuable.	Your	application's	default	service	providers	are	stored	in	the	app/Providers	directory.

By	default,	the	AppServiceProvider	is	fairly	empty.	This	provider	is	a	great	place	to	add	your	application's	own
bootstrapping	and	service	container	bindings.	For	large	applications,	you	may	wish	to	create	several	service
providers,	each	with	a	more	granular	type	of	bootstrapping.

Laravel	Documentation	-	7.x	/	Architecture	Concepts 59

Architecture	Concepts

Service	Container
Introduction
Binding

Binding	Basics
Binding	Interfaces	To	Implementations
Contextual	Binding
Binding	Primitives
Binding	Typed	Variadics
Tagging
Extending	Bindings

Resolving
The	Make	Method
Automatic	Injection

Container	Events
PSR-11

Introduction

The	Laravel	service	container	is	a	powerful	tool	for	managing	class	dependencies	and	performing	dependency
injection.	Dependency	injection	is	a	fancy	phrase	that	essentially	means	this:	class	dependencies	are	"injected"
into	the	class	via	the	constructor	or,	in	some	cases,	"setter"	methods.

Let's	look	at	a	simple	example:

<?php

namespace	App\Http\Controllers;

use	App\Http\Controllers\Controller;

use	App\Repositories\UserRepository;

use	App\User;

class	UserController	extends	Controller

{

				/**

					*	The	user	repository	implementation.

					*

					*	@var	UserRepository

					*/

				protected	$users;

				/**

					*	Create	a	new	controller	instance.

					*

					*	@param		UserRepository		$users

					*	@return	void

					*/

				public	function	__construct(UserRepository	$users)

				{

								$this->users	=	$users;

				}

				/**

					*	Show	the	profile	for	the	given	user.

					*

					*	@param		int		$id

					*	@return	Response

					*/

				public	function	show($id)

				{

								$user	=	$this->users->find($id);

								return	view('user.profile',	['user'	=>	$user]);

				}

}

In	this	example,	the	UserController	needs	to	retrieve	users	from	a	data	source.	So,	we	will	inject	a	service	that

Laravel	Documentation	-	7.x	/	Service	Container 60

is	able	to	retrieve	users.	In	this	context,	our	UserRepository	most	likely	uses	Eloquent	to	retrieve	user
information	from	the	database.	However,	since	the	repository	is	injected,	we	are	able	to	easily	swap	it	out	with
another	implementation.	We	are	also	able	to	easily	"mock",	or	create	a	dummy	implementation	of	the	
UserRepository	when	testing	our	application.

A	deep	understanding	of	the	Laravel	service	container	is	essential	to	building	a	powerful,	large	application,	as
well	as	for	contributing	to	the	Laravel	core	itself.

Binding

Binding	Basics

Almost	all	of	your	service	container	bindings	will	be	registered	within	service	providers,	so	most	of	these
examples	will	demonstrate	using	the	container	in	that	context.

TIP	There	is	no	need	to	bind	classes	into	the	container	if	they	do	not	depend	on	any	interfaces.	The
container	does	not	need	to	be	instructed	on	how	to	build	these	objects,	since	it	can	automatically	resolve
these	objects	using	reflection.

Simple	Bindings

Within	a	service	provider,	you	always	have	access	to	the	container	via	the	$this->app	property.	We	can	register
a	binding	using	the	bind	method,	passing	the	class	or	interface	name	that	we	wish	to	register	along	with	a	
Closure	that	returns	an	instance	of	the	class:

$this->app->bind('HelpSpot\API',	function	($app)	{

				return	new	\HelpSpot\API($app->make('HttpClient'));

});

Note	that	we	receive	the	container	itself	as	an	argument	to	the	resolver.	We	can	then	use	the	container	to	resolve
sub-dependencies	of	the	object	we	are	building.

Binding	A	Singleton

The	singleton	method	binds	a	class	or	interface	into	the	container	that	should	only	be	resolved	one	time.	Once
a	singleton	binding	is	resolved,	the	same	object	instance	will	be	returned	on	subsequent	calls	into	the	container:

$this->app->singleton('HelpSpot\API',	function	($app)	{

				return	new	\HelpSpot\API($app->make('HttpClient'));

});

Binding	Instances

You	may	also	bind	an	existing	object	instance	into	the	container	using	the	instance	method.	The	given	instance
will	always	be	returned	on	subsequent	calls	into	the	container:

$api	=	new	\HelpSpot\API(new	HttpClient);

$this->app->instance('HelpSpot\API',	$api);

Binding	Interfaces	To	Implementations

A	very	powerful	feature	of	the	service	container	is	its	ability	to	bind	an	interface	to	a	given	implementation.	For
example,	let's	assume	we	have	an	EventPusher	interface	and	a	RedisEventPusher	implementation.	Once	we	have
coded	our	RedisEventPusher	implementation	of	this	interface,	we	can	register	it	with	the	service	container	like
so:

$this->app->bind(

				'App\Contracts\EventPusher',

				'App\Services\RedisEventPusher'

);

This	statement	tells	the	container	that	it	should	inject	the	RedisEventPusher	when	a	class	needs	an

Laravel	Documentation	-	7.x	/	Service	Container 61

implementation	of	EventPusher.	Now	we	can	type-hint	the	EventPusher	interface	in	a	constructor,	or	any	other
location	where	dependencies	are	injected	by	the	service	container:

use	App\Contracts\EventPusher;

/**

	*	Create	a	new	class	instance.

	*

	*	@param		EventPusher		$pusher

	*	@return	void

	*/

public	function	__construct(EventPusher	$pusher)

{

				$this->pusher	=	$pusher;

}

Contextual	Binding

Sometimes	you	may	have	two	classes	that	utilize	the	same	interface,	but	you	wish	to	inject	different
implementations	into	each	class.	For	example,	two	controllers	may	depend	on	different	implementations	of	the	
Illuminate\Contracts\Filesystem\Filesystem	contract.	Laravel	provides	a	simple,	fluent	interface	for	defining
this	behavior:

use	App\Http\Controllers\PhotoController;

use	App\Http\Controllers\UploadController;

use	App\Http\Controllers\VideoController;

use	Illuminate\Contracts\Filesystem\Filesystem;

use	Illuminate\Support\Facades\Storage;

$this->app->when(PhotoController::class)

										->needs(Filesystem::class)

										->give(function	()	{

														return	Storage::disk('local');

										});

$this->app->when([VideoController::class,	UploadController::class])

										->needs(Filesystem::class)

										->give(function	()	{

														return	Storage::disk('s3');

										});

Binding	Primitives

Sometimes	you	may	have	a	class	that	receives	some	injected	classes,	but	also	needs	an	injected	primitive	value
such	as	an	integer.	You	may	easily	use	contextual	binding	to	inject	any	value	your	class	may	need:

$this->app->when('App\Http\Controllers\UserController')

										->needs('$variableName')

										->give($value);

Sometimes	a	class	may	depend	on	an	array	of	tagged	instances.	Using	the	giveTagged	method,	you	may	easily
inject	all	of	the	container	bindings	with	that	tag:

$this->app->when(ReportAggregator::class)

				->needs('$reports')

				->giveTagged('reports');

Binding	Typed	Variadics

Occasionally	you	may	have	a	class	that	receives	an	array	of	typed	objects	using	a	variadic	constructor
argument:

class	Firewall

{

				protected	$logger;

				protected	$filters;

				public	function	__construct(Logger	$logger,	Filter	...$filters)

				{

								$this->logger	=	$logger;

								$this->filters	=	$filters;

Laravel	Documentation	-	7.x	/	Service	Container 62

				}

}

Using	contextual	binding,	you	may	resolve	this	dependency	by	providing	the	give	method	with	a	Closure	that
returns	an	array	of	resolved	Filter	instances:

$this->app->when(Firewall::class)

										->needs(Filter::class)

										->give(function	($app)	{

																return	[

																				$app->make(NullFilter::class),

																				$app->make(ProfanityFilter::class),

																				$app->make(TooLongFilter::class),

];

										});

For	convenience,	you	may	also	just	provide	an	array	of	class	names	to	be	resolved	by	the	container	whenever	
Firewall	needs	Filter	instances:

$this->app->when(Firewall::class)

										->needs(Filter::class)

										->give([

														NullFilter::class,

														ProfanityFilter::class,

														TooLongFilter::class,

]);

Variadic	Tag	Dependencies

Sometimes	a	class	may	have	a	variadic	dependency	that	is	type-hinted	as	a	given	class	(Report	...$reports).
Using	the	needs	and	giveTagged	methods,	you	may	easily	inject	all	of	the	container	bindings	with	that	tag	for	the
given	dependency:

$this->app->when(ReportAggregator::class)

				->needs(Report::class)

				->giveTagged('reports');

Tagging

Occasionally,	you	may	need	to	resolve	all	of	a	certain	"category"	of	binding.	For	example,	perhaps	you	are
building	a	report	aggregator	that	receives	an	array	of	many	different	Report	interface	implementations.	After
registering	the	Report	implementations,	you	can	assign	them	a	tag	using	the	tag	method:

$this->app->bind('SpeedReport',	function	()	{

				//

});

$this->app->bind('MemoryReport',	function	()	{

				//

});

$this->app->tag(['SpeedReport',	'MemoryReport'],	'reports');

Once	the	services	have	been	tagged,	you	may	easily	resolve	them	all	via	the	tagged	method:

$this->app->bind('ReportAggregator',	function	($app)	{

				return	new	ReportAggregator($app->tagged('reports'));

});

Extending	Bindings

The	extend	method	allows	the	modification	of	resolved	services.	For	example,	when	a	service	is	resolved,	you
may	run	additional	code	to	decorate	or	configure	the	service.	The	extend	method	accepts	a	Closure,	which
should	return	the	modified	service,	as	its	only	argument.	The	Closure	receives	the	service	being	resolved	and
the	container	instance:

$this->app->extend(Service::class,	function	($service,	$app)	{

				return	new	DecoratedService($service);

});

Laravel	Documentation	-	7.x	/	Service	Container 63

Resolving

The	make	Method

You	may	use	the	make	method	to	resolve	a	class	instance	out	of	the	container.	The	make	method	accepts	the	name
of	the	class	or	interface	you	wish	to	resolve:

$api	=	$this->app->make('HelpSpot\API');

If	you	are	in	a	location	of	your	code	that	does	not	have	access	to	the	$app	variable,	you	may	use	the	global	
resolve	helper:

$api	=	resolve('HelpSpot\API');

If	some	of	your	class'	dependencies	are	not	resolvable	via	the	container,	you	may	inject	them	by	passing	them
as	an	associative	array	into	the	makeWith	method:

$api	=	$this->app->makeWith('HelpSpot\API',	['id'	=>	1]);

Automatic	Injection

Alternatively,	and	importantly,	you	may	"type-hint"	the	dependency	in	the	constructor	of	a	class	that	is	resolved
by	the	container,	including	controllers,	event	listeners,	middleware,	and	more.	Additionally,	you	may	type-hint
dependencies	in	the	handle	method	of	queued	jobs.	In	practice,	this	is	how	most	of	your	objects	should	be
resolved	by	the	container.

For	example,	you	may	type-hint	a	repository	defined	by	your	application	in	a	controller's	constructor.	The
repository	will	automatically	be	resolved	and	injected	into	the	class:

<?php

namespace	App\Http\Controllers;

use	App\Users\Repository	as	UserRepository;

class	UserController	extends	Controller

{

				/**

					*	The	user	repository	instance.

					*/

				protected	$users;

				/**

					*	Create	a	new	controller	instance.

					*

					*	@param		UserRepository		$users

					*	@return	void

					*/

				public	function	__construct(UserRepository	$users)

				{

								$this->users	=	$users;

				}

				/**

					*	Show	the	user	with	the	given	ID.

					*

					*	@param		int		$id

					*	@return	Response

					*/

				public	function	show($id)

				{

								//

				}

}

Container	Events

The	service	container	fires	an	event	each	time	it	resolves	an	object.	You	may	listen	to	this	event	using	the	
resolving	method:

Laravel	Documentation	-	7.x	/	Service	Container 64

$this->app->resolving(function	($object,	$app)	{

				//	Called	when	container	resolves	object	of	any	type...

});

$this->app->resolving(\HelpSpot\API::class,	function	($api,	$app)	{

				//	Called	when	container	resolves	objects	of	type	"HelpSpot\API"...

});

As	you	can	see,	the	object	being	resolved	will	be	passed	to	the	callback,	allowing	you	to	set	any	additional
properties	on	the	object	before	it	is	given	to	its	consumer.

PSR-11

Laravel's	service	container	implements	the	PSR-11	interface.	Therefore,	you	may	type-hint	the	PSR-11
container	interface	to	obtain	an	instance	of	the	Laravel	container:

use	Psr\Container\ContainerInterface;

Route::get('/',	function	(ContainerInterface	$container)	{

				$service	=	$container->get('Service');

				//

});

An	exception	is	thrown	if	the	given	identifier	can't	be	resolved.	The	exception	will	be	an	instance	of	
Psr\Container\NotFoundExceptionInterface	if	the	identifier	was	never	bound.	If	the	identifier	was	bound	but
was	unable	to	be	resolved,	an	instance	of	Psr\Container\ContainerExceptionInterface	will	be	thrown.

Laravel	Documentation	-	7.x	/	Service	Container 65

https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-11-container.md

Architecture	Concepts

Service	Providers
Introduction
Writing	Service	Providers

The	Register	Method
The	Boot	Method

Registering	Providers
Deferred	Providers

Introduction

Service	providers	are	the	central	place	of	all	Laravel	application	bootstrapping.	Your	own	application,	as	well
as	all	of	Laravel's	core	services	are	bootstrapped	via	service	providers.

But,	what	do	we	mean	by	"bootstrapped"?	In	general,	we	mean	registering	things,	including	registering	service
container	bindings,	event	listeners,	middleware,	and	even	routes.	Service	providers	are	the	central	place	to
configure	your	application.

If	you	open	the	config/app.php	file	included	with	Laravel,	you	will	see	a	providers	array.	These	are	all	of	the
service	provider	classes	that	will	be	loaded	for	your	application.	Note	that	many	of	these	are	"deferred"
providers,	meaning	they	will	not	be	loaded	on	every	request,	but	only	when	the	services	they	provide	are
actually	needed.

In	this	overview	you	will	learn	how	to	write	your	own	service	providers	and	register	them	with	your	Laravel
application.

Writing	Service	Providers

All	service	providers	extend	the	Illuminate\Support\ServiceProvider	class.	Most	service	providers	contain	a	
register	and	a	boot	method.	Within	the	register	method,	you	should	only	bind	things	into	the	service
container.	You	should	never	attempt	to	register	any	event	listeners,	routes,	or	any	other	piece	of	functionality
within	the	register	method.

The	Artisan	CLI	can	generate	a	new	provider	via	the	make:provider	command:

php	artisan	make:provider	RiakServiceProvider

The	Register	Method

As	mentioned	previously,	within	the	register	method,	you	should	only	bind	things	into	the	service	container.
You	should	never	attempt	to	register	any	event	listeners,	routes,	or	any	other	piece	of	functionality	within	the	
register	method.	Otherwise,	you	may	accidentally	use	a	service	that	is	provided	by	a	service	provider	which
has	not	loaded	yet.

Let's	take	a	look	at	a	basic	service	provider.	Within	any	of	your	service	provider	methods,	you	always	have
access	to	the	$app	property	which	provides	access	to	the	service	container:

<?php

namespace	App\Providers;

use	Illuminate\Support\ServiceProvider;

use	Riak\Connection;

class	RiakServiceProvider	extends	ServiceProvider

{

				/**

					*	Register	any	application	services.

					*

					*	@return	void

					*/

Laravel	Documentation	-	7.x	/	Service	Providers 66

				public	function	register()

				{

								$this->app->singleton(Connection::class,	function	($app)	{

												return	new	Connection(config('riak'));

								});

				}

}

This	service	provider	only	defines	a	register	method,	and	uses	that	method	to	define	an	implementation	of	
Riak\Connection	in	the	service	container.	If	you	don't	understand	how	the	service	container	works,	check	out	its
documentation.

The	bindings	And	singletons	Properties

If	your	service	provider	registers	many	simple	bindings,	you	may	wish	to	use	the	bindings	and	singletons
properties	instead	of	manually	registering	each	container	binding.	When	the	service	provider	is	loaded	by	the
framework,	it	will	automatically	check	for	these	properties	and	register	their	bindings:

<?php

namespace	App\Providers;

use	App\Contracts\DowntimeNotifier;

use	App\Contracts\ServerProvider;

use	App\Services\DigitalOceanServerProvider;

use	App\Services\PingdomDowntimeNotifier;

use	App\Services\ServerToolsProvider;

use	Illuminate\Support\ServiceProvider;

class	AppServiceProvider	extends	ServiceProvider

{

				/**

					*	All	of	the	container	bindings	that	should	be	registered.

					*

					*	@var	array

					*/

				public	$bindings	=	[

								ServerProvider::class	=>	DigitalOceanServerProvider::class,

];

				/**

					*	All	of	the	container	singletons	that	should	be	registered.

					*

					*	@var	array

					*/

				public	$singletons	=	[

								DowntimeNotifier::class	=>	PingdomDowntimeNotifier::class,

								ServerProvider::class	=>	ServerToolsProvider::class,

];

}

The	Boot	Method

So,	what	if	we	need	to	register	a	view	composer	within	our	service	provider?	This	should	be	done	within	the	
boot	method.	This	method	is	called	after	all	other	service	providers	have	been	registered,	meaning	you
have	access	to	all	other	services	that	have	been	registered	by	the	framework:

<?php

namespace	App\Providers;

use	Illuminate\Support\ServiceProvider;

class	ComposerServiceProvider	extends	ServiceProvider

{

				/**

					*	Bootstrap	any	application	services.

					*

					*	@return	void

					*/

				public	function	boot()

				{

								view()->composer('view',	function	()	{

												//

Laravel	Documentation	-	7.x	/	Service	Providers 67

								});

				}

}

Boot	Method	Dependency	Injection

You	may	type-hint	dependencies	for	your	service	provider's	boot	method.	The	service	container	will
automatically	inject	any	dependencies	you	need:

use	Illuminate\Contracts\Routing\ResponseFactory;

public	function	boot(ResponseFactory	$response)

{

				$response->macro('caps',	function	($value)	{

								//

				});

}

Registering	Providers

All	service	providers	are	registered	in	the	config/app.php	configuration	file.	This	file	contains	a	providers	array
where	you	can	list	the	class	names	of	your	service	providers.	By	default,	a	set	of	Laravel	core	service	providers
are	listed	in	this	array.	These	providers	bootstrap	the	core	Laravel	components,	such	as	the	mailer,	queue,
cache,	and	others.

To	register	your	provider,	add	it	to	the	array:

'providers'	=>	[

				//	Other	Service	Providers

				App\Providers\ComposerServiceProvider::class,

],

Deferred	Providers

If	your	provider	is	only	registering	bindings	in	the	service	container,	you	may	choose	to	defer	its	registration
until	one	of	the	registered	bindings	is	actually	needed.	Deferring	the	loading	of	such	a	provider	will	improve
the	performance	of	your	application,	since	it	is	not	loaded	from	the	filesystem	on	every	request.

Laravel	compiles	and	stores	a	list	of	all	of	the	services	supplied	by	deferred	service	providers,	along	with	the
name	of	its	service	provider	class.	Then,	only	when	you	attempt	to	resolve	one	of	these	services	does	Laravel
load	the	service	provider.

To	defer	the	loading	of	a	provider,	implement	the	\Illuminate\Contracts\Support\DeferrableProvider	interface
and	define	a	provides	method.	The	provides	method	should	return	the	service	container	bindings	registered	by
the	provider:

<?php

namespace	App\Providers;

use	Illuminate\Contracts\Support\DeferrableProvider;

use	Illuminate\Support\ServiceProvider;

use	Riak\Connection;

class	RiakServiceProvider	extends	ServiceProvider	implements	DeferrableProvider

{

				/**

					*	Register	any	application	services.

					*

					*	@return	void

					*/

				public	function	register()

				{

								$this->app->singleton(Connection::class,	function	($app)	{

												return	new	Connection($app['config']['riak']);

								});

				}

Laravel	Documentation	-	7.x	/	Service	Providers 68

				/**

					*	Get	the	services	provided	by	the	provider.

					*

					*	@return	array

					*/

				public	function	provides()

				{

								return	[Connection::class];

				}

}

Laravel	Documentation	-	7.x	/	Service	Providers 69

Architecture	Concepts

Facades
Introduction
When	To	Use	Facades

Facades	Vs.	Dependency	Injection
Facades	Vs.	Helper	Functions

How	Facades	Work
Real-Time	Facades
Facade	Class	Reference

Introduction

Facades	provide	a	"static"	interface	to	classes	that	are	available	in	the	application's	service	container.	Laravel
ships	with	many	facades	which	provide	access	to	almost	all	of	Laravel's	features.	Laravel	facades	serve	as
"static	proxies"	to	underlying	classes	in	the	service	container,	providing	the	benefit	of	a	terse,	expressive	syntax
while	maintaining	more	testability	and	flexibility	than	traditional	static	methods.

All	of	Laravel's	facades	are	defined	in	the	Illuminate\Support\Facades	namespace.	So,	we	can	easily	access	a
facade	like	so:

use	Illuminate\Support\Facades\Cache;

Route::get('/cache',	function	()	{

				return	Cache::get('key');

});

Throughout	the	Laravel	documentation,	many	of	the	examples	will	use	facades	to	demonstrate	various	features
of	the	framework.

When	To	Use	Facades

Facades	have	many	benefits.	They	provide	a	terse,	memorable	syntax	that	allows	you	to	use	Laravel's	features
without	remembering	long	class	names	that	must	be	injected	or	configured	manually.	Furthermore,	because	of
their	unique	usage	of	PHP's	dynamic	methods,	they	are	easy	to	test.

However,	some	care	must	be	taken	when	using	facades.	The	primary	danger	of	facades	is	class	scope	creep.
Since	facades	are	so	easy	to	use	and	do	not	require	injection,	it	can	be	easy	to	let	your	classes	continue	to	grow
and	use	many	facades	in	a	single	class.	Using	dependency	injection,	this	potential	is	mitigated	by	the	visual
feedback	a	large	constructor	gives	you	that	your	class	is	growing	too	large.	So,	when	using	facades,	pay	special
attention	to	the	size	of	your	class	so	that	its	scope	of	responsibility	stays	narrow.

TIP	When	building	a	third-party	package	that	interacts	with	Laravel,	it's	better	to	inject	Laravel	contracts
instead	of	using	facades.	Since	packages	are	built	outside	of	Laravel	itself,	you	will	not	have	access	to
Laravel's	facade	testing	helpers.

Facades	Vs.	Dependency	Injection

One	of	the	primary	benefits	of	dependency	injection	is	the	ability	to	swap	implementations	of	the	injected	class.
This	is	useful	during	testing	since	you	can	inject	a	mock	or	stub	and	assert	that	various	methods	were	called	on
the	stub.

Typically,	it	would	not	be	possible	to	mock	or	stub	a	truly	static	class	method.	However,	since	facades	use
dynamic	methods	to	proxy	method	calls	to	objects	resolved	from	the	service	container,	we	actually	can	test
facades	just	as	we	would	test	an	injected	class	instance.	For	example,	given	the	following	route:

use	Illuminate\Support\Facades\Cache;

Route::get('/cache',	function	()	{

				return	Cache::get('key');

Laravel	Documentation	-	7.x	/	Facades 70

});

We	can	write	the	following	test	to	verify	that	the	Cache::get	method	was	called	with	the	argument	we	expected:

use	Illuminate\Support\Facades\Cache;

/**

	*	A	basic	functional	test	example.

	*

	*	@return	void

	*/

public	function	testBasicExample()

{

				Cache::shouldReceive('get')

									->with('key')

									->andReturn('value');

				$this->visit('/cache')

									->see('value');

}

Facades	Vs.	Helper	Functions

In	addition	to	facades,	Laravel	includes	a	variety	of	"helper"	functions	which	can	perform	common	tasks	like
generating	views,	firing	events,	dispatching	jobs,	or	sending	HTTP	responses.	Many	of	these	helper	functions
perform	the	same	function	as	a	corresponding	facade.	For	example,	this	facade	call	and	helper	call	are
equivalent:

return	View::make('profile');

return	view('profile');

There	is	absolutely	no	practical	difference	between	facades	and	helper	functions.	When	using	helper	functions,
you	may	still	test	them	exactly	as	you	would	the	corresponding	facade.	For	example,	given	the	following	route:

Route::get('/cache',	function	()	{

				return	cache('key');

});

Under	the	hood,	the	cache	helper	is	going	to	call	the	get	method	on	the	class	underlying	the	Cache	facade.	So,
even	though	we	are	using	the	helper	function,	we	can	write	the	following	test	to	verify	that	the	method	was
called	with	the	argument	we	expected:

use	Illuminate\Support\Facades\Cache;

/**

	*	A	basic	functional	test	example.

	*

	*	@return	void

	*/

public	function	testBasicExample()

{

				Cache::shouldReceive('get')

									->with('key')

									->andReturn('value');

				$this->visit('/cache')

									->see('value');

}

How	Facades	Work

In	a	Laravel	application,	a	facade	is	a	class	that	provides	access	to	an	object	from	the	container.	The	machinery
that	makes	this	work	is	in	the	Facade	class.	Laravel's	facades,	and	any	custom	facades	you	create,	will	extend
the	base	Illuminate\Support\Facades\Facade	class.

The	Facade	base	class	makes	use	of	the	__callStatic()	magic-method	to	defer	calls	from	your	facade	to	an
object	resolved	from	the	container.	In	the	example	below,	a	call	is	made	to	the	Laravel	cache	system.	By
glancing	at	this	code,	one	might	assume	that	the	static	method	get	is	being	called	on	the	Cache	class:

<?php

Laravel	Documentation	-	7.x	/	Facades 71

namespace	App\Http\Controllers;

use	App\Http\Controllers\Controller;

use	Illuminate\Support\Facades\Cache;

class	UserController	extends	Controller

{

				/**

					*	Show	the	profile	for	the	given	user.

					*

					*	@param		int		$id

					*	@return	Response

					*/

				public	function	showProfile($id)

				{

								$user	=	Cache::get('user:'.$id);

								return	view('profile',	['user'	=>	$user]);

				}

}

Notice	that	near	the	top	of	the	file	we	are	"importing"	the	Cache	facade.	This	facade	serves	as	a	proxy	to
accessing	the	underlying	implementation	of	the	Illuminate\Contracts\Cache\Factory	interface.	Any	calls	we
make	using	the	facade	will	be	passed	to	the	underlying	instance	of	Laravel's	cache	service.

If	we	look	at	that	Illuminate\Support\Facades\Cache	class,	you'll	see	that	there	is	no	static	method	get:

class	Cache	extends	Facade

{

				/**

					*	Get	the	registered	name	of	the	component.

					*

					*	@return	string

					*/

				protected	static	function	getFacadeAccessor()	{	return	'cache';	}

}

Instead,	the	Cache	facade	extends	the	base	Facade	class	and	defines	the	method	getFacadeAccessor().	This
method's	job	is	to	return	the	name	of	a	service	container	binding.	When	a	user	references	any	static	method	on
the	Cache	facade,	Laravel	resolves	the	cache	binding	from	the	service	container	and	runs	the	requested	method
(in	this	case,	get)	against	that	object.

Real-Time	Facades

Using	real-time	facades,	you	may	treat	any	class	in	your	application	as	if	it	were	a	facade.	To	illustrate	how	this
can	be	used,	let's	examine	an	alternative.	For	example,	let's	assume	our	Podcast	model	has	a	publish	method.
However,	in	order	to	publish	the	podcast,	we	need	to	inject	a	Publisher	instance:

<?php

namespace	App;

use	App\Contracts\Publisher;

use	Illuminate\Database\Eloquent\Model;

class	Podcast	extends	Model

{

				/**

					*	Publish	the	podcast.

					*

					*	@param		Publisher		$publisher

					*	@return	void

					*/

				public	function	publish(Publisher	$publisher)

				{

								$this->update(['publishing'	=>	now()]);

								$publisher->publish($this);

				}

}

Injecting	a	publisher	implementation	into	the	method	allows	us	to	easily	test	the	method	in	isolation	since	we
can	mock	the	injected	publisher.	However,	it	requires	us	to	always	pass	a	publisher	instance	each	time	we	call

Laravel	Documentation	-	7.x	/	Facades 72

the	publish	method.	Using	real-time	facades,	we	can	maintain	the	same	testability	while	not	being	required	to
explicitly	pass	a	Publisher	instance.	To	generate	a	real-time	facade,	prefix	the	namespace	of	the	imported	class
with	Facades:

<?php

namespace	App;

use	Facades\App\Contracts\Publisher;

use	Illuminate\Database\Eloquent\Model;

class	Podcast	extends	Model

{

				/**

					*	Publish	the	podcast.

					*

					*	@return	void

					*/

				public	function	publish()

				{

								$this->update(['publishing'	=>	now()]);

								Publisher::publish($this);

				}

}

When	the	real-time	facade	is	used,	the	publisher	implementation	will	be	resolved	out	of	the	service	container
using	the	portion	of	the	interface	or	class	name	that	appears	after	the	Facades	prefix.	When	testing,	we	can	use
Laravel's	built-in	facade	testing	helpers	to	mock	this	method	call:

<?php

namespace	Tests\Feature;

use	App\Podcast;

use	Facades\App\Contracts\Publisher;

use	Illuminate\Foundation\Testing\RefreshDatabase;

use	Tests\TestCase;

class	PodcastTest	extends	TestCase

{

				use	RefreshDatabase;

				/**

					*	A	test	example.

					*

					*	@return	void

					*/

				public	function	test_podcast_can_be_published()

				{

								$podcast	=	factory(Podcast::class)->create();

								Publisher::shouldReceive('publish')->once()->with($podcast);

								$podcast->publish();

				}

}

Facade	Class	Reference

Below	you	will	find	every	facade	and	its	underlying	class.	This	is	a	useful	tool	for	quickly	digging	into	the	API
documentation	for	a	given	facade	root.	The	service	container	binding	key	is	also	included	where	applicable.

Facade Class Service	Container	Binding

App Illuminate\Foundation\Application app

Artisan Illuminate\Contracts\Console\Kernel artisan

Auth Illuminate\Auth\AuthManager auth

Auth	(Instance) Illuminate\Contracts\Auth\Guard auth.driver

Blade Illuminate\View\Compilers\BladeCompiler blade.compiler

Broadcast Illuminate\Contracts\Broadcasting\Factory 	
Broadcast	(Instance) Illuminate\Contracts\Broadcasting\Broadcaster 	

Laravel	Documentation	-	7.x	/	Facades 73

https://laravel.com/api/{{version}}/Illuminate/Foundation/Application.html
https://laravel.com/api/{{version}}/Illuminate/Contracts/Console/Kernel.html
https://laravel.com/api/{{version}}/Illuminate/Auth/AuthManager.html
https://laravel.com/api/{{version}}/Illuminate/Contracts/Auth/Guard.html
https://laravel.com/api/{{version}}/Illuminate/View/Compilers/BladeCompiler.html
https://laravel.com/api/{{version}}/Illuminate/Contracts/Broadcasting/Factory.html
https://laravel.com/api/{{version}}/Illuminate/Contracts/Broadcasting/Broadcaster.html

Bus Illuminate\Contracts\Bus\Dispatcher 	
Cache Illuminate\Cache\CacheManager cache

Cache	(Instance) Illuminate\Cache\Repository cache.store

Config Illuminate\Config\Repository config

Cookie Illuminate\Cookie\CookieJar cookie

Crypt Illuminate\Encryption\Encrypter encrypter

DB Illuminate\Database\DatabaseManager db

DB	(Instance) Illuminate\Database\Connection db.connection

Event Illuminate\Events\Dispatcher events

File Illuminate\Filesystem\Filesystem files

Gate Illuminate\Contracts\Auth\Access\Gate 	
Hash Illuminate\Contracts\Hashing\Hasher hash

Http Illuminate\Http\Client\Factory 	
Lang Illuminate\Translation\Translator translator

Log Illuminate\Log\LogManager log

Mail Illuminate\Mail\Mailer mailer

Notification Illuminate\Notifications\ChannelManager 	
Password Illuminate\Auth\Passwords\PasswordBrokerManager auth.password

Password	(Instance) Illuminate\Auth\Passwords\PasswordBroker auth.password.broker

Queue Illuminate\Queue\QueueManager queue

Queue	(Instance) Illuminate\Contracts\Queue\Queue queue.connection

Queue	(Base	Class) Illuminate\Queue\Queue 	
Redirect Illuminate\Routing\Redirector redirect

Redis Illuminate\Redis\RedisManager redis

Redis	(Instance) Illuminate\Redis\Connections\Connection redis.connection

Request Illuminate\Http\Request request

Response Illuminate\Contracts\Routing\ResponseFactory 	
Response	(Instance) Illuminate\Http\Response 	
Route Illuminate\Routing\Router router

Schema Illuminate\Database\Schema\Builder 	
Session Illuminate\Session\SessionManager session

Session	(Instance) Illuminate\Session\Store session.store

Storage Illuminate\Filesystem\FilesystemManager filesystem

Storage	(Instance) Illuminate\Contracts\Filesystem\Filesystem filesystem.disk

URL Illuminate\Routing\UrlGenerator url

Validator Illuminate\Validation\Factory validator

Validator	(Instance) Illuminate\Validation\Validator 	
View Illuminate\View\Factory view

View	(Instance) Illuminate\View\View 	

Laravel	Documentation	-	7.x	/	Facades 74

https://laravel.com/api/{{version}}/Illuminate/Contracts/Bus/Dispatcher.html
https://laravel.com/api/{{version}}/Illuminate/Cache/CacheManager.html
https://laravel.com/api/{{version}}/Illuminate/Cache/Repository.html
https://laravel.com/api/{{version}}/Illuminate/Config/Repository.html
https://laravel.com/api/{{version}}/Illuminate/Cookie/CookieJar.html
https://laravel.com/api/{{version}}/Illuminate/Encryption/Encrypter.html
https://laravel.com/api/{{version}}/Illuminate/Database/DatabaseManager.html
https://laravel.com/api/{{version}}/Illuminate/Database/Connection.html
https://laravel.com/api/{{version}}/Illuminate/Events/Dispatcher.html
https://laravel.com/api/{{version}}/Illuminate/Filesystem/Filesystem.html
https://laravel.com/api/{{version}}/Illuminate/Contracts/Auth/Access/Gate.html
https://laravel.com/api/{{version}}/Illuminate/Contracts/Hashing/Hasher.html
https://laravel.com/api/{{version}}/Illuminate/Http/Client/Factory.html
https://laravel.com/api/{{version}}/Illuminate/Translation/Translator.html
https://laravel.com/api/{{version}}/Illuminate/Log/LogManager.html
https://laravel.com/api/{{version}}/Illuminate/Mail/Mailer.html
https://laravel.com/api/{{version}}/Illuminate/Notifications/ChannelManager.html
https://laravel.com/api/{{version}}/Illuminate/Auth/Passwords/PasswordBrokerManager.html
https://laravel.com/api/{{version}}/Illuminate/Auth/Passwords/PasswordBroker.html
https://laravel.com/api/{{version}}/Illuminate/Queue/QueueManager.html
https://laravel.com/api/{{version}}/Illuminate/Contracts/Queue/Queue.html
https://laravel.com/api/{{version}}/Illuminate/Queue/Queue.html
https://laravel.com/api/{{version}}/Illuminate/Routing/Redirector.html
https://laravel.com/api/{{version}}/Illuminate/Redis/RedisManager.html
https://laravel.com/api/{{version}}/Illuminate/Redis/Connections/Connection.html
https://laravel.com/api/{{version}}/Illuminate/Http/Request.html
https://laravel.com/api/{{version}}/Illuminate/Contracts/Routing/ResponseFactory.html
https://laravel.com/api/{{version}}/Illuminate/Http/Response.html
https://laravel.com/api/{{version}}/Illuminate/Routing/Router.html
https://laravel.com/api/{{version}}/Illuminate/Database/Schema/Builder.html
https://laravel.com/api/{{version}}/Illuminate/Session/SessionManager.html
https://laravel.com/api/{{version}}/Illuminate/Session/Store.html
https://laravel.com/api/{{version}}/Illuminate/Filesystem/FilesystemManager.html
https://laravel.com/api/{{version}}/Illuminate/Contracts/Filesystem/Filesystem.html
https://laravel.com/api/{{version}}/Illuminate/Routing/UrlGenerator.html
https://laravel.com/api/{{version}}/Illuminate/Validation/Factory.html
https://laravel.com/api/{{version}}/Illuminate/Validation/Validator.html
https://laravel.com/api/{{version}}/Illuminate/View/Factory.html
https://laravel.com/api/{{version}}/Illuminate/View/View.html

Architecture	Concepts

Contracts
Introduction

Contracts	Vs.	Facades
When	To	Use	Contracts

Loose	Coupling
Simplicity

How	To	Use	Contracts
Contract	Reference

Introduction

Laravel's	Contracts	are	a	set	of	interfaces	that	define	the	core	services	provided	by	the	framework.	For	example,
a	Illuminate\Contracts\Queue\Queue	contract	defines	the	methods	needed	for	queueing	jobs,	while	the	
Illuminate\Contracts\Mail\Mailer	contract	defines	the	methods	needed	for	sending	e-mail.

Each	contract	has	a	corresponding	implementation	provided	by	the	framework.	For	example,	Laravel	provides
a	queue	implementation	with	a	variety	of	drivers,	and	a	mailer	implementation	that	is	powered	by	SwiftMailer.

All	of	the	Laravel	contracts	live	in	their	own	GitHub	repository.	This	provides	a	quick	reference	point	for	all
available	contracts,	as	well	as	a	single,	decoupled	package	that	may	be	utilized	by	package	developers.

Contracts	Vs.	Facades

Laravel's	facades	and	helper	functions	provide	a	simple	way	of	utilizing	Laravel's	services	without	needing	to
type-hint	and	resolve	contracts	out	of	the	service	container.	In	most	cases,	each	facade	has	an	equivalent
contract.

Unlike	facades,	which	do	not	require	you	to	require	them	in	your	class'	constructor,	contracts	allow	you	to
define	explicit	dependencies	for	your	classes.	Some	developers	prefer	to	explicitly	define	their	dependencies	in
this	way	and	therefore	prefer	to	use	contracts,	while	other	developers	enjoy	the	convenience	of	facades.

TIP	Most	applications	will	be	fine	regardless	of	whether	you	prefer	facades	or	contracts.	However,	if	you
are	building	a	package,	you	should	strongly	consider	using	contracts	since	they	will	be	easier	to	test	in	a
package	context.

When	To	Use	Contracts

As	discussed	elsewhere,	much	of	the	decision	to	use	contracts	or	facades	will	come	down	to	personal	taste	and
the	tastes	of	your	development	team.	Both	contracts	and	facades	can	be	used	to	create	robust,	well-tested
Laravel	applications.	As	long	as	you	are	keeping	your	class'	responsibilities	focused,	you	will	notice	very	few
practical	differences	between	using	contracts	and	facades.

However,	you	may	still	have	several	questions	regarding	contracts.	For	example,	why	use	interfaces	at	all?	Isn't
using	interfaces	more	complicated?	Let's	distill	the	reasons	for	using	interfaces	to	the	following	headings:	loose
coupling	and	simplicity.

Loose	Coupling

First,	let's	review	some	code	that	is	tightly	coupled	to	a	cache	implementation.	Consider	the	following:

<?php

namespace	App\Orders;

class	Repository

{

				/**

Laravel	Documentation	-	7.x	/	Contracts 75

https://swiftmailer.symfony.com/
https://github.com/illuminate/contracts

					*	The	cache	instance.

					*/

				protected	$cache;

				/**

					*	Create	a	new	repository	instance.

					*

					*	@param		\SomePackage\Cache\Memcached		$cache

					*	@return	void

					*/

				public	function	__construct(\SomePackage\Cache\Memcached	$cache)

				{

								$this->cache	=	$cache;

				}

				/**

					*	Retrieve	an	Order	by	ID.

					*

					*	@param		int		$id

					*	@return	Order

					*/

				public	function	find($id)

				{

								if	($this->cache->has($id))	{

												//

								}

				}

}

In	this	class,	the	code	is	tightly	coupled	to	a	given	cache	implementation.	It	is	tightly	coupled	because	we	are
depending	on	a	concrete	Cache	class	from	a	package	vendor.	If	the	API	of	that	package	changes	our	code	must
change	as	well.

Likewise,	if	we	want	to	replace	our	underlying	cache	technology	(Memcached)	with	another	technology
(Redis),	we	again	will	have	to	modify	our	repository.	Our	repository	should	not	have	so	much	knowledge
regarding	who	is	providing	them	data	or	how	they	are	providing	it.

Instead	of	this	approach,	we	can	improve	our	code	by	depending	on	a	simple,	vendor	agnostic	interface:

<?php

namespace	App\Orders;

use	Illuminate\Contracts\Cache\Repository	as	Cache;

class	Repository

{

				/**

					*	The	cache	instance.

					*/

				protected	$cache;

				/**

					*	Create	a	new	repository	instance.

					*

					*	@param		Cache		$cache

					*	@return	void

					*/

				public	function	__construct(Cache	$cache)

				{

								$this->cache	=	$cache;

				}

}

Now	the	code	is	not	coupled	to	any	specific	vendor,	or	even	Laravel.	Since	the	contracts	package	contains	no
implementation	and	no	dependencies,	you	may	easily	write	an	alternative	implementation	of	any	given
contract,	allowing	you	to	replace	your	cache	implementation	without	modifying	any	of	your	cache	consuming
code.

Simplicity

When	all	of	Laravel's	services	are	neatly	defined	within	simple	interfaces,	it	is	very	easy	to	determine	the
functionality	offered	by	a	given	service.	The	contracts	serve	as	succinct	documentation	to	the	framework's
features.

Laravel	Documentation	-	7.x	/	Contracts 76

In	addition,	when	you	depend	on	simple	interfaces,	your	code	is	easier	to	understand	and	maintain.	Rather	than
tracking	down	which	methods	are	available	to	you	within	a	large,	complicated	class,	you	can	refer	to	a	simple,
clean	interface.

How	To	Use	Contracts

So,	how	do	you	get	an	implementation	of	a	contract?	It's	actually	quite	simple.

Many	types	of	classes	in	Laravel	are	resolved	through	the	service	container,	including	controllers,	event
listeners,	middleware,	queued	jobs,	and	even	route	Closures.	So,	to	get	an	implementation	of	a	contract,	you
can	just	"type-hint"	the	interface	in	the	constructor	of	the	class	being	resolved.

For	example,	take	a	look	at	this	event	listener:

<?php

namespace	App\Listeners;

use	App\Events\OrderWasPlaced;

use	App\User;

use	Illuminate\Contracts\Redis\Factory;

class	CacheOrderInformation

{

				/**

					*	The	Redis	factory	implementation.

					*/

				protected	$redis;

				/**

					*	Create	a	new	event	handler	instance.

					*

					*	@param		Factory		$redis

					*	@return	void

					*/

				public	function	__construct(Factory	$redis)

				{

								$this->redis	=	$redis;

				}

				/**

					*	Handle	the	event.

					*

					*	@param		OrderWasPlaced		$event

					*	@return	void

					*/

				public	function	handle(OrderWasPlaced	$event)

				{

								//

				}

}

When	the	event	listener	is	resolved,	the	service	container	will	read	the	type-hints	on	the	constructor	of	the	class,
and	inject	the	appropriate	value.	To	learn	more	about	registering	things	in	the	service	container,	check	out	its
documentation.

Contract	Reference

This	table	provides	a	quick	reference	to	all	of	the	Laravel	contracts	and	their	equivalent	facades:

Contract References	Facade

Illuminate\Contracts\Auth\Access\Authorizable 		
Illuminate\Contracts\Auth\Access\Gate Gate

Illuminate\Contracts\Auth\Authenticatable 		
Illuminate\Contracts\Auth\CanResetPassword 	
Illuminate\Contracts\Auth\Factory Auth

Illuminate\Contracts\Auth\Guard Auth::guard()

Illuminate\Contracts\Auth\PasswordBroker Password::broker()

Laravel	Documentation	-	7.x	/	Contracts 77

https://github.com/illuminate/contracts/blob/{{version}}/Auth/Access/Authorizable.php
https://github.com/illuminate/contracts/blob/{{version}}/Auth/Access/Gate.php
https://github.com/illuminate/contracts/blob/{{version}}/Auth/Authenticatable.php
https://github.com/illuminate/contracts/blob/{{version}}/Auth/CanResetPassword.php
https://github.com/illuminate/contracts/blob/{{version}}/Auth/Factory.php
https://github.com/illuminate/contracts/blob/{{version}}/Auth/Guard.php
https://github.com/illuminate/contracts/blob/{{version}}/Auth/PasswordBroker.php

Illuminate\Contracts\Auth\PasswordBrokerFactory Password

Illuminate\Contracts\Auth\StatefulGuard 	
Illuminate\Contracts\Auth\SupportsBasicAuth 	
Illuminate\Contracts\Auth\UserProvider 	
Illuminate\Contracts\Bus\Dispatcher Bus

Illuminate\Contracts\Bus\QueueingDispatcher Bus::dispatchToQueue()

Illuminate\Contracts\Broadcasting\Factory Broadcast

Illuminate\Contracts\Broadcasting\Broadcaster Broadcast::connection()

Illuminate\Contracts\Broadcasting\ShouldBroadcast 	
Illuminate\Contracts\Broadcasting\ShouldBroadcastNow 	
Illuminate\Contracts\Cache\Factory Cache

Illuminate\Contracts\Cache\Lock 	
Illuminate\Contracts\Cache\LockProvider 	
Illuminate\Contracts\Cache\Repository Cache::driver()

Illuminate\Contracts\Cache\Store 	
Illuminate\Contracts\Config\Repository Config

Illuminate\Contracts\Console\Application 	
Illuminate\Contracts\Console\Kernel Artisan

Illuminate\Contracts\Container\Container App

Illuminate\Contracts\Cookie\Factory Cookie

Illuminate\Contracts\Cookie\QueueingFactory Cookie::queue()

Illuminate\Contracts\Database\ModelIdentifier 	
Illuminate\Contracts\Debug\ExceptionHandler 	
Illuminate\Contracts\Encryption\Encrypter Crypt

Illuminate\Contracts\Events\Dispatcher Event

Illuminate\Contracts\Filesystem\Cloud Storage::cloud()

Illuminate\Contracts\Filesystem\Factory Storage

Illuminate\Contracts\Filesystem\Filesystem Storage::disk()

Illuminate\Contracts\Foundation\Application App

Illuminate\Contracts\Hashing\Hasher Hash

Illuminate\Contracts\Http\Kernel 	
Illuminate\Contracts\Mail\MailQueue Mail::queue()

Illuminate\Contracts\Mail\Mailable 	
Illuminate\Contracts\Mail\Mailer Mail

Illuminate\Contracts\Notifications\Dispatcher Notification

Illuminate\Contracts\Notifications\Factory Notification

Illuminate\Contracts\Pagination\LengthAwarePaginator 	
Illuminate\Contracts\Pagination\Paginator 	
Illuminate\Contracts\Pipeline\Hub 	
Illuminate\Contracts\Pipeline\Pipeline 	
Illuminate\Contracts\Queue\EntityResolver 	
Illuminate\Contracts\Queue\Factory Queue

Illuminate\Contracts\Queue\Job 	
Illuminate\Contracts\Queue\Monitor Queue

Illuminate\Contracts\Queue\Queue Queue::connection()

Illuminate\Contracts\Queue\QueueableCollection 	
Illuminate\Contracts\Queue\QueueableEntity 	
Illuminate\Contracts\Queue\ShouldQueue 	
Illuminate\Contracts\Redis\Factory Redis

Illuminate\Contracts\Routing\BindingRegistrar Route

Illuminate\Contracts\Routing\Registrar Route

Illuminate\Contracts\Routing\ResponseFactory Response

Illuminate\Contracts\Routing\UrlGenerator URL

Illuminate\Contracts\Routing\UrlRoutable 	

Laravel	Documentation	-	7.x	/	Contracts 78

https://github.com/illuminate/contracts/blob/{{version}}/Auth/PasswordBrokerFactory.php
https://github.com/illuminate/contracts/blob/{{version}}/Auth/StatefulGuard.php
https://github.com/illuminate/contracts/blob/{{version}}/Auth/SupportsBasicAuth.php
https://github.com/illuminate/contracts/blob/{{version}}/Auth/UserProvider.php
https://github.com/illuminate/contracts/blob/{{version}}/Bus/Dispatcher.php
https://github.com/illuminate/contracts/blob/{{version}}/Bus/QueueingDispatcher.php
https://github.com/illuminate/contracts/blob/{{version}}/Broadcasting/Factory.php
https://github.com/illuminate/contracts/blob/{{version}}/Broadcasting/Broadcaster.php
https://github.com/illuminate/contracts/blob/{{version}}/Broadcasting/ShouldBroadcast.php
https://github.com/illuminate/contracts/blob/{{version}}/Broadcasting/ShouldBroadcastNow.php
https://github.com/illuminate/contracts/blob/{{version}}/Cache/Factory.php
https://github.com/illuminate/contracts/blob/{{version}}/Cache/Lock.php
https://github.com/illuminate/contracts/blob/{{version}}/Cache/LockProvider.php
https://github.com/illuminate/contracts/blob/{{version}}/Cache/Repository.php
https://github.com/illuminate/contracts/blob/{{version}}/Cache/Store.php
https://github.com/illuminate/contracts/blob/{{version}}/Config/Repository.php
https://github.com/illuminate/contracts/blob/{{version}}/Console/Application.php
https://github.com/illuminate/contracts/blob/{{version}}/Console/Kernel.php
https://github.com/illuminate/contracts/blob/{{version}}/Container/Container.php
https://github.com/illuminate/contracts/blob/{{version}}/Cookie/Factory.php
https://github.com/illuminate/contracts/blob/{{version}}/Cookie/QueueingFactory.php
https://github.com/illuminate/contracts/blob/{{version}}/Database/ModelIdentifier.php
https://github.com/illuminate/contracts/blob/{{version}}/Debug/ExceptionHandler.php
https://github.com/illuminate/contracts/blob/{{version}}/Encryption/Encrypter.php
https://github.com/illuminate/contracts/blob/{{version}}/Events/Dispatcher.php
https://github.com/illuminate/contracts/blob/{{version}}/Filesystem/Cloud.php
https://github.com/illuminate/contracts/blob/{{version}}/Filesystem/Factory.php
https://github.com/illuminate/contracts/blob/{{version}}/Filesystem/Filesystem.php
https://github.com/illuminate/contracts/blob/{{version}}/Foundation/Application.php
https://github.com/illuminate/contracts/blob/{{version}}/Hashing/Hasher.php
https://github.com/illuminate/contracts/blob/{{version}}/Http/Kernel.php
https://github.com/illuminate/contracts/blob/{{version}}/Mail/MailQueue.php
https://github.com/illuminate/contracts/blob/{{version}}/Mail/Mailable.php
https://github.com/illuminate/contracts/blob/{{version}}/Mail/Mailer.php
https://github.com/illuminate/contracts/blob/{{version}}/Notifications/Dispatcher.php
https://github.com/illuminate/contracts/blob/{{version}}/Notifications/Factory.php
https://github.com/illuminate/contracts/blob/{{version}}/Pagination/LengthAwarePaginator.php
https://github.com/illuminate/contracts/blob/{{version}}/Pagination/Paginator.php
https://github.com/illuminate/contracts/blob/{{version}}/Pipeline/Hub.php
https://github.com/illuminate/contracts/blob/{{version}}/Pipeline/Pipeline.php
https://github.com/illuminate/contracts/blob/{{version}}/Queue/EntityResolver.php
https://github.com/illuminate/contracts/blob/{{version}}/Queue/Factory.php
https://github.com/illuminate/contracts/blob/{{version}}/Queue/Job.php
https://github.com/illuminate/contracts/blob/{{version}}/Queue/Monitor.php
https://github.com/illuminate/contracts/blob/{{version}}/Queue/Queue.php
https://github.com/illuminate/contracts/blob/{{version}}/Queue/QueueableCollection.php
https://github.com/illuminate/contracts/blob/{{version}}/Queue/QueueableEntity.php
https://github.com/illuminate/contracts/blob/{{version}}/Queue/ShouldQueue.php
https://github.com/illuminate/contracts/blob/{{version}}/Redis/Factory.php
https://github.com/illuminate/contracts/blob/{{version}}/Routing/BindingRegistrar.php
https://github.com/illuminate/contracts/blob/{{version}}/Routing/Registrar.php
https://github.com/illuminate/contracts/blob/{{version}}/Routing/ResponseFactory.php
https://github.com/illuminate/contracts/blob/{{version}}/Routing/UrlGenerator.php
https://github.com/illuminate/contracts/blob/{{version}}/Routing/UrlRoutable.php

Illuminate\Contracts\Session\Session Session::driver()

Illuminate\Contracts\Support\Arrayable 	
Illuminate\Contracts\Support\Htmlable 	
Illuminate\Contracts\Support\Jsonable 	
Illuminate\Contracts\Support\MessageBag 	
Illuminate\Contracts\Support\MessageProvider 	
Illuminate\Contracts\Support\Renderable 	
Illuminate\Contracts\Support\Responsable 	
Illuminate\Contracts\Translation\Loader 	
Illuminate\Contracts\Translation\Translator Lang

Illuminate\Contracts\Validation\Factory Validator

Illuminate\Contracts\Validation\ImplicitRule 	
Illuminate\Contracts\Validation\Rule 	
Illuminate\Contracts\Validation\ValidatesWhenResolved 	
Illuminate\Contracts\Validation\Validator Validator::make()

Illuminate\Contracts\View\Engine 	
Illuminate\Contracts\View\Factory View

Illuminate\Contracts\View\View View::make()

Laravel	Documentation	-	7.x	/	Contracts 79

https://github.com/illuminate/contracts/blob/{{version}}/Session/Session.php
https://github.com/illuminate/contracts/blob/{{version}}/Support/Arrayable.php
https://github.com/illuminate/contracts/blob/{{version}}/Support/Htmlable.php
https://github.com/illuminate/contracts/blob/{{version}}/Support/Jsonable.php
https://github.com/illuminate/contracts/blob/{{version}}/Support/MessageBag.php
https://github.com/illuminate/contracts/blob/{{version}}/Support/MessageProvider.php
https://github.com/illuminate/contracts/blob/{{version}}/Support/Renderable.php
https://github.com/illuminate/contracts/blob/{{version}}/Support/Responsable.php
https://github.com/illuminate/contracts/blob/{{version}}/Translation/Loader.php
https://github.com/illuminate/contracts/blob/{{version}}/Translation/Translator.php
https://github.com/illuminate/contracts/blob/{{version}}/Validation/Factory.php
https://github.com/illuminate/contracts/blob/{{version}}/Validation/ImplicitRule.php
https://github.com/illuminate/contracts/blob/{{version}}/Validation/Rule.php
https://github.com/illuminate/contracts/blob/{{version}}/Validation/ValidatesWhenResolved.php
https://github.com/illuminate/contracts/blob/{{version}}/Validation/Validator.php
https://github.com/illuminate/contracts/blob/{{version}}/View/Engine.php
https://github.com/illuminate/contracts/blob/{{version}}/View/Factory.php
https://github.com/illuminate/contracts/blob/{{version}}/View/View.php

The	Basics

Routing
Basic	Routing

Redirect	Routes
View	Routes

Route	Parameters
Required	Parameters
Optional	Parameters
Regular	Expression	Constraints

Named	Routes
Route	Groups

Middleware
Namespaces
Subdomain	Routing
Route	Prefixes
Route	Name	Prefixes

Route	Model	Binding
Implicit	Binding
Explicit	Binding

Fallback	Routes
Rate	Limiting
Form	Method	Spoofing
Accessing	The	Current	Route
Cross-Origin	Resource	Sharing	(CORS)

Basic	Routing

The	most	basic	Laravel	routes	accept	a	URI	and	a	Closure,	providing	a	very	simple	and	expressive	method	of
defining	routes:

Route::get('foo',	function	()	{

				return	'Hello	World';

});

The	Default	Route	Files

All	Laravel	routes	are	defined	in	your	route	files,	which	are	located	in	the	routes	directory.	These	files	are
automatically	loaded	by	the	framework.	The	routes/web.php	file	defines	routes	that	are	for	your	web	interface.
These	routes	are	assigned	the	web	middleware	group,	which	provides	features	like	session	state	and	CSRF
protection.	The	routes	in	routes/api.php	are	stateless	and	are	assigned	the	api	middleware	group.

For	most	applications,	you	will	begin	by	defining	routes	in	your	routes/web.php	file.	The	routes	defined	in	
routes/web.php	may	be	accessed	by	entering	the	defined	route's	URL	in	your	browser.	For	example,	you	may
access	the	following	route	by	navigating	to	http://your-app.test/user	in	your	browser:

Route::get('/user',	'UserController@index');

Routes	defined	in	the	routes/api.php	file	are	nested	within	a	route	group	by	the	RouteServiceProvider.	Within
this	group,	the	/api	URI	prefix	is	automatically	applied	so	you	do	not	need	to	manually	apply	it	to	every	route
in	the	file.	You	may	modify	the	prefix	and	other	route	group	options	by	modifying	your	RouteServiceProvider
class.

Available	Router	Methods

The	router	allows	you	to	register	routes	that	respond	to	any	HTTP	verb:

Route::get($uri,	$callback);

Route::post($uri,	$callback);

Route::put($uri,	$callback);

Laravel	Documentation	-	7.x	/	The	Basics 80

Route::patch($uri,	$callback);

Route::delete($uri,	$callback);

Route::options($uri,	$callback);

Sometimes	you	may	need	to	register	a	route	that	responds	to	multiple	HTTP	verbs.	You	may	do	so	using	the	
match	method.	Or,	you	may	even	register	a	route	that	responds	to	all	HTTP	verbs	using	the	any	method:

Route::match(['get',	'post'],	'/',	function	()	{

				//

});

Route::any('/',	function	()	{

				//

});

CSRF	Protection

Any	HTML	forms	pointing	to	POST,	PUT,	PATCH,	or	DELETE	routes	that	are	defined	in	the	web	routes	file	should
include	a	CSRF	token	field.	Otherwise,	the	request	will	be	rejected.	You	can	read	more	about	CSRF	protection
in	the	CSRF	documentation:

<form	method="POST"	action="/profile">

				@csrf

				...

</form>

Redirect	Routes

If	you	are	defining	a	route	that	redirects	to	another	URI,	you	may	use	the	Route::redirect	method.	This	method
provides	a	convenient	shortcut	so	that	you	do	not	have	to	define	a	full	route	or	controller	for	performing	a
simple	redirect:

Route::redirect('/here',	'/there');

By	default,	Route::redirect	returns	a	302	status	code.	You	may	customize	the	status	code	using	the	optional
third	parameter:

Route::redirect('/here',	'/there',	301);

You	may	use	the	Route::permanentRedirect	method	to	return	a	301	status	code:

Route::permanentRedirect('/here',	'/there');

View	Routes

If	your	route	only	needs	to	return	a	view,	you	may	use	the	Route::view	method.	Like	the	redirect	method,	this
method	provides	a	simple	shortcut	so	that	you	do	not	have	to	define	a	full	route	or	controller.	The	view	method
accepts	a	URI	as	its	first	argument	and	a	view	name	as	its	second	argument.	In	addition,	you	may	provide	an
array	of	data	to	pass	to	the	view	as	an	optional	third	argument:

Route::view('/welcome',	'welcome');

Route::view('/welcome',	'welcome',	['name'	=>	'Taylor']);

Route	Parameters

Required	Parameters

Sometimes	you	will	need	to	capture	segments	of	the	URI	within	your	route.	For	example,	you	may	need	to
capture	a	user's	ID	from	the	URL.	You	may	do	so	by	defining	route	parameters:

Route::get('user/{id}',	function	($id)	{

				return	'User	'.$id;

});

You	may	define	as	many	route	parameters	as	required	by	your	route:

Laravel	Documentation	-	7.x	/	The	Basics 81

Route::get('posts/{post}/comments/{comment}',	function	($postId,	$commentId)	{

				//

});

Route	parameters	are	always	encased	within	{}	braces	and	should	consist	of	alphabetic	characters,	and	may	not
contain	a	-	character.	Instead	of	using	the	-	character,	use	an	underscore	(_).	Route	parameters	are	injected	into
route	callbacks	/	controllers	based	on	their	order	-	the	names	of	the	callback	/	controller	arguments	do	not
matter.

Optional	Parameters

Occasionally	you	may	need	to	specify	a	route	parameter,	but	make	the	presence	of	that	route	parameter
optional.	You	may	do	so	by	placing	a	?	mark	after	the	parameter	name.	Make	sure	to	give	the	route's
corresponding	variable	a	default	value:

Route::get('user/{name?}',	function	($name	=	null)	{

				return	$name;

});

Route::get('user/{name?}',	function	($name	=	'John')	{

				return	$name;

});

Regular	Expression	Constraints

You	may	constrain	the	format	of	your	route	parameters	using	the	where	method	on	a	route	instance.	The	where
method	accepts	the	name	of	the	parameter	and	a	regular	expression	defining	how	the	parameter	should	be
constrained:

Route::get('user/{name}',	function	($name)	{

				//

})->where('name',	'[A-Za-z]+');

Route::get('user/{id}',	function	($id)	{

				//

})->where('id',	'[0-9]+');

Route::get('user/{id}/{name}',	function	($id,	$name)	{

				//

})->where(['id'	=>	'[0-9]+',	'name'	=>	'[a-z]+']);

Global	Constraints

If	you	would	like	a	route	parameter	to	always	be	constrained	by	a	given	regular	expression,	you	may	use	the	
pattern	method.	You	should	define	these	patterns	in	the	boot	method	of	your	RouteServiceProvider:

/**

	*	Define	your	route	model	bindings,	pattern	filters,	etc.

	*

	*	@return	void

	*/

public	function	boot()

{

				Route::pattern('id',	'[0-9]+');

				parent::boot();

}

Once	the	pattern	has	been	defined,	it	is	automatically	applied	to	all	routes	using	that	parameter	name:

Route::get('user/{id}',	function	($id)	{

				//	Only	executed	if	{id}	is	numeric...

});

Encoded	Forward	Slashes

The	Laravel	routing	component	allows	all	characters	except	/.	You	must	explicitly	allow	/	to	be	part	of	your
placeholder	using	a	where	condition	regular	expression:

Laravel	Documentation	-	7.x	/	The	Basics 82

Route::get('search/{search}',	function	($search)	{

				return	$search;

})->where('search',	'.*');

NOTE	Encoded	forward	slashes	are	only	supported	within	the	last	route	segment.

Named	Routes

Named	routes	allow	the	convenient	generation	of	URLs	or	redirects	for	specific	routes.	You	may	specify	a
name	for	a	route	by	chaining	the	name	method	onto	the	route	definition:

Route::get('user/profile',	function	()	{

				//

})->name('profile');

You	may	also	specify	route	names	for	controller	actions:

Route::get('user/profile',	'UserProfileController@show')->name('profile');

NOTE	Route	names	should	always	be	unique.

Generating	URLs	To	Named	Routes

Once	you	have	assigned	a	name	to	a	given	route,	you	may	use	the	route's	name	when	generating	URLs	or
redirects	via	the	global	route	function:

//	Generating	URLs...

$url	=	route('profile');

//	Generating	Redirects...

return	redirect()->route('profile');

If	the	named	route	defines	parameters,	you	may	pass	the	parameters	as	the	second	argument	to	the	route
function.	The	given	parameters	will	automatically	be	inserted	into	the	URL	in	their	correct	positions:

Route::get('user/{id}/profile',	function	($id)	{

				//

})->name('profile');

$url	=	route('profile',	['id'	=>	1]);

If	you	pass	additional	parameters	in	the	array,	those	key	/	value	pairs	will	automatically	be	added	to	the
generated	URL's	query	string:

Route::get('user/{id}/profile',	function	($id)	{

				//

})->name('profile');

$url	=	route('profile',	['id'	=>	1,	'photos'	=>	'yes']);

//	/user/1/profile?photos=yes

TIP	Sometimes,	you	may	wish	to	specify	request-wide	default	values	for	URL	parameters,	such	as	the
current	locale.	To	accomplish	this,	you	may	use	the	URL::defaults	method.

Inspecting	The	Current	Route

If	you	would	like	to	determine	if	the	current	request	was	routed	to	a	given	named	route,	you	may	use	the	named
method	on	a	Route	instance.	For	example,	you	may	check	the	current	route	name	from	a	route	middleware:

/**

	*	Handle	an	incoming	request.

	*

	*	@param		\Illuminate\Http\Request		$request

	*	@param		\Closure		$next

	*	@return	mixed

	*/

public	function	handle($request,	Closure	$next)

{

				if	($request->route()->named('profile'))	{

Laravel	Documentation	-	7.x	/	The	Basics 83

								//

				}

				return	$next($request);

}

Route	Groups

Route	groups	allow	you	to	share	route	attributes,	such	as	middleware	or	namespaces,	across	a	large	number	of
routes	without	needing	to	define	those	attributes	on	each	individual	route.	Shared	attributes	are	specified	in	an
array	format	as	the	first	parameter	to	the	Route::group	method.

Nested	groups	attempt	to	intelligently	"merge"	attributes	with	their	parent	group.	Middleware	and	where
conditions	are	merged	while	names,	namespaces,	and	prefixes	are	appended.	Namespace	delimiters	and	slashes
in	URI	prefixes	are	automatically	added	where	appropriate.

Middleware

To	assign	middleware	to	all	routes	within	a	group,	you	may	use	the	middleware	method	before	defining	the
group.	Middleware	are	executed	in	the	order	they	are	listed	in	the	array:

Route::middleware(['first',	'second'])->group(function	()	{

				Route::get('/',	function	()	{

								//	Uses	first	&	second	Middleware

				});

				Route::get('user/profile',	function	()	{

								//	Uses	first	&	second	Middleware

				});

});

Namespaces

Another	common	use-case	for	route	groups	is	assigning	the	same	PHP	namespace	to	a	group	of	controllers
using	the	namespace	method:

Route::namespace('Admin')->group(function	()	{

				//	Controllers	Within	The	"App\Http\Controllers\Admin"	Namespace

});

Remember,	by	default,	the	RouteServiceProvider	includes	your	route	files	within	a	namespace	group,	allowing
you	to	register	controller	routes	without	specifying	the	full	App\Http\Controllers	namespace	prefix.	So,	you
only	need	to	specify	the	portion	of	the	namespace	that	comes	after	the	base	App\Http\Controllers	namespace.

Subdomain	Routing

Route	groups	may	also	be	used	to	handle	subdomain	routing.	Subdomains	may	be	assigned	route	parameters
just	like	route	URIs,	allowing	you	to	capture	a	portion	of	the	subdomain	for	usage	in	your	route	or	controller.
The	subdomain	may	be	specified	by	calling	the	domain	method	before	defining	the	group:

Route::domain('{account}.myapp.com')->group(function	()	{

				Route::get('user/{id}',	function	($account,	$id)	{

								//

				});

});

NOTE	In	order	to	ensure	your	subdomain	routes	are	reachable,	you	should	register	subdomain	routes
before	registering	root	domain	routes.	This	will	prevent	root	domain	routes	from	overwriting	subdomain
routes	which	have	the	same	URI	path.

Route	Prefixes

The	prefix	method	may	be	used	to	prefix	each	route	in	the	group	with	a	given	URI.	For	example,	you	may
want	to	prefix	all	route	URIs	within	the	group	with	admin:

Laravel	Documentation	-	7.x	/	The	Basics 84

Route::prefix('admin')->group(function	()	{

				Route::get('users',	function	()	{

								//	Matches	The	"/admin/users"	URL

				});

});

Route	Name	Prefixes

The	name	method	may	be	used	to	prefix	each	route	name	in	the	group	with	a	given	string.	For	example,	you	may
want	to	prefix	all	of	the	grouped	route's	names	with	admin.	The	given	string	is	prefixed	to	the	route	name
exactly	as	it	is	specified,	so	we	will	be	sure	to	provide	the	trailing	.	character	in	the	prefix:

Route::name('admin.')->group(function	()	{

				Route::get('users',	function	()	{

								//	Route	assigned	name	"admin.users"...

				})->name('users');

});

Route	Model	Binding

When	injecting	a	model	ID	to	a	route	or	controller	action,	you	will	often	query	to	retrieve	the	model	that
corresponds	to	that	ID.	Laravel	route	model	binding	provides	a	convenient	way	to	automatically	inject	the
model	instances	directly	into	your	routes.	For	example,	instead	of	injecting	a	user's	ID,	you	can	inject	the	entire	
User	model	instance	that	matches	the	given	ID.

Implicit	Binding

Laravel	automatically	resolves	Eloquent	models	defined	in	routes	or	controller	actions	whose	type-hinted
variable	names	match	a	route	segment	name.	For	example:

Route::get('api/users/{user}',	function	(App\User	$user)	{

				return	$user->email;

});

Since	the	$user	variable	is	type-hinted	as	the	App\User	Eloquent	model	and	the	variable	name	matches	the	
{user}	URI	segment,	Laravel	will	automatically	inject	the	model	instance	that	has	an	ID	matching	the
corresponding	value	from	the	request	URI.	If	a	matching	model	instance	is	not	found	in	the	database,	a	404
HTTP	response	will	automatically	be	generated.

Customizing	The	Key

Sometimes	you	may	wish	to	resolve	Eloquent	models	using	a	column	other	than	id.	To	do	so,	you	may	specify
the	column	in	the	route	parameter	definition:

Route::get('api/posts/{post:slug}',	function	(App\Post	$post)	{

				return	$post;

});

Custom	Keys	&	Scoping

Sometimes,	when	implicitly	binding	multiple	Eloquent	models	in	a	single	route	definition,	you	may	wish	to
scope	the	second	Eloquent	model	such	that	it	must	be	a	child	of	the	first	Eloquent	model.	For	example,	consider
this	situation	that	retrieves	a	blog	post	by	slug	for	a	specific	user:

use	App\Post;

use	App\User;

Route::get('api/users/{user}/posts/{post:slug}',	function	(User	$user,	Post	$post)	{

				return	$post;

});

When	using	a	custom	keyed	implicit	binding	as	a	nested	route	parameter,	Laravel	will	automatically	scope	the
query	to	retrieve	the	nested	model	by	its	parent	using	conventions	to	guess	the	relationship	name	on	the	parent.
In	this	case,	it	will	be	assumed	that	the	User	model	has	a	relationship	named	posts	(the	plural	of	the	route
parameter	name)	which	can	be	used	to	retrieve	the	Post	model.

Laravel	Documentation	-	7.x	/	The	Basics 85

Customizing	The	Default	Key	Name

If	you	would	like	model	binding	to	use	a	default	database	column	other	than	id	when	retrieving	a	given	model
class,	you	may	override	the	getRouteKeyName	method	on	the	Eloquent	model:

/**

	*	Get	the	route	key	for	the	model.

	*

	*	@return	string

	*/

public	function	getRouteKeyName()

{

				return	'slug';

}

Explicit	Binding

To	register	an	explicit	binding,	use	the	router's	model	method	to	specify	the	class	for	a	given	parameter.	You
should	define	your	explicit	model	bindings	in	the	boot	method	of	the	RouteServiceProvider	class:

public	function	boot()

{

				parent::boot();

				Route::model('user',	App\User::class);

}

Next,	define	a	route	that	contains	a	{user}	parameter:

Route::get('profile/{user}',	function	(App\User	$user)	{

				//

});

Since	we	have	bound	all	{user}	parameters	to	the	App\User	model,	a	User	instance	will	be	injected	into	the
route.	So,	for	example,	a	request	to	profile/1	will	inject	the	User	instance	from	the	database	which	has	an	ID	of
1.

If	a	matching	model	instance	is	not	found	in	the	database,	a	404	HTTP	response	will	be	automatically
generated.

Customizing	The	Resolution	Logic

If	you	wish	to	use	your	own	resolution	logic,	you	may	use	the	Route::bind	method.	The	Closure	you	pass	to	the	
bind	method	will	receive	the	value	of	the	URI	segment	and	should	return	the	instance	of	the	class	that	should	be
injected	into	the	route:

/**

	*	Bootstrap	any	application	services.

	*

	*	@return	void

	*/

public	function	boot()

{

				parent::boot();

				Route::bind('user',	function	($value)	{

								return	App\User::where('name',	$value)->firstOrFail();

				});

}

Alternatively,	you	may	override	the	resolveRouteBinding	method	on	your	Eloquent	model.	This	method	will
receive	the	value	of	the	URI	segment	and	should	return	the	instance	of	the	class	that	should	be	injected	into	the
route:

/**

	*	Retrieve	the	model	for	a	bound	value.

	*

	*	@param		mixed		$value

	*	@param		string|null		$field

	*	@return	\Illuminate\Database\Eloquent\Model|null

Laravel	Documentation	-	7.x	/	The	Basics 86

	*/

public	function	resolveRouteBinding($value,	$field	=	null)

{

				return	$this->where('name',	$value)->firstOrFail();

}

Fallback	Routes

Using	the	Route::fallback	method,	you	may	define	a	route	that	will	be	executed	when	no	other	route	matches
the	incoming	request.	Typically,	unhandled	requests	will	automatically	render	a	"404"	page	via	your
application's	exception	handler.	However,	since	you	may	define	the	fallback	route	within	your	routes/web.php
file,	all	middleware	in	the	web	middleware	group	will	apply	to	the	route.	You	are	free	to	add	additional
middleware	to	this	route	as	needed:

Route::fallback(function	()	{

				//

});

NOTE	The	fallback	route	should	always	be	the	last	route	registered	by	your	application.

Rate	Limiting

Laravel	includes	a	middleware	to	rate	limit	access	to	routes	within	your	application.	To	get	started,	assign	the	
throttle	middleware	to	a	route	or	a	group	of	routes.	The	throttle	middleware	accepts	two	parameters	that
determine	the	maximum	number	of	requests	that	can	be	made	in	a	given	number	of	minutes.	For	example,	let's
specify	that	an	authenticated	user	may	access	the	following	group	of	routes	60	times	per	minute:

Route::middleware('auth:api',	'throttle:60,1')->group(function	()	{

				Route::get('/user',	function	()	{

								//

				});

});

Dynamic	Rate	Limiting

You	may	specify	a	dynamic	request	maximum	based	on	an	attribute	of	the	authenticated	User	model.	For
example,	if	your	User	model	contains	a	rate_limit	attribute,	you	may	pass	the	name	of	the	attribute	to	the	
throttle	middleware	so	that	it	is	used	to	calculate	the	maximum	request	count:

Route::middleware('auth:api',	'throttle:rate_limit,1')->group(function	()	{

				Route::get('/user',	function	()	{

								//

				});

});

Distinct	Guest	&	Authenticated	User	Rate	Limits

You	may	specify	different	rate	limits	for	guest	and	authenticated	users.	For	example,	you	may	specify	a
maximum	of	10	requests	per	minute	for	guests	60	for	authenticated	users:

Route::middleware('throttle:10|60,1')->group(function	()	{

				//

});

You	may	also	combine	this	functionality	with	dynamic	rate	limits.	For	example,	if	your	User	model	contains	a	
rate_limit	attribute,	you	may	pass	the	name	of	the	attribute	to	the	throttle	middleware	so	that	it	is	used	to
calculate	the	maximum	request	count	for	authenticated	users:

Route::middleware('auth:api',	'throttle:10|rate_limit,1')->group(function	()	{

				Route::get('/user',	function	()	{

								//

				});

});

Rate	Limit	Segments

Laravel	Documentation	-	7.x	/	The	Basics 87

Typically,	you	will	probably	specify	one	rate	limit	for	your	entire	API.	However,	your	application	may	require
different	rate	limits	for	different	segments	of	your	API.	If	this	is	the	case,	you	will	need	to	pass	a	segment	name
as	the	third	argument	to	the	throttle	middleware:

Route::middleware('auth:api')->group(function	()	{

				Route::middleware('throttle:60,1,default')->group(function	()	{

								Route::get('/servers',	function	()	{

												//

								});

				});

				Route::middleware('throttle:60,1,deletes')->group(function	()	{

								Route::delete('/servers/{id}',	function	()	{

												//

								});

				});

});

Form	Method	Spoofing

HTML	forms	do	not	support	PUT,	PATCH	or	DELETE	actions.	So,	when	defining	PUT,	PATCH	or	DELETE	routes	that	are
called	from	an	HTML	form,	you	will	need	to	add	a	hidden	_method	field	to	the	form.	The	value	sent	with	the	
_method	field	will	be	used	as	the	HTTP	request	method:

<form	action="/foo/bar"	method="POST">

				<input	type="hidden"	name="_method"	value="PUT">

				<input	type="hidden"	name="_token"	value="{{	csrf_token()	}}">

</form>

You	may	use	the	@method	Blade	directive	to	generate	the	_method	input:

<form	action="/foo/bar"	method="POST">

				@method('PUT')

				@csrf

</form>

Accessing	The	Current	Route

You	may	use	the	current,	currentRouteName,	and	currentRouteAction	methods	on	the	Route	facade	to	access
information	about	the	route	handling	the	incoming	request:

$route	=	Route::current();

$name	=	Route::currentRouteName();

$action	=	Route::currentRouteAction();

Refer	to	the	API	documentation	for	both	the	underlying	class	of	the	Route	facade	and	Route	instance	to	review
all	accessible	methods.

Cross-Origin	Resource	Sharing	(CORS)

Laravel	can	automatically	respond	to	CORS	OPTIONS	requests	with	values	that	you	configure.	All	CORS
settings	may	be	configured	in	your	cors	configuration	file	and	OPTIONS	requests	will	automatically	be
handled	by	the	HandleCors	middleware	that	is	included	by	default	in	your	global	middleware	stack.

TIP	For	more	information	on	CORS	and	CORS	headers,	please	consult	the	MDN	web	documentation	on
CORS.

Laravel	Documentation	-	7.x	/	The	Basics 88

https://laravel.com/api/{{version}}/Illuminate/Routing/Router.html
https://laravel.com/api/{{version}}/Illuminate/Routing/Route.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS#The_HTTP_response_headers

The	Basics

Middleware
Introduction
Defining	Middleware
Registering	Middleware

Global	Middleware
Assigning	Middleware	To	Routes
Middleware	Groups
Sorting	Middleware

Middleware	Parameters
Terminable	Middleware

Introduction

Middleware	provide	a	convenient	mechanism	for	filtering	HTTP	requests	entering	your	application.	For
example,	Laravel	includes	a	middleware	that	verifies	the	user	of	your	application	is	authenticated.	If	the	user	is
not	authenticated,	the	middleware	will	redirect	the	user	to	the	login	screen.	However,	if	the	user	is
authenticated,	the	middleware	will	allow	the	request	to	proceed	further	into	the	application.

Additional	middleware	can	be	written	to	perform	a	variety	of	tasks	besides	authentication.	A	CORS	middleware
might	be	responsible	for	adding	the	proper	headers	to	all	responses	leaving	your	application.	A	logging
middleware	might	log	all	incoming	requests	to	your	application.

There	are	several	middleware	included	in	the	Laravel	framework,	including	middleware	for	authentication	and
CSRF	protection.	All	of	these	middleware	are	located	in	the	app/Http/Middleware	directory.

Defining	Middleware

To	create	a	new	middleware,	use	the	make:middleware	Artisan	command:

php	artisan	make:middleware	CheckAge

This	command	will	place	a	new	CheckAge	class	within	your	app/Http/Middleware	directory.	In	this	middleware,
we	will	only	allow	access	to	the	route	if	the	supplied	age	is	greater	than	200.	Otherwise,	we	will	redirect	the
users	back	to	the	home	URI:

<?php

namespace	App\Http\Middleware;

use	Closure;

class	CheckAge

{

				/**

					*	Handle	an	incoming	request.

					*

					*	@param		\Illuminate\Http\Request		$request

					*	@param		\Closure		$next

					*	@return	mixed

					*/

				public	function	handle($request,	Closure	$next)

				{

								if	($request->age	<=	200)	{

												return	redirect('home');

								}

								return	$next($request);

				}

}

As	you	can	see,	if	the	given	age	is	less	than	or	equal	to	200,	the	middleware	will	return	an	HTTP	redirect	to	the
client;	otherwise,	the	request	will	be	passed	further	into	the	application.	To	pass	the	request	deeper	into	the

Laravel	Documentation	-	7.x	/	Middleware 89

application	(allowing	the	middleware	to	"pass"),	call	the	$next	callback	with	the	$request.

It's	best	to	envision	middleware	as	a	series	of	"layers"	HTTP	requests	must	pass	through	before	they	hit	your
application.	Each	layer	can	examine	the	request	and	even	reject	it	entirely.

TIP	All	middleware	are	resolved	via	the	service	container,	so	you	may	type-hint	any	dependencies	you
need	within	a	middleware's	constructor.

Before	&	After	Middleware

Whether	a	middleware	runs	before	or	after	a	request	depends	on	the	middleware	itself.	For	example,	the
following	middleware	would	perform	some	task	before	the	request	is	handled	by	the	application:

<?php

namespace	App\Http\Middleware;

use	Closure;

class	BeforeMiddleware

{

				public	function	handle($request,	Closure	$next)

				{

								//	Perform	action

								return	$next($request);

				}

}

However,	this	middleware	would	perform	its	task	after	the	request	is	handled	by	the	application:

<?php

namespace	App\Http\Middleware;

use	Closure;

class	AfterMiddleware

{

				public	function	handle($request,	Closure	$next)

				{

								$response	=	$next($request);

								//	Perform	action

								return	$response;

				}

}

Registering	Middleware

Global	Middleware

If	you	want	a	middleware	to	run	during	every	HTTP	request	to	your	application,	list	the	middleware	class	in	the
$middleware	property	of	your	app/Http/Kernel.php	class.

Assigning	Middleware	To	Routes

If	you	would	like	to	assign	middleware	to	specific	routes,	you	should	first	assign	the	middleware	a	key	in	your	
app/Http/Kernel.php	file.	By	default,	the	$routeMiddleware	property	of	this	class	contains	entries	for	the
middleware	included	with	Laravel.	To	add	your	own,	append	it	to	this	list	and	assign	it	a	key	of	your	choosing:

//	Within	App\Http\Kernel	Class...

protected	$routeMiddleware	=	[

				'auth'	=>	\App\Http\Middleware\Authenticate::class,

				'auth.basic'	=>	\Illuminate\Auth\Middleware\AuthenticateWithBasicAuth::class,

				'bindings'	=>	\Illuminate\Routing\Middleware\SubstituteBindings::class,

				'cache.headers'	=>	\Illuminate\Http\Middleware\SetCacheHeaders::class,

				'can'	=>	\Illuminate\Auth\Middleware\Authorize::class,

Laravel	Documentation	-	7.x	/	Middleware 90

				'guest'	=>	\App\Http\Middleware\RedirectIfAuthenticated::class,

				'signed'	=>	\Illuminate\Routing\Middleware\ValidateSignature::class,

				'throttle'	=>	\Illuminate\Routing\Middleware\ThrottleRequests::class,

				'verified'	=>	\Illuminate\Auth\Middleware\EnsureEmailIsVerified::class,

];

Once	the	middleware	has	been	defined	in	the	HTTP	kernel,	you	may	use	the	middleware	method	to	assign
middleware	to	a	route:

Route::get('admin/profile',	function	()	{

				//

})->middleware('auth');

You	may	also	assign	multiple	middleware	to	the	route:

Route::get('/',	function	()	{

				//

})->middleware('first',	'second');

When	assigning	middleware,	you	may	also	pass	the	fully	qualified	class	name:

use	App\Http\Middleware\CheckAge;

Route::get('admin/profile',	function	()	{

				//

})->middleware(CheckAge::class);

When	assigning	middleware	to	a	group	of	routes,	you	may	occasionally	need	to	prevent	the	middleware	from
being	applied	to	an	individual	route	within	the	group.	You	may	accomplish	this	using	the	withoutMiddleware
method:

use	App\Http\Middleware\CheckAge;

Route::middleware([CheckAge::class])->group(function	()	{

				Route::get('/',	function	()	{

								//

				});

				Route::get('admin/profile',	function	()	{

								//

				})->withoutMiddleware([CheckAge::class]);

});

The	withoutMiddleware	method	can	only	remove	route	middleware	and	does	not	apply	to	global	middleware.

Middleware	Groups

Sometimes	you	may	want	to	group	several	middleware	under	a	single	key	to	make	them	easier	to	assign	to
routes.	You	may	do	this	using	the	$middlewareGroups	property	of	your	HTTP	kernel.

Out	of	the	box,	Laravel	comes	with	web	and	api	middleware	groups	that	contain	common	middleware	you	may
want	to	apply	to	your	web	UI	and	API	routes:

/**

	*	The	application's	route	middleware	groups.

	*

	*	@var	array

	*/

protected	$middlewareGroups	=	[

				'web'	=>	[

								\App\Http\Middleware\EncryptCookies::class,

								\Illuminate\Cookie\Middleware\AddQueuedCookiesToResponse::class,

								\Illuminate\Session\Middleware\StartSession::class,

								\Illuminate\View\Middleware\ShareErrorsFromSession::class,

								\App\Http\Middleware\VerifyCsrfToken::class,

								\Illuminate\Routing\Middleware\SubstituteBindings::class,

],

				'api'	=>	[

								'throttle:60,1',

								'auth:api',

],

];

Laravel	Documentation	-	7.x	/	Middleware 91

Middleware	groups	may	be	assigned	to	routes	and	controller	actions	using	the	same	syntax	as	individual
middleware.	Again,	middleware	groups	make	it	more	convenient	to	assign	many	middleware	to	a	route	at	once:

Route::get('/',	function	()	{

				//

})->middleware('web');

Route::group(['middleware'	=>	['web']],	function	()	{

				//

});

Route::middleware(['web',	'subscribed'])->group(function	()	{

				//

});

TIP	Out	of	the	box,	the	web	middleware	group	is	automatically	applied	to	your	routes/web.php	file	by	the	
RouteServiceProvider.

Sorting	Middleware

Rarely,	you	may	need	your	middleware	to	execute	in	a	specific	order	but	not	have	control	over	their	order	when
they	are	assigned	to	the	route.	In	this	case,	you	may	specify	your	middleware	priority	using	the	
$middlewarePriority	property	of	your	app/Http/Kernel.php	file:

/**

	*	The	priority-sorted	list	of	middleware.

	*

	*	This	forces	non-global	middleware	to	always	be	in	the	given	order.

	*

	*	@var	array

	*/

protected	$middlewarePriority	=	[

				\Illuminate\Session\Middleware\StartSession::class,

				\Illuminate\View\Middleware\ShareErrorsFromSession::class,

				\Illuminate\Contracts\Auth\Middleware\AuthenticatesRequests::class,

				\Illuminate\Routing\Middleware\ThrottleRequests::class,

				\Illuminate\Session\Middleware\AuthenticateSession::class,

				\Illuminate\Routing\Middleware\SubstituteBindings::class,

				\Illuminate\Auth\Middleware\Authorize::class,

];

Middleware	Parameters

Middleware	can	also	receive	additional	parameters.	For	example,	if	your	application	needs	to	verify	that	the
authenticated	user	has	a	given	"role"	before	performing	a	given	action,	you	could	create	a	CheckRole
middleware	that	receives	a	role	name	as	an	additional	argument.

Additional	middleware	parameters	will	be	passed	to	the	middleware	after	the	$next	argument:

<?php

namespace	App\Http\Middleware;

use	Closure;

class	CheckRole

{

				/**

					*	Handle	the	incoming	request.

					*

					*	@param		\Illuminate\Http\Request		$request

					*	@param		\Closure		$next

					*	@param		string		$role

					*	@return	mixed

					*/

				public	function	handle($request,	Closure	$next,	$role)

				{

								if	(!	$request->user()->hasRole($role))	{

												//	Redirect...

								}

								return	$next($request);

				}

Laravel	Documentation	-	7.x	/	Middleware 92

}

Middleware	parameters	may	be	specified	when	defining	the	route	by	separating	the	middleware	name	and
parameters	with	a	:.	Multiple	parameters	should	be	delimited	by	commas:

Route::put('post/{id}',	function	($id)	{

				//

})->middleware('role:editor');

Terminable	Middleware

Sometimes	a	middleware	may	need	to	do	some	work	after	the	HTTP	response	has	been	sent	to	the	browser.	If
you	define	a	terminate	method	on	your	middleware	and	your	web	server	is	using	FastCGI,	the	terminate
method	will	automatically	be	called	after	the	response	is	sent	to	the	browser:

<?php

namespace	Illuminate\Session\Middleware;

use	Closure;

class	StartSession

{

				public	function	handle($request,	Closure	$next)

				{

								return	$next($request);

				}

				public	function	terminate($request,	$response)

				{

								//	Store	the	session	data...

				}

}

The	terminate	method	should	receive	both	the	request	and	the	response.	Once	you	have	defined	a	terminable
middleware,	you	should	add	it	to	the	list	of	route	or	global	middleware	in	the	app/Http/Kernel.php	file.

When	calling	the	terminate	method	on	your	middleware,	Laravel	will	resolve	a	fresh	instance	of	the
middleware	from	the	service	container.	If	you	would	like	to	use	the	same	middleware	instance	when	the	handle
and	terminate	methods	are	called,	register	the	middleware	with	the	container	using	the	container's	singleton
method.	Typically	this	should	be	done	in	the	register	method	of	your	AppServiceProvider.php:

use	App\Http\Middleware\TerminableMiddleware;

/**

	*	Register	any	application	services.

	*

	*	@return	void

	*/

public	function	register()

{

				$this->app->singleton(TerminableMiddleware::class);

}

Laravel	Documentation	-	7.x	/	Middleware 93

The	Basics

CSRF	Protection
Introduction
Excluding	URIs
X-CSRF-Token
X-XSRF-Token

Introduction

Laravel	makes	it	easy	to	protect	your	application	from	cross-site	request	forgery	(CSRF)	attacks.	Cross-site
request	forgeries	are	a	type	of	malicious	exploit	whereby	unauthorized	commands	are	performed	on	behalf	of
an	authenticated	user.

Laravel	automatically	generates	a	CSRF	"token"	for	each	active	user	session	managed	by	the	application.	This
token	is	used	to	verify	that	the	authenticated	user	is	the	one	actually	making	the	requests	to	the	application.

Anytime	you	define	an	HTML	form	in	your	application,	you	should	include	a	hidden	CSRF	token	field	in	the
form	so	that	the	CSRF	protection	middleware	can	validate	the	request.	You	may	use	the	@csrf	Blade	directive
to	generate	the	token	field:

<form	method="POST"	action="/profile">

				@csrf

				...

</form>

The	VerifyCsrfToken	middleware,	which	is	included	in	the	web	middleware	group,	will	automatically	verify	that
the	token	in	the	request	input	matches	the	token	stored	in	the	session.

CSRF	Tokens	&	JavaScript

When	building	JavaScript	driven	applications,	it	is	convenient	to	have	your	JavaScript	HTTP	library
automatically	attach	the	CSRF	token	to	every	outgoing	request.	By	default,	the	Axios	HTTP	library	provided	in
the	resources/js/bootstrap.js	file	automatically	sends	an	X-XSRF-TOKEN	header	using	the	value	of	the	encrypted	
XSRF-TOKEN	cookie.	If	you	are	not	using	this	library,	you	will	need	to	manually	configure	this	behavior	for	your
application.

Excluding	URIs	From	CSRF	Protection

Sometimes	you	may	wish	to	exclude	a	set	of	URIs	from	CSRF	protection.	For	example,	if	you	are	using	Stripe
to	process	payments	and	are	utilizing	their	webhook	system,	you	will	need	to	exclude	your	Stripe	webhook
handler	route	from	CSRF	protection	since	Stripe	will	not	know	what	CSRF	token	to	send	to	your	routes.

Typically,	you	should	place	these	kinds	of	routes	outside	of	the	web	middleware	group	that	the	
RouteServiceProvider	applies	to	all	routes	in	the	routes/web.php	file.	However,	you	may	also	exclude	the	routes
by	adding	their	URIs	to	the	$except	property	of	the	VerifyCsrfToken	middleware:

<?php

namespace	App\Http\Middleware;

use	Illuminate\Foundation\Http\Middleware\VerifyCsrfToken	as	Middleware;

class	VerifyCsrfToken	extends	Middleware

{

				/**

					*	The	URIs	that	should	be	excluded	from	CSRF	verification.

					*

					*	@var	array

					*/

				protected	$except	=	[

								'stripe/*',

								'http://example.com/foo/bar',

Laravel	Documentation	-	7.x	/	CSRF	Protection 94

https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://stripe.com

								'http://example.com/foo/*',

];

}

TIP	The	CSRF	middleware	is	automatically	disabled	when	running	tests.

X-CSRF-TOKEN

In	addition	to	checking	for	the	CSRF	token	as	a	POST	parameter,	the	VerifyCsrfToken	middleware	will	also
check	for	the	X-CSRF-TOKEN	request	header.	You	could,	for	example,	store	the	token	in	an	HTML	meta	tag:

<meta	name="csrf-token"	content="{{	csrf_token()	}}">

Then,	once	you	have	created	the	meta	tag,	you	can	instruct	a	library	like	jQuery	to	automatically	add	the	token
to	all	request	headers.	This	provides	simple,	convenient	CSRF	protection	for	your	AJAX	based	applications:

$.ajaxSetup({

				headers:	{

								'X-CSRF-TOKEN':	$('meta[name="csrf-token"]').attr('content')

				}

});

X-XSRF-TOKEN

Laravel	stores	the	current	CSRF	token	in	an	encrypted	XSRF-TOKEN	cookie	that	is	included	with	each	response
generated	by	the	framework.	You	can	use	the	cookie	value	to	set	the	X-XSRF-TOKEN	request	header.

This	cookie	is	primarily	sent	as	a	convenience	since	some	JavaScript	frameworks	and	libraries,	like	Angular
and	Axios,	automatically	place	its	value	in	the	X-XSRF-TOKEN	header	on	same-origin	requests.

TIP	By	default,	the	resources/js/bootstrap.js	file	includes	the	Axios	HTTP	library	which	will
automatically	send	this	for	you.

Laravel	Documentation	-	7.x	/	CSRF	Protection 95

The	Basics

Controllers
Introduction
Basic	Controllers

Defining	Controllers
Controllers	&	Namespaces
Single	Action	Controllers

Controller	Middleware
Resource	Controllers

Partial	Resource	Routes
Nested	Resources
Naming	Resource	Routes
Naming	Resource	Route	Parameters
Scoping	Resource	Routes
Localizing	Resource	URIs
Supplementing	Resource	Controllers

Dependency	Injection	&	Controllers
Route	Caching

Introduction

Instead	of	defining	all	of	your	request	handling	logic	as	Closures	in	route	files,	you	may	wish	to	organize	this
behavior	using	Controller	classes.	Controllers	can	group	related	request	handling	logic	into	a	single	class.
Controllers	are	stored	in	the	app/Http/Controllers	directory.

Basic	Controllers

Defining	Controllers

Below	is	an	example	of	a	basic	controller	class.	Note	that	the	controller	extends	the	base	controller	class
included	with	Laravel.	The	base	class	provides	a	few	convenience	methods	such	as	the	middleware	method,
which	may	be	used	to	attach	middleware	to	controller	actions:

<?php

namespace	App\Http\Controllers;

use	App\Http\Controllers\Controller;

use	App\User;

class	UserController	extends	Controller

{

				/**

					*	Show	the	profile	for	the	given	user.

					*

					*	@param		int		$id

					*	@return	View

					*/

				public	function	show($id)

				{

								return	view('user.profile',	['user'	=>	User::findOrFail($id)]);

				}

}

You	can	define	a	route	to	this	controller	action	like	so:

Route::get('user/{id}',	'UserController@show');

Now,	when	a	request	matches	the	specified	route	URI,	the	show	method	on	the	UserController	class	will	be
executed.	The	route	parameters	will	also	be	passed	to	the	method.

TIP	Controllers	are	not	required	to	extend	a	base	class.	However,	you	will	not	have	access	to	convenience

Laravel	Documentation	-	7.x	/	Controllers 96

features	such	as	the	middleware,	validate,	and	dispatch	methods.

Controllers	&	Namespaces

It	is	very	important	to	note	that	we	did	not	need	to	specify	the	full	controller	namespace	when	defining	the
controller	route.	Since	the	RouteServiceProvider	loads	your	route	files	within	a	route	group	that	contains	the
namespace,	we	only	specified	the	portion	of	the	class	name	that	comes	after	the	App\Http\Controllers	portion
of	the	namespace.

If	you	choose	to	nest	your	controllers	deeper	into	the	App\Http\Controllers	directory,	use	the	specific	class
name	relative	to	the	App\Http\Controllers	root	namespace.	So,	if	your	full	controller	class	is	
App\Http\Controllers\Photos\AdminController,	you	should	register	routes	to	the	controller	like	so:

Route::get('foo',	'Photos\AdminController@method');

Single	Action	Controllers

If	you	would	like	to	define	a	controller	that	only	handles	a	single	action,	you	may	place	a	single	__invoke
method	on	the	controller:

<?php

namespace	App\Http\Controllers;

use	App\Http\Controllers\Controller;

use	App\User;

class	ShowProfile	extends	Controller

{

				/**

					*	Show	the	profile	for	the	given	user.

					*

					*	@param		int		$id

					*	@return	View

					*/

				public	function	__invoke($id)

				{

								return	view('user.profile',	['user'	=>	User::findOrFail($id)]);

				}

}

When	registering	routes	for	single	action	controllers,	you	do	not	need	to	specify	a	method:

Route::get('user/{id}',	'ShowProfile');

You	may	generate	an	invokable	controller	by	using	the	--invokable	option	of	the	make:controller	Artisan
command:

php	artisan	make:controller	ShowProfile	--invokable

TIP	Controller	stubs	may	be	customized	using	stub	publishing

Controller	Middleware

Middleware	may	be	assigned	to	the	controller's	routes	in	your	route	files:

Route::get('profile',	'UserController@show')->middleware('auth');

However,	it	is	more	convenient	to	specify	middleware	within	your	controller's	constructor.	Using	the	
middleware	method	from	your	controller's	constructor,	you	may	easily	assign	middleware	to	the	controller's
action.	You	may	even	restrict	the	middleware	to	only	certain	methods	on	the	controller	class:

class	UserController	extends	Controller

{

				/**

					*	Instantiate	a	new	controller	instance.

					*

					*	@return	void

Laravel	Documentation	-	7.x	/	Controllers 97

					*/

				public	function	__construct()

				{

								$this->middleware('auth');

								$this->middleware('log')->only('index');

								$this->middleware('subscribed')->except('store');

				}

}

Controllers	also	allow	you	to	register	middleware	using	a	Closure.	This	provides	a	convenient	way	to	define	a
middleware	for	a	single	controller	without	defining	an	entire	middleware	class:

$this->middleware(function	($request,	$next)	{

				//	...

				return	$next($request);

});

TIP	You	may	assign	middleware	to	a	subset	of	controller	actions;	however,	it	may	indicate	your	controller
is	growing	too	large.	Instead,	consider	breaking	your	controller	into	multiple,	smaller	controllers.

Resource	Controllers

Laravel	resource	routing	assigns	the	typical	"CRUD"	routes	to	a	controller	with	a	single	line	of	code.	For
example,	you	may	wish	to	create	a	controller	that	handles	all	HTTP	requests	for	"photos"	stored	by	your
application.	Using	the	make:controller	Artisan	command,	we	can	quickly	create	such	a	controller:

php	artisan	make:controller	PhotoController	--resource

This	command	will	generate	a	controller	at	app/Http/Controllers/PhotoController.php.	The	controller	will
contain	a	method	for	each	of	the	available	resource	operations.

Next,	you	may	register	a	resourceful	route	to	the	controller:

Route::resource('photos',	'PhotoController');

This	single	route	declaration	creates	multiple	routes	to	handle	a	variety	of	actions	on	the	resource.	The
generated	controller	will	already	have	methods	stubbed	for	each	of	these	actions,	including	notes	informing	you
of	the	HTTP	verbs	and	URIs	they	handle.

You	may	register	many	resource	controllers	at	once	by	passing	an	array	to	the	resources	method:

Route::resources([

				'photos'	=>	'PhotoController',

				'posts'	=>	'PostController',

]);

Actions	Handled	By	Resource	Controller

Verb URI Action Route	Name

GET /photos index photos.index
GET /photos/create create photos.create
POST /photos store photos.store
GET /photos/{photo} show photos.show
GET /photos/{photo}/edit edit photos.edit
PUT/PATCH /photos/{photo} update photos.update
DELETE /photos/{photo} destroy photos.destroy

Specifying	The	Resource	Model

If	you	are	using	route	model	binding	and	would	like	the	resource	controller's	methods	to	type-hint	a	model
instance,	you	may	use	the	--model	option	when	generating	the	controller:

Laravel	Documentation	-	7.x	/	Controllers 98

php	artisan	make:controller	PhotoController	--resource	--model=Photo

Spoofing	Form	Methods

Since	HTML	forms	can't	make	PUT,	PATCH,	or	DELETE	requests,	you	will	need	to	add	a	hidden	_method	field	to
spoof	these	HTTP	verbs.	The	@method	Blade	directive	can	create	this	field	for	you:

<form	action="/foo/bar"	method="POST">

				@method('PUT')

</form>

Partial	Resource	Routes

When	declaring	a	resource	route,	you	may	specify	a	subset	of	actions	the	controller	should	handle	instead	of	the
full	set	of	default	actions:

Route::resource('photos',	'PhotoController')->only([

				'index',	'show'

]);

Route::resource('photos',	'PhotoController')->except([

				'create',	'store',	'update',	'destroy'

]);

API	Resource	Routes

When	declaring	resource	routes	that	will	be	consumed	by	APIs,	you	will	commonly	want	to	exclude	routes	that
present	HTML	templates	such	as	create	and	edit.	For	convenience,	you	may	use	the	apiResource	method	to
automatically	exclude	these	two	routes:

Route::apiResource('photos',	'PhotoController');

You	may	register	many	API	resource	controllers	at	once	by	passing	an	array	to	the	apiResources	method:

Route::apiResources([

				'photos'	=>	'PhotoController',

				'posts'	=>	'PostController',

]);

To	quickly	generate	an	API	resource	controller	that	does	not	include	the	create	or	edit	methods,	use	the	--api
switch	when	executing	the	make:controller	command:

php	artisan	make:controller	API/PhotoController	--api

Nested	Resources

Sometimes	you	may	need	to	define	routes	to	a	nested	resource.	For	example,	a	photo	resource	may	have
multiple	comments	that	may	be	attached	to	the	photo.	To	nest	the	resource	controllers,	use	"dot"	notation	in
your	route	declaration:

Route::resource('photos.comments',	'PhotoCommentController');

This	route	will	register	a	nested	resource	that	may	be	accessed	with	URIs	like	the	following:

/photos/{photo}/comments/{comment}

Shallow	Nesting

Often,	it	is	not	entirely	necessary	to	have	both	the	parent	and	the	child	IDs	within	a	URI	since	the	child	ID	is
already	a	unique	identifier.	When	using	unique	identifier	such	as	auto-incrementing	primary	keys	to	identify
your	models	in	URI	segments,	you	may	choose	to	use	"shallow	nesting":

Route::resource('photos.comments',	'CommentController')->shallow();

The	route	definition	above	will	define	the	following	routes:

Laravel	Documentation	-	7.x	/	Controllers 99

Verb URI Action Route	Name

GET /photos/{photo}/comments index photos.comments.index
GET /photos/{photo}/comments/create create photos.comments.create
POST /photos/{photo}/comments store photos.comments.store
GET /comments/{comment} show comments.show
GET /comments/{comment}/edit edit comments.edit
PUT/PATCH /comments/{comment} update comments.update
DELETE /comments/{comment} destroy comments.destroy

Naming	Resource	Routes

By	default,	all	resource	controller	actions	have	a	route	name;	however,	you	can	override	these	names	by
passing	a	names	array	with	your	options:

Route::resource('photos',	'PhotoController')->names([

				'create'	=>	'photos.build'

]);

Naming	Resource	Route	Parameters

By	default,	Route::resource	will	create	the	route	parameters	for	your	resource	routes	based	on	the
"singularized"	version	of	the	resource	name.	You	can	easily	override	this	on	a	per	resource	basis	by	using	the	
parameters	method.	The	array	passed	into	the	parameters	method	should	be	an	associative	array	of	resource
names	and	parameter	names:

Route::resource('users',	'AdminUserController')->parameters([

				'users'	=>	'admin_user'

]);

The	example	above	generates	the	following	URIs	for	the	resource's	show	route:

/users/{admin_user}

Scoping	Resource	Routes

Sometimes,	when	implicitly	binding	multiple	Eloquent	models	in	resource	route	definitions,	you	may	wish	to
scope	the	second	Eloquent	model	such	that	it	must	be	a	child	of	the	first	Eloquent	model.	For	example,	consider
this	situation	that	retrieves	a	blog	post	by	slug	for	a	specific	user:

use	App\Http\Controllers\PostsController;

Route::resource('users.posts',	PostsController::class)->scoped();

You	may	override	the	default	model	route	keys	by	passing	an	array	to	the	scoped	method:

use	App\Http\Controllers\PostsController;

Route::resource('users.posts',	PostsController::class)->scoped([

				'post'	=>	'slug',

]);

When	using	a	custom	keyed	implicit	binding	as	a	nested	route	parameter,	Laravel	will	automatically	scope	the
query	to	retrieve	the	nested	model	by	its	parent	using	conventions	to	guess	the	relationship	name	on	the	parent.
In	this	case,	it	will	be	assumed	that	the	User	model	has	a	relationship	named	posts	(the	plural	of	the	route
parameter	name)	which	can	be	used	to	retrieve	the	Post	model.

Localizing	Resource	URIs

By	default,	Route::resource	will	create	resource	URIs	using	English	verbs.	If	you	need	to	localize	the	create
and	edit	action	verbs,	you	may	use	the	Route::resourceVerbs	method.	This	may	be	done	in	the	boot	method	of
your	AppServiceProvider:

use	Illuminate\Support\Facades\Route;

Laravel	Documentation	-	7.x	/	Controllers 100

/**

	*	Bootstrap	any	application	services.

	*

	*	@return	void

	*/

public	function	boot()

{

				Route::resourceVerbs([

								'create'	=>	'crear',

								'edit'	=>	'editar',

]);

}

Once	the	verbs	have	been	customized,	a	resource	route	registration	such	as	Route::resource('fotos',	
'PhotoController')	will	produce	the	following	URIs:

/fotos/crear

/fotos/{foto}/editar

Supplementing	Resource	Controllers

If	you	need	to	add	additional	routes	to	a	resource	controller	beyond	the	default	set	of	resource	routes,	you
should	define	those	routes	before	your	call	to	Route::resource;	otherwise,	the	routes	defined	by	the	resource
method	may	unintentionally	take	precedence	over	your	supplemental	routes:

Route::get('photos/popular',	'PhotoController@method');

Route::resource('photos',	'PhotoController');

TIP	Remember	to	keep	your	controllers	focused.	If	you	find	yourself	routinely	needing	methods	outside	of
the	typical	set	of	resource	actions,	consider	splitting	your	controller	into	two,	smaller	controllers.

Dependency	Injection	&	Controllers

Constructor	Injection

The	Laravel	service	container	is	used	to	resolve	all	Laravel	controllers.	As	a	result,	you	are	able	to	type-hint
any	dependencies	your	controller	may	need	in	its	constructor.	The	declared	dependencies	will	automatically	be
resolved	and	injected	into	the	controller	instance:

<?php

namespace	App\Http\Controllers;

use	App\Repositories\UserRepository;

class	UserController	extends	Controller

{

				/**

					*	The	user	repository	instance.

					*/

				protected	$users;

				/**

					*	Create	a	new	controller	instance.

					*

					*	@param		UserRepository		$users

					*	@return	void

					*/

				public	function	__construct(UserRepository	$users)

				{

								$this->users	=	$users;

				}

}

You	may	also	type-hint	any	Laravel	contract.	If	the	container	can	resolve	it,	you	can	type-hint	it.	Depending	on
your	application,	injecting	your	dependencies	into	your	controller	may	provide	better	testability.

Method	Injection

Laravel	Documentation	-	7.x	/	Controllers 101

In	addition	to	constructor	injection,	you	may	also	type-hint	dependencies	on	your	controller's	methods.	A
common	use-case	for	method	injection	is	injecting	the	Illuminate\Http\Request	instance	into	your	controller
methods:

<?php

namespace	App\Http\Controllers;

use	Illuminate\Http\Request;

class	UserController	extends	Controller

{

				/**

					*	Store	a	new	user.

					*

					*	@param		Request		$request

					*	@return	Response

					*/

				public	function	store(Request	$request)

				{

								$name	=	$request->name;

								//

				}

}

If	your	controller	method	is	also	expecting	input	from	a	route	parameter,	list	your	route	arguments	after	your
other	dependencies.	For	example,	if	your	route	is	defined	like	so:

Route::put('user/{id}',	'UserController@update');

You	may	still	type-hint	the	Illuminate\Http\Request	and	access	your	id	parameter	by	defining	your	controller
method	as	follows:

<?php

namespace	App\Http\Controllers;

use	Illuminate\Http\Request;

class	UserController	extends	Controller

{

				/**

					*	Update	the	given	user.

					*

					*	@param		Request		$request

					*	@param		string		$id

					*	@return	Response

					*/

				public	function	update(Request	$request,	$id)

				{

								//

				}

}

Route	Caching

NOTE	Closure	based	routes	cannot	be	cached.	To	use	route	caching,	you	must	convert	any	Closure	routes
to	controller	classes.

If	your	application	is	exclusively	using	controller	based	routes,	you	should	take	advantage	of	Laravel's	route
cache.	Using	the	route	cache	will	drastically	decrease	the	amount	of	time	it	takes	to	register	all	of	your
application's	routes.	In	some	cases,	your	route	registration	may	even	be	up	to	100x	faster.	To	generate	a	route
cache,	just	execute	the	route:cache	Artisan	command:

php	artisan	route:cache

After	running	this	command,	your	cached	routes	file	will	be	loaded	on	every	request.	Remember,	if	you	add
any	new	routes	you	will	need	to	generate	a	fresh	route	cache.	Because	of	this,	you	should	only	run	the	
route:cache	command	during	your	project's	deployment.

You	may	use	the	route:clear	command	to	clear	the	route	cache:

Laravel	Documentation	-	7.x	/	Controllers 102

php	artisan	route:clear

Laravel	Documentation	-	7.x	/	Controllers 103

The	Basics

HTTP	Requests
Accessing	The	Request

Request	Path	&	Method
PSR-7	Requests

Input	Trimming	&	Normalization
Retrieving	Input

Old	Input
Cookies

Files
Retrieving	Uploaded	Files
Storing	Uploaded	Files

Configuring	Trusted	Proxies

Accessing	The	Request

To	obtain	an	instance	of	the	current	HTTP	request	via	dependency	injection,	you	should	type-hint	the	
Illuminate\Http\Request	class	on	your	controller	method.	The	incoming	request	instance	will	automatically	be
injected	by	the	service	container:

<?php

namespace	App\Http\Controllers;

use	Illuminate\Http\Request;

class	UserController	extends	Controller

{

				/**

					*	Store	a	new	user.

					*

					*	@param		Request		$request

					*	@return	Response

					*/

				public	function	store(Request	$request)

				{

								$name	=	$request->input('name');

								//

				}

}

Dependency	Injection	&	Route	Parameters

If	your	controller	method	is	also	expecting	input	from	a	route	parameter	you	should	list	your	route	parameters
after	your	other	dependencies.	For	example,	if	your	route	is	defined	like	so:

Route::put('user/{id}',	'UserController@update');

You	may	still	type-hint	the	Illuminate\Http\Request	and	access	your	route	parameter	id	by	defining	your
controller	method	as	follows:

<?php

namespace	App\Http\Controllers;

use	Illuminate\Http\Request;

class	UserController	extends	Controller

{

				/**

					*	Update	the	specified	user.

					*

					*	@param		Request		$request

					*	@param		string		$id

					*	@return	Response

Laravel	Documentation	-	7.x	/	Requests 104

					*/

				public	function	update(Request	$request,	$id)

				{

								//

				}

}

Accessing	The	Request	Via	Route	Closures

You	may	also	type-hint	the	Illuminate\Http\Request	class	on	a	route	Closure.	The	service	container	will
automatically	inject	the	incoming	request	into	the	Closure	when	it	is	executed:

use	Illuminate\Http\Request;

Route::get('/',	function	(Request	$request)	{

				//

});

Request	Path	&	Method

The	Illuminate\Http\Request	instance	provides	a	variety	of	methods	for	examining	the	HTTP	request	for	your
application	and	extends	the	Symfony\Component\HttpFoundation\Request	class.	We	will	discuss	a	few	of	the	most
important	methods	below.

Retrieving	The	Request	Path

The	path	method	returns	the	request's	path	information.	So,	if	the	incoming	request	is	targeted	at	
http://domain.com/foo/bar,	the	path	method	will	return	foo/bar:

$uri	=	$request->path();

The	is	method	allows	you	to	verify	that	the	incoming	request	path	matches	a	given	pattern.	You	may	use	the	*
character	as	a	wildcard	when	utilizing	this	method:

if	($request->is('admin/*'))	{

				//

}

Retrieving	The	Request	URL

To	retrieve	the	full	URL	for	the	incoming	request	you	may	use	the	url	or	fullUrl	methods.	The	url	method	will
return	the	URL	without	the	query	string,	while	the	fullUrl	method	includes	the	query	string:

//	Without	Query	String...

$url	=	$request->url();

//	With	Query	String...

$url	=	$request->fullUrl();

Retrieving	The	Request	Method

The	method	method	will	return	the	HTTP	verb	for	the	request.	You	may	use	the	isMethod	method	to	verify	that
the	HTTP	verb	matches	a	given	string:

$method	=	$request->method();

if	($request->isMethod('post'))	{

				//

}

PSR-7	Requests

The	PSR-7	standard	specifies	interfaces	for	HTTP	messages,	including	requests	and	responses.	If	you	would
like	to	obtain	an	instance	of	a	PSR-7	request	instead	of	a	Laravel	request,	you	will	first	need	to	install	a	few
libraries.	Laravel	uses	the	Symfony	HTTP	Message	Bridge	component	to	convert	typical	Laravel	requests	and
responses	into	PSR-7	compatible	implementations:

Laravel	Documentation	-	7.x	/	Requests 105

https://www.php-fig.org/psr/psr-7/

composer	require	symfony/psr-http-message-bridge

composer	require	nyholm/psr7

Once	you	have	installed	these	libraries,	you	may	obtain	a	PSR-7	request	by	type-hinting	the	request	interface
on	your	route	Closure	or	controller	method:

use	Psr\Http\Message\ServerRequestInterface;

Route::get('/',	function	(ServerRequestInterface	$request)	{

				//

});

TIP	If	you	return	a	PSR-7	response	instance	from	a	route	or	controller,	it	will	automatically	be	converted
back	to	a	Laravel	response	instance	and	be	displayed	by	the	framework.

Input	Trimming	&	Normalization

By	default,	Laravel	includes	the	TrimStrings	and	ConvertEmptyStringsToNull	middleware	in	your	application's
global	middleware	stack.	These	middleware	are	listed	in	the	stack	by	the	App\Http\Kernel	class.	These
middleware	will	automatically	trim	all	incoming	string	fields	on	the	request,	as	well	as	convert	any	empty
string	fields	to	null.	This	allows	you	to	not	have	to	worry	about	these	normalization	concerns	in	your	routes
and	controllers.

If	you	would	like	to	disable	this	behavior,	you	may	remove	the	two	middleware	from	your	application's
middleware	stack	by	removing	them	from	the	$middleware	property	of	your	App\Http\Kernel	class.

Retrieving	Input

Retrieving	All	Input	Data

You	may	also	retrieve	all	of	the	input	data	as	an	array	using	the	all	method:

$input	=	$request->all();

Retrieving	An	Input	Value

Using	a	few	simple	methods,	you	may	access	all	of	the	user	input	from	your	Illuminate\Http\Request	instance
without	worrying	about	which	HTTP	verb	was	used	for	the	request.	Regardless	of	the	HTTP	verb,	the	input
method	may	be	used	to	retrieve	user	input:

$name	=	$request->input('name');

You	may	pass	a	default	value	as	the	second	argument	to	the	input	method.	This	value	will	be	returned	if	the
requested	input	value	is	not	present	on	the	request:

$name	=	$request->input('name',	'Sally');

When	working	with	forms	that	contain	array	inputs,	use	"dot"	notation	to	access	the	arrays:

$name	=	$request->input('products.0.name');

$names	=	$request->input('products.*.name');

You	may	call	the	input	method	without	any	arguments	in	order	to	retrieve	all	of	the	input	values	as	an
associative	array:

$input	=	$request->input();

Retrieving	Input	From	The	Query	String

While	the	input	method	retrieves	values	from	entire	request	payload	(including	the	query	string),	the	query
method	will	only	retrieve	values	from	the	query	string:

$name	=	$request->query('name');

Laravel	Documentation	-	7.x	/	Requests 106

If	the	requested	query	string	value	data	is	not	present,	the	second	argument	to	this	method	will	be	returned:

$name	=	$request->query('name',	'Helen');

You	may	call	the	query	method	without	any	arguments	in	order	to	retrieve	all	of	the	query	string	values	as	an
associative	array:

$query	=	$request->query();

Retrieving	Input	Via	Dynamic	Properties

You	may	also	access	user	input	using	dynamic	properties	on	the	Illuminate\Http\Request	instance.	For
example,	if	one	of	your	application's	forms	contains	a	name	field,	you	may	access	the	value	of	the	field	like	so:

$name	=	$request->name;

When	using	dynamic	properties,	Laravel	will	first	look	for	the	parameter's	value	in	the	request	payload.	If	it	is
not	present,	Laravel	will	search	for	the	field	in	the	route	parameters.

Retrieving	JSON	Input	Values

When	sending	JSON	requests	to	your	application,	you	may	access	the	JSON	data	via	the	input	method	as	long
as	the	Content-Type	header	of	the	request	is	properly	set	to	application/json.	You	may	even	use	"dot"	syntax	to
dig	into	JSON	arrays:

$name	=	$request->input('user.name');

Retrieving	Boolean	Input	Values

When	dealing	with	HTML	elements	like	checkboxes,	your	application	may	receive	"truthy"	values	that	are
actually	strings.	For	example,	"true"	or	"on".	For	convenience,	you	may	use	the	boolean	method	to	retrieve
these	values	as	booleans.	The	boolean	method	returns	true	for	1,	"1",	true,	"true",	"on",	and	"yes".	All	other
values	will	return	false:

$archived	=	$request->boolean('archived');

Retrieving	A	Portion	Of	The	Input	Data

If	you	need	to	retrieve	a	subset	of	the	input	data,	you	may	use	the	only	and	except	methods.	Both	of	these
methods	accept	a	single	array	or	a	dynamic	list	of	arguments:

$input	=	$request->only(['username',	'password']);

$input	=	$request->only('username',	'password');

$input	=	$request->except(['credit_card']);

$input	=	$request->except('credit_card');

TIP	The	only	method	returns	all	of	the	key	/	value	pairs	that	you	request;	however,	it	will	not	return	key	/
value	pairs	that	are	not	present	on	the	request.

Determining	If	An	Input	Value	Is	Present

You	should	use	the	has	method	to	determine	if	a	value	is	present	on	the	request.	The	has	method	returns	true	if
the	value	is	present	on	the	request:

if	($request->has('name'))	{

				//

}

When	given	an	array,	the	has	method	will	determine	if	all	of	the	specified	values	are	present:

if	($request->has(['name',	'email']))	{

				//

Laravel	Documentation	-	7.x	/	Requests 107

}

The	hasAny	method	returns	true	if	any	of	the	specified	values	are	present:

if	($request->hasAny(['name',	'email']))	{

				//

}

If	you	would	like	to	determine	if	a	value	is	present	on	the	request	and	is	not	empty,	you	may	use	the	filled
method:

if	($request->filled('name'))	{

				//

}

To	determine	if	a	given	key	is	absent	from	the	request,	you	may	use	the	missing	method:

if	($request->missing('name'))	{

				//

}

Old	Input

Laravel	allows	you	to	keep	input	from	one	request	during	the	next	request.	This	feature	is	particularly	useful	for
re-populating	forms	after	detecting	validation	errors.	However,	if	you	are	using	Laravel's	included	validation
features,	it	is	unlikely	you	will	need	to	manually	use	these	methods,	as	some	of	Laravel's	built-in	validation
facilities	will	call	them	automatically.

Flashing	Input	To	The	Session

The	flash	method	on	the	Illuminate\Http\Request	class	will	flash	the	current	input	to	the	session	so	that	it	is
available	during	the	user's	next	request	to	the	application:

$request->flash();

You	may	also	use	the	flashOnly	and	flashExcept	methods	to	flash	a	subset	of	the	request	data	to	the	session.
These	methods	are	useful	for	keeping	sensitive	information	such	as	passwords	out	of	the	session:

$request->flashOnly(['username',	'email']);

$request->flashExcept('password');

Flashing	Input	Then	Redirecting

Since	you	often	will	want	to	flash	input	to	the	session	and	then	redirect	to	the	previous	page,	you	may	easily
chain	input	flashing	onto	a	redirect	using	the	withInput	method:

return	redirect('form')->withInput();

return	redirect('form')->withInput(

				$request->except('password')

);

Retrieving	Old	Input

To	retrieve	flashed	input	from	the	previous	request,	use	the	old	method	on	the	Request	instance.	The	old	method
will	pull	the	previously	flashed	input	data	from	the	session:

$username	=	$request->old('username');

Laravel	also	provides	a	global	old	helper.	If	you	are	displaying	old	input	within	a	Blade	template,	it	is	more
convenient	to	use	the	old	helper.	If	no	old	input	exists	for	the	given	field,	null	will	be	returned:

<input	type="text"	name="username"	value="{{	old('username')	}}">

Cookies

Laravel	Documentation	-	7.x	/	Requests 108

Retrieving	Cookies	From	Requests

All	cookies	created	by	the	Laravel	framework	are	encrypted	and	signed	with	an	authentication	code,	meaning
they	will	be	considered	invalid	if	they	have	been	changed	by	the	client.	To	retrieve	a	cookie	value	from	the
request,	use	the	cookie	method	on	a	Illuminate\Http\Request	instance:

$value	=	$request->cookie('name');

Alternatively,	you	may	use	the	Cookie	facade	to	access	cookie	values:

use	Illuminate\Support\Facades\Cookie;

$value	=	Cookie::get('name');

Attaching	Cookies	To	Responses

You	may	attach	a	cookie	to	an	outgoing	Illuminate\Http\Response	instance	using	the	cookie	method.	You
should	pass	the	name,	value,	and	number	of	minutes	the	cookie	should	be	considered	valid	to	this	method:

return	response('Hello	World')->cookie(

				'name',	'value',	$minutes

);

The	cookie	method	also	accepts	a	few	more	arguments	which	are	used	less	frequently.	Generally,	these
arguments	have	the	same	purpose	and	meaning	as	the	arguments	that	would	be	given	to	PHP's	native	setcookie
method:

return	response('Hello	World')->cookie(

				'name',	'value',	$minutes,	$path,	$domain,	$secure,	$httpOnly

);

Alternatively,	you	can	use	the	Cookie	facade	to	"queue"	cookies	for	attachment	to	the	outgoing	response	from
your	application.	The	queue	method	accepts	a	Cookie	instance	or	the	arguments	needed	to	create	a	Cookie
instance.	These	cookies	will	be	attached	to	the	outgoing	response	before	it	is	sent	to	the	browser:

Cookie::queue(Cookie::make('name',	'value',	$minutes));

Cookie::queue('name',	'value',	$minutes);

Generating	Cookie	Instances

If	you	would	like	to	generate	a	Symfony\Component\HttpFoundation\Cookie	instance	that	can	be	given	to	a
response	instance	at	a	later	time,	you	may	use	the	global	cookie	helper.	This	cookie	will	not	be	sent	back	to	the
client	unless	it	is	attached	to	a	response	instance:

$cookie	=	cookie('name',	'value',	$minutes);

return	response('Hello	World')->cookie($cookie);

Expiring	Cookies	Early

You	may	remove	a	cookie	by	expiring	it	via	the	forget	method	of	the	Cookie	facade:

Cookie::queue(Cookie::forget('name'));

Alternatively,	you	may	attach	the	expired	cookie	to	a	response	instance:

$cookie	=	Cookie::forget('name');

return	response('Hello	World')->withCookie($cookie);

Files

Retrieving	Uploaded	Files

Laravel	Documentation	-	7.x	/	Requests 109

https://secure.php.net/manual/en/function.setcookie.php

You	may	access	uploaded	files	from	a	Illuminate\Http\Request	instance	using	the	file	method	or	using
dynamic	properties.	The	file	method	returns	an	instance	of	the	Illuminate\Http\UploadedFile	class,	which
extends	the	PHP	SplFileInfo	class	and	provides	a	variety	of	methods	for	interacting	with	the	file:

$file	=	$request->file('photo');

$file	=	$request->photo;

You	may	determine	if	a	file	is	present	on	the	request	using	the	hasFile	method:

if	($request->hasFile('photo'))	{

				//

}

Validating	Successful	Uploads

In	addition	to	checking	if	the	file	is	present,	you	may	verify	that	there	were	no	problems	uploading	the	file	via
the	isValid	method:

if	($request->file('photo')->isValid())	{

				//

}

File	Paths	&	Extensions

The	UploadedFile	class	also	contains	methods	for	accessing	the	file's	fully-qualified	path	and	its	extension.	The	
extension	method	will	attempt	to	guess	the	file's	extension	based	on	its	contents.	This	extension	may	be
different	from	the	extension	that	was	supplied	by	the	client:

$path	=	$request->photo->path();

$extension	=	$request->photo->extension();

Other	File	Methods

There	are	a	variety	of	other	methods	available	on	UploadedFile	instances.	Check	out	the	API	documentation	for
the	class	for	more	information	regarding	these	methods.

Storing	Uploaded	Files

To	store	an	uploaded	file,	you	will	typically	use	one	of	your	configured	filesystems.	The	UploadedFile	class	has
a	store	method	which	will	move	an	uploaded	file	to	one	of	your	disks,	which	may	be	a	location	on	your	local
filesystem	or	even	a	cloud	storage	location	like	Amazon	S3.

The	store	method	accepts	the	path	where	the	file	should	be	stored	relative	to	the	filesystem's	configured	root
directory.	This	path	should	not	contain	a	file	name,	since	a	unique	ID	will	automatically	be	generated	to	serve
as	the	file	name.

The	store	method	also	accepts	an	optional	second	argument	for	the	name	of	the	disk	that	should	be	used	to
store	the	file.	The	method	will	return	the	path	of	the	file	relative	to	the	disk's	root:

$path	=	$request->photo->store('images');

$path	=	$request->photo->store('images',	's3');

If	you	do	not	want	a	file	name	to	be	automatically	generated,	you	may	use	the	storeAs	method,	which	accepts
the	path,	file	name,	and	disk	name	as	its	arguments:

$path	=	$request->photo->storeAs('images',	'filename.jpg');

$path	=	$request->photo->storeAs('images',	'filename.jpg',	's3');

Configuring	Trusted	Proxies

When	running	your	applications	behind	a	load	balancer	that	terminates	TLS	/	SSL	certificates,	you	may	notice

Laravel	Documentation	-	7.x	/	Requests 110

https://api.symfony.com/master/Symfony/Component/HttpFoundation/File/UploadedFile.html

your	application	sometimes	does	not	generate	HTTPS	links.	Typically	this	is	because	your	application	is	being
forwarded	traffic	from	your	load	balancer	on	port	80	and	does	not	know	it	should	generate	secure	links.

To	solve	this,	you	may	use	the	App\Http\Middleware\TrustProxies	middleware	that	is	included	in	your	Laravel
application,	which	allows	you	to	quickly	customize	the	load	balancers	or	proxies	that	should	be	trusted	by	your
application.	Your	trusted	proxies	should	be	listed	as	an	array	on	the	$proxies	property	of	this	middleware.	In
addition	to	configuring	the	trusted	proxies,	you	may	configure	the	proxy	$headers	that	should	be	trusted:

<?php

namespace	App\Http\Middleware;

use	Fideloper\Proxy\TrustProxies	as	Middleware;

use	Illuminate\Http\Request;

class	TrustProxies	extends	Middleware

{

				/**

					*	The	trusted	proxies	for	this	application.

					*

					*	@var	string|array

					*/

				protected	$proxies	=	[

								'192.168.1.1',

								'192.168.1.2',

];

				/**

					*	The	headers	that	should	be	used	to	detect	proxies.

					*

					*	@var	int

					*/

				protected	$headers	=	Request::HEADER_X_FORWARDED_ALL;

}

TIP	If	you	are	using	AWS	Elastic	Load	Balancing,	your	$headers	value	should	be	
Request::HEADER_X_FORWARDED_AWS_ELB.	For	more	information	on	the	constants	that	may	be	used	in	the	
$headers	property,	check	out	Symfony's	documentation	on	trusting	proxies.

Trusting	All	Proxies

If	you	are	using	Amazon	AWS	or	another	"cloud"	load	balancer	provider,	you	may	not	know	the	IP	addresses
of	your	actual	balancers.	In	this	case,	you	may	use	*	to	trust	all	proxies:

/**

	*	The	trusted	proxies	for	this	application.

	*

	*	@var	string|array

	*/

protected	$proxies	=	'*';

Laravel	Documentation	-	7.x	/	Requests 111

https://symfony.com/doc/current/deployment/proxies.html

The	Basics

HTTP	Responses
Creating	Responses

Attaching	Headers	To	Responses
Attaching	Cookies	To	Responses
Cookies	&	Encryption

Redirects
Redirecting	To	Named	Routes
Redirecting	To	Controller	Actions
Redirecting	To	External	Domains
Redirecting	With	Flashed	Session	Data

Other	Response	Types
View	Responses
JSON	Responses
File	Downloads
File	Responses

Response	Macros

Creating	Responses

Strings	&	Arrays

All	routes	and	controllers	should	return	a	response	to	be	sent	back	to	the	user's	browser.	Laravel	provides
several	different	ways	to	return	responses.	The	most	basic	response	is	returning	a	string	from	a	route	or
controller.	The	framework	will	automatically	convert	the	string	into	a	full	HTTP	response:

Route::get('/',	function	()	{

				return	'Hello	World';

});

In	addition	to	returning	strings	from	your	routes	and	controllers,	you	may	also	return	arrays.	The	framework
will	automatically	convert	the	array	into	a	JSON	response:

Route::get('/',	function	()	{

				return	[1,	2,	3];

});

TIP	Did	you	know	you	can	also	return	Eloquent	collections	from	your	routes	or	controllers?	They	will
automatically	be	converted	to	JSON.	Give	it	a	shot!

Response	Objects

Typically,	you	won't	just	be	returning	simple	strings	or	arrays	from	your	route	actions.	Instead,	you	will	be
returning	full	Illuminate\Http\Response	instances	or	views.

Returning	a	full	Response	instance	allows	you	to	customize	the	response's	HTTP	status	code	and	headers.	A	
Response	instance	inherits	from	the	Symfony\Component\HttpFoundation\Response	class,	which	provides	a	variety
of	methods	for	building	HTTP	responses:

Route::get('home',	function	()	{

				return	response('Hello	World',	200)

																		->header('Content-Type',	'text/plain');

});

Attaching	Headers	To	Responses

Keep	in	mind	that	most	response	methods	are	chainable,	allowing	for	the	fluent	construction	of	response
instances.	For	example,	you	may	use	the	header	method	to	add	a	series	of	headers	to	the	response	before
sending	it	back	to	the	user:

Laravel	Documentation	-	7.x	/	Responses 112

return	response($content)

												->header('Content-Type',	$type)

												->header('X-Header-One',	'Header	Value')

												->header('X-Header-Two',	'Header	Value');

Or,	you	may	use	the	withHeaders	method	to	specify	an	array	of	headers	to	be	added	to	the	response:

return	response($content)

												->withHeaders([

																'Content-Type'	=>	$type,

																'X-Header-One'	=>	'Header	Value',

																'X-Header-Two'	=>	'Header	Value',

]);

Cache	Control	Middleware

Laravel	includes	a	cache.headers	middleware,	which	may	be	used	to	quickly	set	the	Cache-Control	header	for	a
group	of	routes.	If	etag	is	specified	in	the	list	of	directives,	an	MD5	hash	of	the	response	content	will
automatically	be	set	as	the	ETag	identifier:

Route::middleware('cache.headers:public;max_age=2628000;etag')->group(function	()	{

				Route::get('privacy',	function	()	{

								//	...

				});

				Route::get('terms',	function	()	{

								//	...

				});

});

Attaching	Cookies	To	Responses

The	cookie	method	on	response	instances	allows	you	to	easily	attach	cookies	to	the	response.	For	example,	you
may	use	the	cookie	method	to	generate	a	cookie	and	fluently	attach	it	to	the	response	instance	like	so:

return	response($content)

																->header('Content-Type',	$type)

																->cookie('name',	'value',	$minutes);

The	cookie	method	also	accepts	a	few	more	arguments	which	are	used	less	frequently.	Generally,	these
arguments	have	the	same	purpose	and	meaning	as	the	arguments	that	would	be	given	to	PHP's	native	setcookie
method:

->cookie($name,	$value,	$minutes,	$path,	$domain,	$secure,	$httpOnly)

Alternatively,	you	can	use	the	Cookie	facade	to	"queue"	cookies	for	attachment	to	the	outgoing	response	from
your	application.	The	queue	method	accepts	a	Cookie	instance	or	the	arguments	needed	to	create	a	Cookie
instance.	These	cookies	will	be	attached	to	the	outgoing	response	before	it	is	sent	to	the	browser:

Cookie::queue(Cookie::make('name',	'value',	$minutes));

Cookie::queue('name',	'value',	$minutes);

Cookies	&	Encryption

By	default,	all	cookies	generated	by	Laravel	are	encrypted	and	signed	so	that	they	can't	be	modified	or	read	by
the	client.	If	you	would	like	to	disable	encryption	for	a	subset	of	cookies	generated	by	your	application,	you
may	use	the	$except	property	of	the	App\Http\Middleware\EncryptCookies	middleware,	which	is	located	in	the	
app/Http/Middleware	directory:

/**

	*	The	names	of	the	cookies	that	should	not	be	encrypted.

	*

	*	@var	array

	*/

protected	$except	=	[

				'cookie_name',

];

Laravel	Documentation	-	7.x	/	Responses 113

https://secure.php.net/manual/en/function.setcookie.php

Redirects

Redirect	responses	are	instances	of	the	Illuminate\Http\RedirectResponse	class,	and	contain	the	proper	headers
needed	to	redirect	the	user	to	another	URL.	There	are	several	ways	to	generate	a	RedirectResponse	instance.	The
simplest	method	is	to	use	the	global	redirect	helper:

Route::get('dashboard',	function	()	{

				return	redirect('home/dashboard');

});

Sometimes	you	may	wish	to	redirect	the	user	to	their	previous	location,	such	as	when	a	submitted	form	is
invalid.	You	may	do	so	by	using	the	global	back	helper	function.	Since	this	feature	utilizes	the	session,	make
sure	the	route	calling	the	back	function	is	using	the	web	middleware	group	or	has	all	of	the	session	middleware
applied:

Route::post('user/profile',	function	()	{

				//	Validate	the	request...

				return	back()->withInput();

});

Redirecting	To	Named	Routes

When	you	call	the	redirect	helper	with	no	parameters,	an	instance	of	Illuminate\Routing\Redirector	is
returned,	allowing	you	to	call	any	method	on	the	Redirector	instance.	For	example,	to	generate	a	
RedirectResponse	to	a	named	route,	you	may	use	the	route	method:

return	redirect()->route('login');

If	your	route	has	parameters,	you	may	pass	them	as	the	second	argument	to	the	route	method:

//	For	a	route	with	the	following	URI:	profile/{id}

return	redirect()->route('profile',	['id'	=>	1]);

Populating	Parameters	Via	Eloquent	Models

If	you	are	redirecting	to	a	route	with	an	"ID"	parameter	that	is	being	populated	from	an	Eloquent	model,	you
may	pass	the	model	itself.	The	ID	will	be	extracted	automatically:

//	For	a	route	with	the	following	URI:	profile/{id}

return	redirect()->route('profile',	[$user]);

If	you	would	like	to	customize	the	value	that	is	placed	in	the	route	parameter,	you	can	specify	the	column	in	the
route	parameter	definition	(profile/{id:slug})	or	you	can	override	the	getRouteKey	method	on	your	Eloquent
model:

/**

	*	Get	the	value	of	the	model's	route	key.

	*

	*	@return	mixed

	*/

public	function	getRouteKey()

{

				return	$this->slug;

}

Redirecting	To	Controller	Actions

You	may	also	generate	redirects	to	controller	actions.	To	do	so,	pass	the	controller	and	action	name	to	the	
action	method.	Remember,	you	do	not	need	to	specify	the	full	namespace	to	the	controller	since	Laravel's	
RouteServiceProvider	will	automatically	set	the	base	controller	namespace:

return	redirect()->action('HomeController@index');

If	your	controller	route	requires	parameters,	you	may	pass	them	as	the	second	argument	to	the	action	method:

Laravel	Documentation	-	7.x	/	Responses 114

return	redirect()->action(

				'UserController@profile',	['id'	=>	1]

);

Redirecting	To	External	Domains

Sometimes	you	may	need	to	redirect	to	a	domain	outside	of	your	application.	You	may	do	so	by	calling	the	away
method,	which	creates	a	RedirectResponse	without	any	additional	URL	encoding,	validation,	or	verification:

return	redirect()->away('https://www.google.com');

Redirecting	With	Flashed	Session	Data

Redirecting	to	a	new	URL	and	flashing	data	to	the	session	are	usually	done	at	the	same	time.	Typically,	this	is
done	after	successfully	performing	an	action	when	you	flash	a	success	message	to	the	session.	For	convenience,
you	may	create	a	RedirectResponse	instance	and	flash	data	to	the	session	in	a	single,	fluent	method	chain:

Route::post('user/profile',	function	()	{

				//	Update	the	user's	profile...

				return	redirect('dashboard')->with('status',	'Profile	updated!');

});

After	the	user	is	redirected,	you	may	display	the	flashed	message	from	the	session.	For	example,	using	Blade
syntax:

@if	(session('status'))

				<div	class="alert	alert-success">

								{{	session('status')	}}

				</div>

@endif

Other	Response	Types

The	response	helper	may	be	used	to	generate	other	types	of	response	instances.	When	the	response	helper	is
called	without	arguments,	an	implementation	of	the	Illuminate\Contracts\Routing\ResponseFactory	contract	is
returned.	This	contract	provides	several	helpful	methods	for	generating	responses.

View	Responses

If	you	need	control	over	the	response's	status	and	headers	but	also	need	to	return	a	view	as	the	response's
content,	you	should	use	the	view	method:

return	response()

												->view('hello',	$data,	200)

												->header('Content-Type',	$type);

Of	course,	if	you	do	not	need	to	pass	a	custom	HTTP	status	code	or	custom	headers,	you	should	use	the	global	
view	helper	function.

JSON	Responses

The	json	method	will	automatically	set	the	Content-Type	header	to	application/json,	as	well	as	convert	the
given	array	to	JSON	using	the	json_encode	PHP	function:

return	response()->json([

				'name'	=>	'Abigail',

				'state'	=>	'CA',

]);

If	you	would	like	to	create	a	JSONP	response,	you	may	use	the	json	method	in	combination	with	the	
withCallback	method:

return	response()

												->json(['name'	=>	'Abigail',	'state'	=>	'CA'])

												->withCallback($request->input('callback'));

Laravel	Documentation	-	7.x	/	Responses 115

File	Downloads

The	download	method	may	be	used	to	generate	a	response	that	forces	the	user's	browser	to	download	the	file	at
the	given	path.	The	download	method	accepts	a	file	name	as	the	second	argument	to	the	method,	which	will
determine	the	file	name	that	is	seen	by	the	user	downloading	the	file.	Finally,	you	may	pass	an	array	of	HTTP
headers	as	the	third	argument	to	the	method:

return	response()->download($pathToFile);

return	response()->download($pathToFile,	$name,	$headers);

return	response()->download($pathToFile)->deleteFileAfterSend();

NOTE	Symfony	HttpFoundation,	which	manages	file	downloads,	requires	the	file	being	downloaded	to
have	an	ASCII	file	name.

Streamed	Downloads

Sometimes	you	may	wish	to	turn	the	string	response	of	a	given	operation	into	a	downloadable	response	without
having	to	write	the	contents	of	the	operation	to	disk.	You	may	use	the	streamDownload	method	in	this	scenario.
This	method	accepts	a	callback,	file	name,	and	an	optional	array	of	headers	as	its	arguments:

return	response()->streamDownload(function	()	{

				echo	GitHub::api('repo')

																->contents()

																->readme('laravel',	'laravel')['contents'];

},	'laravel-readme.md');

File	Responses

The	file	method	may	be	used	to	display	a	file,	such	as	an	image	or	PDF,	directly	in	the	user's	browser	instead
of	initiating	a	download.	This	method	accepts	the	path	to	the	file	as	its	first	argument	and	an	array	of	headers	as
its	second	argument:

return	response()->file($pathToFile);

return	response()->file($pathToFile,	$headers);

Response	Macros

If	you	would	like	to	define	a	custom	response	that	you	can	re-use	in	a	variety	of	your	routes	and	controllers,
you	may	use	the	macro	method	on	the	Response	facade.	For	example,	from	a	service	provider's	boot	method:

<?php

namespace	App\Providers;

use	Illuminate\Support\Facades\Response;

use	Illuminate\Support\ServiceProvider;

class	ResponseMacroServiceProvider	extends	ServiceProvider

{

				/**

					*	Register	the	application's	response	macros.

					*

					*	@return	void

					*/

				public	function	boot()

				{

								Response::macro('caps',	function	($value)	{

												return	Response::make(strtoupper($value));

								});

				}

}

The	macro	function	accepts	a	name	as	its	first	argument,	and	a	Closure	as	its	second.	The	macro's	Closure	will
be	executed	when	calling	the	macro	name	from	a	ResponseFactory	implementation	or	the	response	helper:

return	response()->caps('foo');

Laravel	Documentation	-	7.x	/	Responses 116

The	Basics

Views
Creating	Views
Passing	Data	To	Views

Sharing	Data	With	All	Views
View	Composers
Optimizing	Views

Creating	Views

TIP	Looking	for	more	information	on	how	to	write	Blade	templates?	Check	out	the	full	Blade
documentation	to	get	started.

Views	contain	the	HTML	served	by	your	application	and	separate	your	controller	/	application	logic	from	your
presentation	logic.	Views	are	stored	in	the	resources/views	directory.	A	simple	view	might	look	something	like
this:

<!--	View	stored	in	resources/views/greeting.blade.php	-->

<html>

				<body>

								<h1>Hello,	{{	$name	}}</h1>

				</body>

</html>

Since	this	view	is	stored	at	resources/views/greeting.blade.php,	we	may	return	it	using	the	global	view	helper
like	so:

Route::get('/',	function	()	{

				return	view('greeting',	['name'	=>	'James']);

});

As	you	can	see,	the	first	argument	passed	to	the	view	helper	corresponds	to	the	name	of	the	view	file	in	the	
resources/views	directory.	The	second	argument	is	an	array	of	data	that	should	be	made	available	to	the	view.	In
this	case,	we	are	passing	the	name	variable,	which	is	displayed	in	the	view	using	Blade	syntax.

Views	may	also	be	nested	within	subdirectories	of	the	resources/views	directory.	"Dot"	notation	may	be	used	to
reference	nested	views.	For	example,	if	your	view	is	stored	at	resources/views/admin/profile.blade.php,	you
may	reference	it	like	so:

return	view('admin.profile',	$data);

NOTE	View	directory	names	should	not	contain	the	.	character.

Determining	If	A	View	Exists

If	you	need	to	determine	if	a	view	exists,	you	may	use	the	View	facade.	The	exists	method	will	return	true	if	the
view	exists:

use	Illuminate\Support\Facades\View;

if	(View::exists('emails.customer'))	{

				//

}

Creating	The	First	Available	View

Using	the	first	method,	you	may	create	the	first	view	that	exists	in	a	given	array	of	views.	This	is	useful	if
your	application	or	package	allows	views	to	be	customized	or	overwritten:

return	view()->first(['custom.admin',	'admin'],	$data);

Laravel	Documentation	-	7.x	/	Views 117

You	may	also	call	this	method	via	the	View	facade:

use	Illuminate\Support\Facades\View;

return	View::first(['custom.admin',	'admin'],	$data);

Passing	Data	To	Views

As	you	saw	in	the	previous	examples,	you	may	pass	an	array	of	data	to	views:

return	view('greetings',	['name'	=>	'Victoria']);

When	passing	information	in	this	manner,	the	data	should	be	an	array	with	key	/	value	pairs.	Inside	your	view,
you	can	then	access	each	value	using	its	corresponding	key,	such	as	<?php	echo	$key;	?>.	As	an	alternative	to
passing	a	complete	array	of	data	to	the	view	helper	function,	you	may	use	the	with	method	to	add	individual
pieces	of	data	to	the	view:

return	view('greeting')->with('name',	'Victoria');

Sharing	Data	With	All	Views

Occasionally,	you	may	need	to	share	a	piece	of	data	with	all	views	that	are	rendered	by	your	application.	You
may	do	so	using	the	view	facade's	share	method.	Typically,	you	should	place	calls	to	share	within	a	service
provider's	boot	method.	You	are	free	to	add	them	to	the	AppServiceProvider	or	generate	a	separate	service
provider	to	house	them:

<?php

namespace	App\Providers;

use	Illuminate\Support\Facades\View;

class	AppServiceProvider	extends	ServiceProvider

{

				/**

					*	Register	any	application	services.

					*

					*	@return	void

					*/

				public	function	register()

				{

								//

				}

				/**

					*	Bootstrap	any	application	services.

					*

					*	@return	void

					*/

				public	function	boot()

				{

								View::share('key',	'value');

				}

}

View	Composers

View	composers	are	callbacks	or	class	methods	that	are	called	when	a	view	is	rendered.	If	you	have	data	that
you	want	to	be	bound	to	a	view	each	time	that	view	is	rendered,	a	view	composer	can	help	you	organize	that
logic	into	a	single	location.

For	this	example,	let's	register	the	view	composers	within	a	service	provider.	We'll	use	the	View	facade	to	access
the	underlying	Illuminate\Contracts\View\Factory	contract	implementation.	Remember,	Laravel	does	not
include	a	default	directory	for	view	composers.	You	are	free	to	organize	them	however	you	wish.	For	example,
you	could	create	an	app/Http/View/Composers	directory:

<?php

namespace	App\Providers;

Laravel	Documentation	-	7.x	/	Views 118

use	Illuminate\Support\Facades\View;

use	Illuminate\Support\ServiceProvider;

class	ViewServiceProvider	extends	ServiceProvider

{

				/**

					*	Register	any	application	services.

					*

					*	@return	void

					*/

				public	function	register()

				{

								//

				}

				/**

					*	Bootstrap	any	application	services.

					*

					*	@return	void

					*/

				public	function	boot()

				{

								//	Using	class	based	composers...

								View::composer(

												'profile',	'App\Http\View\Composers\ProfileComposer'

);

								//	Using	Closure	based	composers...

								View::composer('dashboard',	function	($view)	{

												//

								});

				}

}

NOTE	Remember,	if	you	create	a	new	service	provider	to	contain	your	view	composer	registrations,	you
will	need	to	add	the	service	provider	to	the	providers	array	in	the	config/app.php	configuration	file.

Now	that	we	have	registered	the	composer,	the	ProfileComposer@compose	method	will	be	executed	each	time	the	
profile	view	is	being	rendered.	So,	let's	define	the	composer	class:

<?php

namespace	App\Http\View\Composers;

use	App\Repositories\UserRepository;

use	Illuminate\View\View;

class	ProfileComposer

{

				/**

					*	The	user	repository	implementation.

					*

					*	@var	UserRepository

					*/

				protected	$users;

				/**

					*	Create	a	new	profile	composer.

					*

					*	@param		UserRepository		$users

					*	@return	void

					*/

				public	function	__construct(UserRepository	$users)

				{

								//	Dependencies	automatically	resolved	by	service	container...

								$this->users	=	$users;

				}

				/**

					*	Bind	data	to	the	view.

					*

					*	@param		View		$view

					*	@return	void

					*/

				public	function	compose(View	$view)

				{

								$view->with('count',	$this->users->count());

				}

Laravel	Documentation	-	7.x	/	Views 119

}

Just	before	the	view	is	rendered,	the	composer's	compose	method	is	called	with	the	Illuminate\View\View
instance.	You	may	use	the	with	method	to	bind	data	to	the	view.

TIP	All	view	composers	are	resolved	via	the	service	container,	so	you	may	type-hint	any	dependencies	you
need	within	a	composer's	constructor.

Attaching	A	Composer	To	Multiple	Views

You	may	attach	a	view	composer	to	multiple	views	at	once	by	passing	an	array	of	views	as	the	first	argument	to
the	composer	method:

View::composer(

				['profile',	'dashboard'],

				'App\Http\View\Composers\MyViewComposer'

);

The	composer	method	also	accepts	the	*	character	as	a	wildcard,	allowing	you	to	attach	a	composer	to	all	views:

View::composer('*',	function	($view)	{

				//

});

View	Creators

View	creators	are	very	similar	to	view	composers;	however,	they	are	executed	immediately	after	the	view	is
instantiated	instead	of	waiting	until	the	view	is	about	to	render.	To	register	a	view	creator,	use	the	creator
method:

View::creator('profile',	'App\Http\View\Creators\ProfileCreator');

Optimizing	Views

By	default,	views	are	compiled	on	demand.	When	a	request	is	executed	that	renders	a	view,	Laravel	will
determine	if	a	compiled	version	of	the	view	exists.	If	the	file	exists,	Laravel	will	then	determine	if	the
uncompiled	view	has	been	modified	more	recently	than	the	compiled	view.	If	the	compiled	view	either	does	not
exist,	or	the	uncompiled	view	has	been	modified,	Laravel	will	recompile	the	view.

Compiling	views	during	the	request	negatively	impacts	performance,	so	Laravel	provides	the	view:cache
Artisan	command	to	precompile	all	of	the	views	utilized	by	your	application.	For	increased	performance,	you
may	wish	to	run	this	command	as	part	of	your	deployment	process:

php	artisan	view:cache

You	may	use	the	view:clear	command	to	clear	the	view	cache:

php	artisan	view:clear

Laravel	Documentation	-	7.x	/	Views 120

The	Basics

URL	Generation
Introduction
The	Basics

Generating	Basic	URLs
Accessing	The	Current	URL

URLs	For	Named	Routes
Signed	URLs

URLs	For	Controller	Actions
Default	Values

Introduction

Laravel	provides	several	helpers	to	assist	you	in	generating	URLs	for	your	application.	These	are	mainly
helpful	when	building	links	in	your	templates	and	API	responses,	or	when	generating	redirect	responses	to
another	part	of	your	application.

The	Basics

Generating	Basic	URLs

The	url	helper	may	be	used	to	generate	arbitrary	URLs	for	your	application.	The	generated	URL	will
automatically	use	the	scheme	(HTTP	or	HTTPS)	and	host	from	the	current	request:

$post	=	App\Post::find(1);

echo	url("/posts/{$post->id}");

//	http://example.com/posts/1

Accessing	The	Current	URL

If	no	path	is	provided	to	the	url	helper,	a	Illuminate\Routing\UrlGenerator	instance	is	returned,	allowing	you	to
access	information	about	the	current	URL:

//	Get	the	current	URL	without	the	query	string...

echo	url()->current();

//	Get	the	current	URL	including	the	query	string...

echo	url()->full();

//	Get	the	full	URL	for	the	previous	request...

echo	url()->previous();

Each	of	these	methods	may	also	be	accessed	via	the	URL	facade:

use	Illuminate\Support\Facades\URL;

echo	URL::current();

URLs	For	Named	Routes

The	route	helper	may	be	used	to	generate	URLs	to	named	routes.	Named	routes	allow	you	to	generate	URLs
without	being	coupled	to	the	actual	URL	defined	on	the	route.	Therefore,	if	the	route's	URL	changes,	no
changes	need	to	be	made	to	your	route	function	calls.	For	example,	imagine	your	application	contains	a	route
defined	like	the	following:

Route::get('/post/{post}',	function	()	{

				//

})->name('post.show');

Laravel	Documentation	-	7.x	/	URL	Generation 121

To	generate	a	URL	to	this	route,	you	may	use	the	route	helper	like	so:

echo	route('post.show',	['post'	=>	1]);

//	http://example.com/post/1

You	will	often	be	generating	URLs	using	the	primary	key	of	Eloquent	models.	For	this	reason,	you	may	pass
Eloquent	models	as	parameter	values.	The	route	helper	will	automatically	extract	the	model's	primary	key:

echo	route('post.show',	['post'	=>	$post]);

The	route	helper	may	also	be	used	to	generate	URLs	for	routes	with	multiple	parameters:

Route::get('/post/{post}/comment/{comment}',	function	()	{

				//

})->name('comment.show');

echo	route('comment.show',	['post'	=>	1,	'comment'	=>	3]);

//	http://example.com/post/1/comment/3

Signed	URLs

Laravel	allows	you	to	easily	create	"signed"	URLs	to	named	routes.	These	URLs	have	a	"signature"	hash
appended	to	the	query	string	which	allows	Laravel	to	verify	that	the	URL	has	not	been	modified	since	it	was
created.	Signed	URLs	are	especially	useful	for	routes	that	are	publicly	accessible	yet	need	a	layer	of	protection
against	URL	manipulation.

For	example,	you	might	use	signed	URLs	to	implement	a	public	"unsubscribe"	link	that	is	emailed	to	your
customers.	To	create	a	signed	URL	to	a	named	route,	use	the	signedRoute	method	of	the	URL	facade:

use	Illuminate\Support\Facades\URL;

return	URL::signedRoute('unsubscribe',	['user'	=>	1]);

If	you	would	like	to	generate	a	temporary	signed	route	URL	that	expires,	you	may	use	the	temporarySignedRoute
method:

use	Illuminate\Support\Facades\URL;

return	URL::temporarySignedRoute(

				'unsubscribe',	now()->addMinutes(30),	['user'	=>	1]

);

Validating	Signed	Route	Requests

To	verify	that	an	incoming	request	has	a	valid	signature,	you	should	call	the	hasValidSignature	method	on	the
incoming	Request:

use	Illuminate\Http\Request;

Route::get('/unsubscribe/{user}',	function	(Request	$request)	{

				if	(!	$request->hasValidSignature())	{

								abort(401);

				}

				//	...

})->name('unsubscribe');

Alternatively,	you	may	assign	the	Illuminate\Routing\Middleware\ValidateSignature	middleware	to	the	route.	If
it	is	not	already	present,	you	should	assign	this	middleware	a	key	in	your	HTTP	kernel's	routeMiddleware	array:

/**

	*	The	application's	route	middleware.

	*

	*	These	middleware	may	be	assigned	to	groups	or	used	individually.

	*

	*	@var	array

	*/

protected	$routeMiddleware	=	[

				'signed'	=>	\Illuminate\Routing\Middleware\ValidateSignature::class,

Laravel	Documentation	-	7.x	/	URL	Generation 122

];

Once	you	have	registered	the	middleware	in	your	kernel,	you	may	attach	it	to	a	route.	If	the	incoming	request
does	not	have	a	valid	signature,	the	middleware	will	automatically	return	a	403	error	response:

Route::post('/unsubscribe/{user}',	function	(Request	$request)	{

				//	...

})->name('unsubscribe')->middleware('signed');

URLs	For	Controller	Actions

The	action	function	generates	a	URL	for	the	given	controller	action.	You	do	not	need	to	pass	the	full
namespace	of	the	controller.	Instead,	pass	the	controller	class	name	relative	to	the	App\Http\Controllers
namespace:

$url	=	action('HomeController@index');

You	may	also	reference	actions	with	a	"callable"	array	syntax:

use	App\Http\Controllers\HomeController;

$url	=	action([HomeController::class,	'index']);

If	the	controller	method	accepts	route	parameters,	you	may	pass	them	as	the	second	argument	to	the	function:

$url	=	action('UserController@profile',	['id'	=>	1]);

Default	Values

For	some	applications,	you	may	wish	to	specify	request-wide	default	values	for	certain	URL	parameters.	For
example,	imagine	many	of	your	routes	define	a	{locale}	parameter:

Route::get('/{locale}/posts',	function	()	{

				//

})->name('post.index');

It	is	cumbersome	to	always	pass	the	locale	every	time	you	call	the	route	helper.	So,	you	may	use	the	
URL::defaults	method	to	define	a	default	value	for	this	parameter	that	will	always	be	applied	during	the	current
request.	You	may	wish	to	call	this	method	from	a	route	middleware	so	that	you	have	access	to	the	current
request:

<?php

namespace	App\Http\Middleware;

use	Closure;

use	Illuminate\Support\Facades\URL;

class	SetDefaultLocaleForUrls

{

				public	function	handle($request,	Closure	$next)

				{

								URL::defaults(['locale'	=>	$request->user()->locale]);

								return	$next($request);

				}

}

Once	the	default	value	for	the	locale	parameter	has	been	set,	you	are	no	longer	required	to	pass	its	value	when
generating	URLs	via	the	route	helper.

Laravel	Documentation	-	7.x	/	URL	Generation 123

The	Basics

HTTP	Session
Introduction

Configuration
Driver	Prerequisites

Using	The	Session
Retrieving	Data
Storing	Data
Flash	Data
Deleting	Data
Regenerating	The	Session	ID

Session	Blocking
Adding	Custom	Session	Drivers

Implementing	The	Driver
Registering	The	Driver

Introduction

Since	HTTP	driven	applications	are	stateless,	sessions	provide	a	way	to	store	information	about	the	user	across
multiple	requests.	Laravel	ships	with	a	variety	of	session	backends	that	are	accessed	through	an	expressive,
unified	API.	Support	for	popular	backends	such	as	Memcached,	Redis,	and	databases	is	included	out	of	the
box.

Configuration

The	session	configuration	file	is	stored	at	config/session.php.	Be	sure	to	review	the	options	available	to	you	in
this	file.	By	default,	Laravel	is	configured	to	use	the	file	session	driver,	which	will	work	well	for	many
applications.

The	session	driver	configuration	option	defines	where	session	data	will	be	stored	for	each	request.	Laravel
ships	with	several	great	drivers	out	of	the	box:

file	-	sessions	are	stored	in	storage/framework/sessions.
cookie	-	sessions	are	stored	in	secure,	encrypted	cookies.
database	-	sessions	are	stored	in	a	relational	database.
memcached	/	redis	-	sessions	are	stored	in	one	of	these	fast,	cache	based	stores.
array	-	sessions	are	stored	in	a	PHP	array	and	will	not	be	persisted.

TIP	The	array	driver	is	used	during	testing	and	prevents	the	data	stored	in	the	session	from	being	persisted.

Driver	Prerequisites

Database

When	using	the	database	session	driver,	you	will	need	to	create	a	table	to	contain	the	session	items.	Below	is	an
example	Schema	declaration	for	the	table:

Schema::create('sessions',	function	($table)	{

				$table->string('id')->unique();

				$table->foreignId('user_id')->nullable();

				$table->string('ip_address',	45)->nullable();

				$table->text('user_agent')->nullable();

				$table->text('payload');

				$table->integer('last_activity');

});

You	may	use	the	session:table	Artisan	command	to	generate	this	migration:

php	artisan	session:table

Laravel	Documentation	-	7.x	/	Session 124

https://memcached.org
https://redis.io

php	artisan	migrate

Redis

Before	using	Redis	sessions	with	Laravel,	you	will	need	to	either	install	the	PhpRedis	PHP	extension	via	PECL
or	install	the	predis/predis	package	(~1.0)	via	Composer.	For	more	information	on	configuring	Redis,	consult
its	Laravel	documentation	page.

TIP	In	the	session	configuration	file,	the	connection	option	may	be	used	to	specify	which	Redis	connection
is	used	by	the	session.

Using	The	Session

Retrieving	Data

There	are	two	primary	ways	of	working	with	session	data	in	Laravel:	the	global	session	helper	and	via	a	
Request	instance.	First,	let's	look	at	accessing	the	session	via	a	Request	instance,	which	can	be	type-hinted	on	a
controller	method.	Remember,	controller	method	dependencies	are	automatically	injected	via	the	Laravel
service	container:

<?php

namespace	App\Http\Controllers;

use	App\Http\Controllers\Controller;

use	Illuminate\Http\Request;

class	UserController	extends	Controller

{

				/**

					*	Show	the	profile	for	the	given	user.

					*

					*	@param		Request		$request

					*	@param		int		$id

					*	@return	Response

					*/

				public	function	show(Request	$request,	$id)

				{

								$value	=	$request->session()->get('key');

								//

				}

}

When	you	retrieve	an	item	from	the	session,	you	may	also	pass	a	default	value	as	the	second	argument	to	the	
get	method.	This	default	value	will	be	returned	if	the	specified	key	does	not	exist	in	the	session.	If	you	pass	a	
Closure	as	the	default	value	to	the	get	method	and	the	requested	key	does	not	exist,	the	Closure	will	be	executed
and	its	result	returned:

$value	=	$request->session()->get('key',	'default');

$value	=	$request->session()->get('key',	function	()	{

				return	'default';

});

The	Global	Session	Helper

You	may	also	use	the	global	session	PHP	function	to	retrieve	and	store	data	in	the	session.	When	the	session
helper	is	called	with	a	single,	string	argument,	it	will	return	the	value	of	that	session	key.	When	the	helper	is
called	with	an	array	of	key	/	value	pairs,	those	values	will	be	stored	in	the	session:

Route::get('home',	function	()	{

				//	Retrieve	a	piece	of	data	from	the	session...

				$value	=	session('key');

				//	Specifying	a	default	value...

				$value	=	session('key',	'default');

Laravel	Documentation	-	7.x	/	Session 125

				//	Store	a	piece	of	data	in	the	session...

				session(['key'	=>	'value']);

});

TIP	There	is	little	practical	difference	between	using	the	session	via	an	HTTP	request	instance	versus	using
the	global	session	helper.	Both	methods	are	testable	via	the	assertSessionHas	method	which	is	available	in
all	of	your	test	cases.

Retrieving	All	Session	Data

If	you	would	like	to	retrieve	all	the	data	in	the	session,	you	may	use	the	all	method:

$data	=	$request->session()->all();

Determining	If	An	Item	Exists	In	The	Session

To	determine	if	an	item	is	present	in	the	session,	you	may	use	the	has	method.	The	has	method	returns	true	if
the	item	is	present	and	is	not	null:

if	($request->session()->has('users'))	{

				//

}

To	determine	if	an	item	is	present	in	the	session,	even	if	its	value	is	null,	you	may	use	the	exists	method.	The	
exists	method	returns	true	if	the	item	is	present:

if	($request->session()->exists('users'))	{

				//

}

Storing	Data

To	store	data	in	the	session,	you	will	typically	use	the	put	method	or	the	session	helper:

//	Via	a	request	instance...

$request->session()->put('key',	'value');

//	Via	the	global	helper...

session(['key'	=>	'value']);

Pushing	To	Array	Session	Values

The	push	method	may	be	used	to	push	a	new	value	onto	a	session	value	that	is	an	array.	For	example,	if	the	
user.teams	key	contains	an	array	of	team	names,	you	may	push	a	new	value	onto	the	array	like	so:

$request->session()->push('user.teams',	'developers');

Retrieving	&	Deleting	An	Item

The	pull	method	will	retrieve	and	delete	an	item	from	the	session	in	a	single	statement:

$value	=	$request->session()->pull('key',	'default');

Flash	Data

Sometimes	you	may	wish	to	store	items	in	the	session	only	for	the	next	request.	You	may	do	so	using	the	flash
method.	Data	stored	in	the	session	using	this	method	will	be	available	immediately	and	during	the	subsequent
HTTP	request.	After	the	subsequent	HTTP	request,	the	flashed	data	will	be	deleted.	Flash	data	is	primarily
useful	for	short-lived	status	messages:

$request->session()->flash('status',	'Task	was	successful!');

If	you	need	to	keep	your	flash	data	around	for	several	requests,	you	may	use	the	reflash	method,	which	will
keep	all	of	the	flash	data	for	an	additional	request.	If	you	only	need	to	keep	specific	flash	data,	you	may	use	the	
keep	method:

Laravel	Documentation	-	7.x	/	Session 126

$request->session()->reflash();

$request->session()->keep(['username',	'email']);

Deleting	Data

The	forget	method	will	remove	a	piece	of	data	from	the	session.	If	you	would	like	to	remove	all	data	from	the
session,	you	may	use	the	flush	method:

//	Forget	a	single	key...

$request->session()->forget('key');

//	Forget	multiple	keys...

$request->session()->forget(['key1',	'key2']);

$request->session()->flush();

Regenerating	The	Session	ID

Regenerating	the	session	ID	is	often	done	in	order	to	prevent	malicious	users	from	exploiting	a	session	fixation
attack	on	your	application.

Laravel	automatically	regenerates	the	session	ID	during	authentication	if	you	are	using	the	built-in	
LoginController;	however,	if	you	need	to	manually	regenerate	the	session	ID,	you	may	use	the	regenerate
method.

$request->session()->regenerate();

Session	Blocking

NOTE	To	utilize	session	blocking,	your	application	must	be	using	a	cache	driver	that	supports	atomic
locks.	Currently,	those	cache	drivers	include	the	memcached,	dynamodb,	redis,	and	database	drivers.	In
addition,	you	may	not	use	the	cookie	session	driver.

By	default,	Laravel	allows	requests	using	the	same	session	to	execute	concurrently.	So,	for	example,	if	you	use
a	JavaScript	HTTP	library	to	make	two	HTTP	requests	to	your	application,	they	will	both	execute	at	the	same
time.	For	many	applications,	this	is	not	a	problem;	however,	session	data	loss	can	occur	in	a	small	subset	of
applications	that	make	concurrent	requests	to	two	different	application	endpoints	which	both	write	data	to	the
session.

To	mitigate	this,	Laravel	provides	functionality	that	allows	you	to	limit	concurrent	requests	for	a	given	session.
To	get	started,	you	may	simply	chain	the	block	method	onto	your	route	definition.	In	this	example,	an	incoming
request	to	the	/profile	endpoint	would	acquire	a	session	lock.	While	this	lock	is	being	held,	any	incoming
requests	to	the	/profile	or	/order	endpoints	which	share	the	same	session	ID	will	wait	for	the	first	request	to
finish	executing	before	continuing	their	execution:

Route::post('/profile',	function	()	{

				//

})->block($lockSeconds	=	10,	$waitSeconds	=	10)

Route::post('/order',	function	()	{

				//

})->block($lockSeconds	=	10,	$waitSeconds	=	10)

The	block	method	accepts	two	optional	arguments.	The	first	argument	accepted	by	the	block	method	is	the
maximum	number	of	seconds	the	session	lock	should	be	held	for	before	it	is	released.	Of	course,	if	the	request
finishes	executing	before	this	time	the	lock	will	be	released	earlier.

The	second	argument	accepted	by	the	block	method	is	the	number	of	seconds	a	request	should	wait	while
attempting	to	obtain	a	session	lock.	A	Illuminate\Contracts\Cache\LockTimeoutException	will	be	thrown	if	the
request	is	unable	to	obtain	a	session	lock	within	the	given	number	of	seconds.

If	neither	of	these	arguments	are	passed,	the	lock	will	be	obtained	for	a	maximum	of	10	seconds	and	requests
will	wait	a	maximum	of	10	seconds	while	attempting	to	obtain	a	lock:

Laravel	Documentation	-	7.x	/	Session 127

https://owasp.org/www-community/attacks/Session_fixation

Route::post('/profile',	function	()	{

				//

})->block()

Adding	Custom	Session	Drivers

Implementing	The	Driver

Your	custom	session	driver	should	implement	the	SessionHandlerInterface.	This	interface	contains	just	a	few
simple	methods	we	need	to	implement.	A	stubbed	MongoDB	implementation	looks	something	like	this:

<?php

namespace	App\Extensions;

class	MongoSessionHandler	implements	\SessionHandlerInterface

{

				public	function	open($savePath,	$sessionName)	{}

				public	function	close()	{}

				public	function	read($sessionId)	{}

				public	function	write($sessionId,	$data)	{}

				public	function	destroy($sessionId)	{}

				public	function	gc($lifetime)	{}

}

TIP	Laravel	does	not	ship	with	a	directory	to	contain	your	extensions.	You	are	free	to	place	them	anywhere
you	like.	In	this	example,	we	have	created	an	Extensions	directory	to	house	the	MongoSessionHandler.

Since	the	purpose	of	these	methods	is	not	readily	understandable,	let's	quickly	cover	what	each	of	the	methods
do:

The	open	method	would	typically	be	used	in	file	based	session	store	systems.	Since	Laravel	ships	with	a	
file	session	driver,	you	will	almost	never	need	to	put	anything	in	this	method.	You	can	leave	it	as	an
empty	stub.	It	is	a	fact	of	poor	interface	design	(which	we'll	discuss	later)	that	PHP	requires	us	to
implement	this	method.
The	close	method,	like	the	open	method,	can	also	usually	be	disregarded.	For	most	drivers,	it	is	not
needed.
The	read	method	should	return	the	string	version	of	the	session	data	associated	with	the	given	
$sessionId.	There	is	no	need	to	do	any	serialization	or	other	encoding	when	retrieving	or	storing	session
data	in	your	driver,	as	Laravel	will	perform	the	serialization	for	you.
The	write	method	should	write	the	given	$data	string	associated	with	the	$sessionId	to	some	persistent
storage	system,	such	as	MongoDB,	Dynamo,	etc.	Again,	you	should	not	perform	any	serialization	-
Laravel	will	have	already	handled	that	for	you.
The	destroy	method	should	remove	the	data	associated	with	the	$sessionId	from	persistent	storage.
The	gc	method	should	destroy	all	session	data	that	is	older	than	the	given	$lifetime,	which	is	a	UNIX
timestamp.	For	self-expiring	systems	like	Memcached	and	Redis,	this	method	may	be	left	empty.

Registering	The	Driver

Once	your	driver	has	been	implemented,	you	are	ready	to	register	it	with	the	framework.	To	add	additional
drivers	to	Laravel's	session	backend,	you	may	use	the	extend	method	on	the	Session	facade.	You	should	call	the	
extend	method	from	the	boot	method	of	a	service	provider.	You	may	do	this	from	the	existing	
AppServiceProvider	or	create	an	entirely	new	provider:

<?php

namespace	App\Providers;

use	App\Extensions\MongoSessionHandler;

use	Illuminate\Support\Facades\Session;

use	Illuminate\Support\ServiceProvider;

class	SessionServiceProvider	extends	ServiceProvider

{

				/**

					*	Register	any	application	services.

					*

Laravel	Documentation	-	7.x	/	Session 128

					*	@return	void

					*/

				public	function	register()

				{

								//

				}

				/**

					*	Bootstrap	any	application	services.

					*

					*	@return	void

					*/

				public	function	boot()

				{

								Session::extend('mongo',	function	($app)	{

												//	Return	implementation	of	SessionHandlerInterface...

												return	new	MongoSessionHandler;

								});

				}

}

Once	the	session	driver	has	been	registered,	you	may	use	the	mongo	driver	in	your	config/session.php
configuration	file.

Laravel	Documentation	-	7.x	/	Session 129

The	Basics

Validation
Introduction
Validation	Quickstart

Defining	The	Routes
Creating	The	Controller
Writing	The	Validation	Logic
Displaying	The	Validation	Errors
A	Note	On	Optional	Fields

Form	Request	Validation
Creating	Form	Requests
Authorizing	Form	Requests
Customizing	The	Error	Messages
Customizing	The	Validation	Attributes
Prepare	Input	For	Validation

Manually	Creating	Validators
Automatic	Redirection
Named	Error	Bags
After	Validation	Hook

Working	With	Error	Messages
Custom	Error	Messages

Available	Validation	Rules
Conditionally	Adding	Rules
Validating	Arrays
Custom	Validation	Rules

Using	Rule	Objects
Using	Closures
Using	Extensions
Implicit	Extensions

Introduction

Laravel	provides	several	different	approaches	to	validate	your	application's	incoming	data.	By	default,	Laravel's
base	controller	class	uses	a	ValidatesRequests	trait	which	provides	a	convenient	method	to	validate	incoming
HTTP	requests	with	a	variety	of	powerful	validation	rules.

Validation	Quickstart

To	learn	about	Laravel's	powerful	validation	features,	let's	look	at	a	complete	example	of	validating	a	form	and
displaying	the	error	messages	back	to	the	user.

Defining	The	Routes

First,	let's	assume	we	have	the	following	routes	defined	in	our	routes/web.php	file:

Route::get('post/create',	'PostController@create');

Route::post('post',	'PostController@store');

The	GET	route	will	display	a	form	for	the	user	to	create	a	new	blog	post,	while	the	POST	route	will	store	the	new
blog	post	in	the	database.

Creating	The	Controller

Next,	let's	take	a	look	at	a	simple	controller	that	handles	these	routes.	We'll	leave	the	store	method	empty	for
now:

Laravel	Documentation	-	7.x	/	Validation 130

<?php

namespace	App\Http\Controllers;

use	App\Http\Controllers\Controller;

use	Illuminate\Http\Request;

class	PostController	extends	Controller

{

				/**

					*	Show	the	form	to	create	a	new	blog	post.

					*

					*	@return	Response

					*/

				public	function	create()

				{

								return	view('post.create');

				}

				/**

					*	Store	a	new	blog	post.

					*

					*	@param		Request		$request

					*	@return	Response

					*/

				public	function	store(Request	$request)

				{

								//	Validate	and	store	the	blog	post...

				}

}

Writing	The	Validation	Logic

Now	we	are	ready	to	fill	in	our	store	method	with	the	logic	to	validate	the	new	blog	post.	To	do	this,	we	will
use	the	validate	method	provided	by	the	Illuminate\Http\Request	object.	If	the	validation	rules	pass,	your	code
will	keep	executing	normally;	however,	if	validation	fails,	an	exception	will	be	thrown	and	the	proper	error
response	will	automatically	be	sent	back	to	the	user.	In	the	case	of	a	traditional	HTTP	request,	a	redirect
response	will	be	generated,	while	a	JSON	response	will	be	sent	for	AJAX	requests.

To	get	a	better	understanding	of	the	validate	method,	let's	jump	back	into	the	store	method:

/**

	*	Store	a	new	blog	post.

	*

	*	@param		Request		$request

	*	@return	Response

	*/

public	function	store(Request	$request)

{

				$validatedData	=	$request->validate([

								'title'	=>	'required|unique:posts|max:255',

								'body'	=>	'required',

]);

				//	The	blog	post	is	valid...

}

As	you	can	see,	we	pass	the	desired	validation	rules	into	the	validate	method.	Again,	if	the	validation	fails,	the
proper	response	will	automatically	be	generated.	If	the	validation	passes,	our	controller	will	continue	executing
normally.

Alternatively,	validation	rules	may	be	specified	as	arrays	of	rules	instead	of	a	single	|	delimited	string:

$validatedData	=	$request->validate([

				'title'	=>	['required',	'unique:posts',	'max:255'],

				'body'	=>	['required'],

]);

You	may	use	the	validateWithBag	method	to	validate	a	request	and	store	any	error	messages	within	a	named
error	bag:

$validatedData	=	$request->validateWithBag('post',	[

				'title'	=>	['required',	'unique:posts',	'max:255'],

				'body'	=>	['required'],

Laravel	Documentation	-	7.x	/	Validation 131

]);

Stopping	On	First	Validation	Failure

Sometimes	you	may	wish	to	stop	running	validation	rules	on	an	attribute	after	the	first	validation	failure.	To	do
so,	assign	the	bail	rule	to	the	attribute:

$request->validate([

				'title'	=>	'bail|required|unique:posts|max:255',

				'body'	=>	'required',

]);

In	this	example,	if	the	unique	rule	on	the	title	attribute	fails,	the	max	rule	will	not	be	checked.	Rules	will	be
validated	in	the	order	they	are	assigned.

A	Note	On	Nested	Attributes

If	your	HTTP	request	contains	"nested"	parameters,	you	may	specify	them	in	your	validation	rules	using	"dot"
syntax:

$request->validate([

				'title'	=>	'required|unique:posts|max:255',

				'author.name'	=>	'required',

				'author.description'	=>	'required',

]);

Displaying	The	Validation	Errors

So,	what	if	the	incoming	request	parameters	do	not	pass	the	given	validation	rules?	As	mentioned	previously,
Laravel	will	automatically	redirect	the	user	back	to	their	previous	location.	In	addition,	all	of	the	validation
errors	will	automatically	be	flashed	to	the	session.

Again,	notice	that	we	did	not	have	to	explicitly	bind	the	error	messages	to	the	view	in	our	GET	route.	This	is
because	Laravel	will	check	for	errors	in	the	session	data,	and	automatically	bind	them	to	the	view	if	they	are
available.	The	$errors	variable	will	be	an	instance	of	Illuminate\Support\MessageBag.	For	more	information	on
working	with	this	object,	check	out	its	documentation.

TIP	The	$errors	variable	is	bound	to	the	view	by	the	Illuminate\View\Middleware\ShareErrorsFromSession
middleware,	which	is	provided	by	the	web	middleware	group.	When	this	middleware	is	applied	an	
$errors	variable	will	always	be	available	in	your	views,	allowing	you	to	conveniently	assume	the	
$errors	variable	is	always	defined	and	can	be	safely	used.

So,	in	our	example,	the	user	will	be	redirected	to	our	controller's	create	method	when	validation	fails,	allowing
us	to	display	the	error	messages	in	the	view:

<!--	/resources/views/post/create.blade.php	-->

<h1>Create	Post</h1>

@if	($errors->any())

				

Accepted	Active	URL	After	(Date)	After	Or	Equal	(Date)	Alpha	Alpha	Dash	Alpha	Numeric	Array	Bail	Before
(Date)	Before	Or	Equal	(Date)	Between	Boolean	Confirmed	Date	Date	Equals	Date	Format	Different	Digits
Digits	Between	Dimensions	(Image	Files)	Distinct	Email	Ends	With	Exclude	If	Exclude	Unless	Exists
(Database)	File	Filled	Greater	Than	Greater	Than	Or	Equal	Image	(File)	In	In	Array	Integer	IP	Address	JSON
Less	Than	Less	Than	Or	Equal	Max	MIME	Types	MIME	Type	By	File	Extension	Min	Not	In	Not	Regex
Nullable	Numeric	Password	Present	Regular	Expression	Required	Required	If	Required	Unless	Required	With
Required	With	All	Required	Without	Required	Without	All	Same	Size	Sometimes	Starts	With	String	Timezone
Unique	(Database)	URL	UUID

accepted

The	field	under	validation	must	be	yes,	on,	1,	or	true.	This	is	useful	for	validating	"Terms	of	Service"

Laravel	Documentation	-	7.x	/	Validation 132

acceptance.

active_url

The	field	under	validation	must	have	a	valid	A	or	AAAA	record	according	to	the	dns_get_record	PHP	function.
The	hostname	of	the	provided	URL	is	extracted	using	the	parse_url	PHP	function	before	being	passed	to	
dns_get_record.

after:date

The	field	under	validation	must	be	a	value	after	a	given	date.	The	dates	will	be	passed	into	the	strtotime	PHP
function:

'start_date'	=>	'required|date|after:tomorrow'

Instead	of	passing	a	date	string	to	be	evaluated	by	strtotime,	you	may	specify	another	field	to	compare	against
the	date:

'finish_date'	=>	'required|date|after:start_date'

after_or_equal:date

The	field	under	validation	must	be	a	value	after	or	equal	to	the	given	date.	For	more	information,	see	the	after
rule.

alpha

The	field	under	validation	must	be	entirely	alphabetic	characters.

alpha_dash

The	field	under	validation	may	have	alpha-numeric	characters,	as	well	as	dashes	and	underscores.

alpha_num

The	field	under	validation	must	be	entirely	alpha-numeric	characters.

array

The	field	under	validation	must	be	a	PHP	array.

bail

Stop	running	validation	rules	after	the	first	validation	failure.

before:date

The	field	under	validation	must	be	a	value	preceding	the	given	date.	The	dates	will	be	passed	into	the	PHP	
strtotime	function.	In	addition,	like	the	after	rule,	the	name	of	another	field	under	validation	may	be	supplied
as	the	value	of	date.

before_or_equal:date

The	field	under	validation	must	be	a	value	preceding	or	equal	to	the	given	date.	The	dates	will	be	passed	into
the	PHP	strtotime	function.	In	addition,	like	the	after	rule,	the	name	of	another	field	under	validation	may	be
supplied	as	the	value	of	date.

between:min,max

Laravel	Documentation	-	7.x	/	Validation 133

The	field	under	validation	must	have	a	size	between	the	given	min	and	max.	Strings,	numerics,	arrays,	and	files
are	evaluated	in	the	same	fashion	as	the	size	rule.

boolean

The	field	under	validation	must	be	able	to	be	cast	as	a	boolean.	Accepted	input	are	true,	false,	1,	0,	"1",	and	
"0".

confirmed

The	field	under	validation	must	have	a	matching	field	of	foo_confirmation.	For	example,	if	the	field	under
validation	is	password,	a	matching	password_confirmation	field	must	be	present	in	the	input.

date

The	field	under	validation	must	be	a	valid,	non-relative	date	according	to	the	strtotime	PHP	function.

date_equals:date

The	field	under	validation	must	be	equal	to	the	given	date.	The	dates	will	be	passed	into	the	PHP	strtotime
function.

date_format:format

The	field	under	validation	must	match	the	given	format.	You	should	use	either	date	or	date_format	when
validating	a	field,	not	both.	This	validation	rule	supports	all	formats	supported	by	PHP's	DateTime	class.

different:field

The	field	under	validation	must	have	a	different	value	than	field.

digits:value

The	field	under	validation	must	be	numeric	and	must	have	an	exact	length	of	value.

digits_between:min,max

The	field	under	validation	must	be	numeric	and	must	have	a	length	between	the	given	min	and	max.

dimensions

The	file	under	validation	must	be	an	image	meeting	the	dimension	constraints	as	specified	by	the	rule's
parameters:

'avatar'	=>	'dimensions:min_width=100,min_height=200'

Available	constraints	are:	min_width,	max_width,	min_height,	max_height,	width,	height,	ratio.

A	ratio	constraint	should	be	represented	as	width	divided	by	height.	This	can	be	specified	either	by	a	statement
like	3/2	or	a	float	like	1.5:

'avatar'	=>	'dimensions:ratio=3/2'

Since	this	rule	requires	several	arguments,	you	may	use	the	Rule::dimensions	method	to	fluently	construct	the
rule:

use	Illuminate\Validation\Rule;

Validator::make($data,	[

				'avatar'	=>	[

								'required',

Laravel	Documentation	-	7.x	/	Validation 134

https://www.php.net/manual/en/class.datetime.php

								Rule::dimensions()->maxWidth(1000)->maxHeight(500)->ratio(3	/	2),

],

]);

distinct

When	working	with	arrays,	the	field	under	validation	must	not	have	any	duplicate	values.

'foo.*.id'	=>	'distinct'

email

The	field	under	validation	must	be	formatted	as	an	e-mail	address.	Under	the	hood,	this	validation	rule	makes
use	of	the	egulias/email-validator	package	for	validating	the	email	address.	By	default	the	RFCValidation
validator	is	applied,	but	you	can	apply	other	validation	styles	as	well:

'email'	=>	'email:rfc,dns'

The	example	above	will	apply	the	RFCValidation	and	DNSCheckValidation	validations.	Here's	a	full	list	of
validation	styles	you	can	apply:

rfc:	RFCValidation
strict:	NoRFCWarningsValidation
dns:	DNSCheckValidation
spoof:	SpoofCheckValidation
filter:	FilterEmailValidation

The	filter	validator,	which	uses	PHP's	filter_var	function	under	the	hood,	ships	with	Laravel	and	is	Laravel's
pre-5.8	behavior.	The	dns	and	spoof	validators	require	the	PHP	intl	extension.

ends_with:foo,bar,...

The	field	under	validation	must	end	with	one	of	the	given	values.

exclude_if:anotherfield,value

The	field	under	validation	will	be	excluded	from	the	request	data	returned	by	the	validate	and	validated
methods	if	the	anotherfield	field	is	equal	to	value.

exclude_unless:anotherfield,value

The	field	under	validation	will	be	excluded	from	the	request	data	returned	by	the	validate	and	validated
methods	unless	anotherfield's	field	is	equal	to	value.

exists:table,column

The	field	under	validation	must	exist	on	a	given	database	table.

Basic	Usage	Of	Exists	Rule

'state'	=>	'exists:states'

If	the	column	option	is	not	specified,	the	field	name	will	be	used.

Specifying	A	Custom	Column	Name

'state'	=>	'exists:states,abbreviation'

Occasionally,	you	may	need	to	specify	a	specific	database	connection	to	be	used	for	the	exists	query.	You	can
accomplish	this	by	prepending	the	connection	name	to	the	table	name	using	"dot"	syntax:

Laravel	Documentation	-	7.x	/	Validation 135

https://github.com/egulias/EmailValidator

'email'	=>	'exists:connection.staff,email'

Instead	of	specifying	the	table	name	directly,	you	may	specify	the	Eloquent	model	which	should	be	used	to
determine	the	table	name:

'user_id'	=>	'exists:App\User,id'

If	you	would	like	to	customize	the	query	executed	by	the	validation	rule,	you	may	use	the	Rule	class	to	fluently
define	the	rule.	In	this	example,	we'll	also	specify	the	validation	rules	as	an	array	instead	of	using	the	|
character	to	delimit	them:

use	Illuminate\Validation\Rule;

Validator::make($data,	[

				'email'	=>	[

								'required',

								Rule::exists('staff')->where(function	($query)	{

												$query->where('account_id',	1);

								}),

],

]);

file

The	field	under	validation	must	be	a	successfully	uploaded	file.

filled

The	field	under	validation	must	not	be	empty	when	it	is	present.

gt:field

The	field	under	validation	must	be	greater	than	the	given	field.	The	two	fields	must	be	of	the	same	type.
Strings,	numerics,	arrays,	and	files	are	evaluated	using	the	same	conventions	as	the	size	rule.

gte:field

The	field	under	validation	must	be	greater	than	or	equal	to	the	given	field.	The	two	fields	must	be	of	the	same
type.	Strings,	numerics,	arrays,	and	files	are	evaluated	using	the	same	conventions	as	the	size	rule.

image

The	file	under	validation	must	be	an	image	(jpeg,	png,	bmp,	gif,	svg,	or	webp)

in:foo,bar,...

The	field	under	validation	must	be	included	in	the	given	list	of	values.	Since	this	rule	often	requires	you	to	
implode	an	array,	the	Rule::in	method	may	be	used	to	fluently	construct	the	rule:

use	Illuminate\Validation\Rule;

Validator::make($data,	[

				'zones'	=>	[

								'required',

								Rule::in(['first-zone',	'second-zone']),

],

]);

in_array:anotherfield.*

The	field	under	validation	must	exist	in	anotherfield's	values.

integer

Laravel	Documentation	-	7.x	/	Validation 136

The	field	under	validation	must	be	an	integer.

NOTE	This	validation	rule	does	not	verify	that	the	input	is	of	the	"integer"	variable	type,	only	that	the
input	is	a	string	or	numeric	value	that	contains	an	integer.

ip

The	field	under	validation	must	be	an	IP	address.

ipv4

The	field	under	validation	must	be	an	IPv4	address.

ipv6

The	field	under	validation	must	be	an	IPv6	address.

json

The	field	under	validation	must	be	a	valid	JSON	string.

lt:field

The	field	under	validation	must	be	less	than	the	given	field.	The	two	fields	must	be	of	the	same	type.	Strings,
numerics,	arrays,	and	files	are	evaluated	using	the	same	conventions	as	the	size	rule.

lte:field

The	field	under	validation	must	be	less	than	or	equal	to	the	given	field.	The	two	fields	must	be	of	the	same	type.
Strings,	numerics,	arrays,	and	files	are	evaluated	using	the	same	conventions	as	the	size	rule.

max:value

The	field	under	validation	must	be	less	than	or	equal	to	a	maximum	value.	Strings,	numerics,	arrays,	and	files
are	evaluated	in	the	same	fashion	as	the	size	rule.

mimetypes:text/plain,...

The	file	under	validation	must	match	one	of	the	given	MIME	types:

'video'	=>	'mimetypes:video/avi,video/mpeg,video/quicktime'

To	determine	the	MIME	type	of	the	uploaded	file,	the	file's	contents	will	be	read	and	the	framework	will
attempt	to	guess	the	MIME	type,	which	may	be	different	from	the	client	provided	MIME	type.

mimes:foo,bar,...

The	file	under	validation	must	have	a	MIME	type	corresponding	to	one	of	the	listed	extensions.

Basic	Usage	Of	MIME	Rule

'photo'	=>	'mimes:jpeg,bmp,png'

Even	though	you	only	need	to	specify	the	extensions,	this	rule	actually	validates	against	the	MIME	type	of	the
file	by	reading	the	file's	contents	and	guessing	its	MIME	type.

A	full	listing	of	MIME	types	and	their	corresponding	extensions	may	be	found	at	the	following	location:
https://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types

Laravel	Documentation	-	7.x	/	Validation 137

https://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types

min:value

The	field	under	validation	must	have	a	minimum	value.	Strings,	numerics,	arrays,	and	files	are	evaluated	in	the
same	fashion	as	the	size	rule.

not_in:foo,bar,...

The	field	under	validation	must	not	be	included	in	the	given	list	of	values.	The	Rule::notIn	method	may	be
used	to	fluently	construct	the	rule:

use	Illuminate\Validation\Rule;

Validator::make($data,	[

				'toppings'	=>	[

								'required',

								Rule::notIn(['sprinkles',	'cherries']),

],

]);

not_regex:pattern

The	field	under	validation	must	not	match	the	given	regular	expression.

Internally,	this	rule	uses	the	PHP	preg_match	function.	The	pattern	specified	should	obey	the	same	formatting
required	by	preg_match	and	thus	also	include	valid	delimiters.	For	example:	'email'	=>	'not_regex:/^.+$/i'.

Note:	When	using	the	regex	/	not_regex	patterns,	it	may	be	necessary	to	specify	rules	in	an	array	instead	of
using	pipe	delimiters,	especially	if	the	regular	expression	contains	a	pipe	character.

nullable

The	field	under	validation	may	be	null.	This	is	particularly	useful	when	validating	primitive	such	as	strings	and
integers	that	can	contain	null	values.

numeric

The	field	under	validation	must	be	numeric.

password

The	field	under	validation	must	match	the	authenticated	user's	password.	You	may	specify	an	authentication
guard	using	the	rule's	first	parameter:

'password'	=>	'password:api'

present

The	field	under	validation	must	be	present	in	the	input	data	but	can	be	empty.

regex:pattern

The	field	under	validation	must	match	the	given	regular	expression.

Internally,	this	rule	uses	the	PHP	preg_match	function.	The	pattern	specified	should	obey	the	same	formatting
required	by	preg_match	and	thus	also	include	valid	delimiters.	For	example:	'email'	=>	'regex:/^.+@.+$/i'.

Note:	When	using	the	regex	/	not_regex	patterns,	it	may	be	necessary	to	specify	rules	in	an	array	instead	of
using	pipe	delimiters,	especially	if	the	regular	expression	contains	a	pipe	character.

required

Laravel	Documentation	-	7.x	/	Validation 138

The	field	under	validation	must	be	present	in	the	input	data	and	not	empty.	A	field	is	considered	"empty"	if	one
of	the	following	conditions	are	true:

The	value	is	null.
The	value	is	an	empty	string.
The	value	is	an	empty	array	or	empty	Countable	object.
The	value	is	an	uploaded	file	with	no	path.

required_if:anotherfield,value,...

The	field	under	validation	must	be	present	and	not	empty	if	the	anotherfield	field	is	equal	to	any	value.

If	you	would	like	to	construct	a	more	complex	condition	for	the	required_if	rule,	you	may	use	the	
Rule::requiredIf	method.	This	methods	accepts	a	boolean	or	a	Closure.	When	passed	a	Closure,	the	Closure
should	return	true	or	false	to	indicate	if	the	field	under	validation	is	required:

use	Illuminate\Validation\Rule;

Validator::make($request->all(),	[

				'role_id'	=>	Rule::requiredIf($request->user()->is_admin),

]);

Validator::make($request->all(),	[

				'role_id'	=>	Rule::requiredIf(function	()	use	($request)	{

								return	$request->user()->is_admin;

				}),

]);

required_unless:anotherfield,value,...

The	field	under	validation	must	be	present	and	not	empty	unless	the	anotherfield	field	is	equal	to	any	value.

required_with:foo,bar,...

The	field	under	validation	must	be	present	and	not	empty	only	if	any	of	the	other	specified	fields	are	present.

required_with_all:foo,bar,...

The	field	under	validation	must	be	present	and	not	empty	only	if	all	of	the	other	specified	fields	are	present.

required_without:foo,bar,...

The	field	under	validation	must	be	present	and	not	empty	only	when	any	of	the	other	specified	fields	are	not
present.

required_without_all:foo,bar,...

The	field	under	validation	must	be	present	and	not	empty	only	when	all	of	the	other	specified	fields	are	not
present.

same:field

The	given	field	must	match	the	field	under	validation.

size:value

The	field	under	validation	must	have	a	size	matching	the	given	value.	For	string	data,	value	corresponds	to	the
number	of	characters.	For	numeric	data,	value	corresponds	to	a	given	integer	value	(the	attribute	must	also	have
the	numeric	or	integer	rule).	For	an	array,	size	corresponds	to	the	count	of	the	array.	For	files,	size	corresponds
to	the	file	size	in	kilobytes.	Let's	look	at	some	examples:

//	Validate	that	a	string	is	exactly	12	characters	long...

Laravel	Documentation	-	7.x	/	Validation 139

'title'	=>	'size:12';

//	Validate	that	a	provided	integer	equals	10...

'seats'	=>	'integer|size:10';

//	Validate	that	an	array	has	exactly	5	elements...

'tags'	=>	'array|size:5';

//	Validate	that	an	uploaded	file	is	exactly	512	kilobytes...

'image'	=>	'file|size:512';

starts_with:foo,bar,...

The	field	under	validation	must	start	with	one	of	the	given	values.

string

The	field	under	validation	must	be	a	string.	If	you	would	like	to	allow	the	field	to	also	be	null,	you	should
assign	the	nullable	rule	to	the	field.

timezone

The	field	under	validation	must	be	a	valid	timezone	identifier	according	to	the	timezone_identifiers_list	PHP
function.

unique:table,column,except,idColumn

The	field	under	validation	must	not	exist	within	the	given	database	table.

Specifying	A	Custom	Table	/	Column	Name:

Instead	of	specifying	the	table	name	directly,	you	may	specify	the	Eloquent	model	which	should	be	used	to
determine	the	table	name:

'email'	=>	'unique:App\User,email_address'

The	column	option	may	be	used	to	specify	the	field's	corresponding	database	column.	If	the	column	option	is	not
specified,	the	field	name	will	be	used.

'email'	=>	'unique:users,email_address'

Custom	Database	Connection

Occasionally,	you	may	need	to	set	a	custom	connection	for	database	queries	made	by	the	Validator.	As	seen
above,	setting	unique:users	as	a	validation	rule	will	use	the	default	database	connection	to	query	the	database.
To	override	this,	specify	the	connection	and	the	table	name	using	"dot"	syntax:

'email'	=>	'unique:connection.users,email_address'

Forcing	A	Unique	Rule	To	Ignore	A	Given	ID:

Sometimes,	you	may	wish	to	ignore	a	given	ID	during	the	unique	check.	For	example,	consider	an	"update
profile"	screen	that	includes	the	user's	name,	e-mail	address,	and	location.	You	will	probably	want	to	verify	that
the	e-mail	address	is	unique.	However,	if	the	user	only	changes	the	name	field	and	not	the	e-mail	field,	you	do
not	want	a	validation	error	to	be	thrown	because	the	user	is	already	the	owner	of	the	e-mail	address.

To	instruct	the	validator	to	ignore	the	user's	ID,	we'll	use	the	Rule	class	to	fluently	define	the	rule.	In	this
example,	we'll	also	specify	the	validation	rules	as	an	array	instead	of	using	the	|	character	to	delimit	the	rules:

use	Illuminate\Validation\Rule;

Validator::make($data,	[

				'email'	=>	[

								'required',

								Rule::unique('users')->ignore($user->id),

],

Laravel	Documentation	-	7.x	/	Validation 140

]);

NOTE	You	should	never	pass	any	user	controlled	request	input	into	the	ignore	method.	Instead,	you
should	only	pass	a	system	generated	unique	ID	such	as	an	auto-incrementing	ID	or	UUID	from	an
Eloquent	model	instance.	Otherwise,	your	application	will	be	vulnerable	to	an	SQL	injection	attack.

Instead	of	passing	the	model	key's	value	to	the	ignore	method,	you	may	pass	the	entire	model	instance.	Laravel
will	automatically	extract	the	key	from	the	model:

Rule::unique('users')->ignore($user)

If	your	table	uses	a	primary	key	column	name	other	than	id,	you	may	specify	the	name	of	the	column	when
calling	the	ignore	method:

Rule::unique('users')->ignore($user->id,	'user_id')

By	default,	the	unique	rule	will	check	the	uniqueness	of	the	column	matching	the	name	of	the	attribute	being
validated.	However,	you	may	pass	a	different	column	name	as	the	second	argument	to	the	unique	method:

Rule::unique('users',	'email_address')->ignore($user->id),

Adding	Additional	Where	Clauses:

You	may	also	specify	additional	query	constraints	by	customizing	the	query	using	the	where	method.	For
example,	let's	add	a	constraint	that	verifies	the	account_id	is	1:

'email'	=>	Rule::unique('users')->where(function	($query)	{

				return	$query->where('account_id',	1);

})

url

The	field	under	validation	must	be	a	valid	URL.

uuid

The	field	under	validation	must	be	a	valid	RFC	4122	(version	1,	3,	4,	or	5)	universally	unique	identifier
(UUID).

Conditionally	Adding	Rules

Skipping	Validation	When	Fields	Have	Certain	Values

You	may	occasionally	wish	to	not	validate	a	given	field	if	another	field	has	a	given	value.	You	may	accomplish
this	using	the	exclude_if	validation	rule.	In	this	example,	the	appointment_date	and	doctor_name	fields	will	not
be	validated	if	the	has_appointment	field	has	a	value	of	false:

$v	=	Validator::make($data,	[

				'has_appointment'	=>	'required|bool',

				'appointment_date'	=>	'exclude_if:has_appointment,false|required|date',

				'doctor_name'	=>	'exclude_if:has_appointment,false|required|string',

]);

Alternatively,	you	may	use	the	exclude_unless	rule	to	not	validate	a	given	field	unless	another	field	has	a	given
value:

$v	=	Validator::make($data,	[

				'has_appointment'	=>	'required|bool',

				'appointment_date'	=>	'exclude_unless:has_appointment,true|required|date',

				'doctor_name'	=>	'exclude_unless:has_appointment,true|required|string',

]);

Validating	When	Present

In	some	situations,	you	may	wish	to	run	validation	checks	against	a	field	only	if	that	field	is	present	in	the	input

Laravel	Documentation	-	7.x	/	Validation 141

array.	To	quickly	accomplish	this,	add	the	sometimes	rule	to	your	rule	list:

$v	=	Validator::make($data,	[

				'email'	=>	'sometimes|required|email',

]);

In	the	example	above,	the	email	field	will	only	be	validated	if	it	is	present	in	the	$data	array.

TIP	If	you	are	attempting	to	validate	a	field	that	should	always	be	present	but	may	be	empty,	check	out	this
note	on	optional	fields

Complex	Conditional	Validation

Sometimes	you	may	wish	to	add	validation	rules	based	on	more	complex	conditional	logic.	For	example,	you
may	wish	to	require	a	given	field	only	if	another	field	has	a	greater	value	than	100.	Or,	you	may	need	two	fields
to	have	a	given	value	only	when	another	field	is	present.	Adding	these	validation	rules	doesn't	have	to	be	a
pain.	First,	create	a	Validator	instance	with	your	static	rules	that	never	change:

$v	=	Validator::make($data,	[

				'email'	=>	'required|email',

				'games'	=>	'required|numeric',

]);

Let's	assume	our	web	application	is	for	game	collectors.	If	a	game	collector	registers	with	our	application	and
they	own	more	than	100	games,	we	want	them	to	explain	why	they	own	so	many	games.	For	example,	perhaps
they	run	a	game	resale	shop,	or	maybe	they	just	enjoy	collecting.	To	conditionally	add	this	requirement,	we	can
use	the	sometimes	method	on	the	Validator	instance.

$v->sometimes('reason',	'required|max:500',	function	($input)	{

				return	$input->games	>=	100;

});

The	first	argument	passed	to	the	sometimes	method	is	the	name	of	the	field	we	are	conditionally	validating.	The
second	argument	is	the	rules	we	want	to	add.	If	the	Closure	passed	as	the	third	argument	returns	true,	the	rules
will	be	added.	This	method	makes	it	a	breeze	to	build	complex	conditional	validations.	You	may	even	add
conditional	validations	for	several	fields	at	once:

$v->sometimes(['reason',	'cost'],	'required',	function	($input)	{

				return	$input->games	>=	100;

});

TIP	The	$input	parameter	passed	to	your	Closure	will	be	an	instance	of	Illuminate\Support\Fluent	and
may	be	used	to	access	your	input	and	files.

Validating	Arrays

Validating	array	based	form	input	fields	doesn't	have	to	be	a	pain.	You	may	use	"dot	notation"	to	validate
attributes	within	an	array.	For	example,	if	the	incoming	HTTP	request	contains	a	photos[profile]	field,	you
may	validate	it	like	so:

$validator	=	Validator::make($request->all(),	[

				'photos.profile'	=>	'required|image',

]);

You	may	also	validate	each	element	of	an	array.	For	example,	to	validate	that	each	e-mail	in	a	given	array	input
field	is	unique,	you	may	do	the	following:

$validator	=	Validator::make($request->all(),	[

				'person.*.email'	=>	'email|unique:users',

				'person.*.first_name'	=>	'required_with:person.*.last_name',

]);

Likewise,	you	may	use	the	*	character	when	specifying	your	validation	messages	in	your	language	files,
making	it	a	breeze	to	use	a	single	validation	message	for	array	based	fields:

'custom'	=>	[

				'person.*.email'	=>	[

Laravel	Documentation	-	7.x	/	Validation 142

								'unique'	=>	'Each	person	must	have	a	unique	e-mail	address',

]

],

Custom	Validation	Rules

Using	Rule	Objects

Laravel	provides	a	variety	of	helpful	validation	rules;	however,	you	may	wish	to	specify	some	of	your	own.
One	method	of	registering	custom	validation	rules	is	using	rule	objects.	To	generate	a	new	rule	object,	you	may
use	the	make:rule	Artisan	command.	Let's	use	this	command	to	generate	a	rule	that	verifies	a	string	is
uppercase.	Laravel	will	place	the	new	rule	in	the	app/Rules	directory:

php	artisan	make:rule	Uppercase

Once	the	rule	has	been	created,	we	are	ready	to	define	its	behavior.	A	rule	object	contains	two	methods:	passes
and	message.	The	passes	method	receives	the	attribute	value	and	name,	and	should	return	true	or	false
depending	on	whether	the	attribute	value	is	valid	or	not.	The	message	method	should	return	the	validation	error
message	that	should	be	used	when	validation	fails:

<?php

namespace	App\Rules;

use	Illuminate\Contracts\Validation\Rule;

class	Uppercase	implements	Rule

{

				/**

					*	Determine	if	the	validation	rule	passes.

					*

					*	@param		string		$attribute

					*	@param		mixed		$value

					*	@return	bool

					*/

				public	function	passes($attribute,	$value)

				{

								return	strtoupper($value)	===	$value;

				}

				/**

					*	Get	the	validation	error	message.

					*

					*	@return	string

					*/

				public	function	message()

				{

								return	'The	:attribute	must	be	uppercase.';

				}

}

You	may	call	the	trans	helper	from	your	message	method	if	you	would	like	to	return	an	error	message	from	your
translation	files:

/**

	*	Get	the	validation	error	message.

	*

	*	@return	string

	*/

public	function	message()

{

				return	trans('validation.uppercase');

}

Once	the	rule	has	been	defined,	you	may	attach	it	to	a	validator	by	passing	an	instance	of	the	rule	object	with
your	other	validation	rules:

use	App\Rules\Uppercase;

$request->validate([

				'name'	=>	['required',	'string',	new	Uppercase],

]);

Laravel	Documentation	-	7.x	/	Validation 143

Using	Closures

If	you	only	need	the	functionality	of	a	custom	rule	once	throughout	your	application,	you	may	use	a	Closure
instead	of	a	rule	object.	The	Closure	receives	the	attribute's	name,	the	attribute's	value,	and	a	$fail	callback	that
should	be	called	if	validation	fails:

$validator	=	Validator::make($request->all(),	[

				'title'	=>	[

								'required',

								'max:255',

								function	($attribute,	$value,	$fail)	{

												if	($value	===	'foo')	{

																$fail($attribute.'	is	invalid.');

												}

								},

],

]);

Using	Extensions

Another	method	of	registering	custom	validation	rules	is	using	the	extend	method	on	the	Validator	facade.	Let's
use	this	method	within	a	service	provider	to	register	a	custom	validation	rule:

<?php

namespace	App\Providers;

use	Illuminate\Support\ServiceProvider;

use	Illuminate\Support\Facades\Validator;

class	AppServiceProvider	extends	ServiceProvider

{

				/**

					*	Register	any	application	services.

					*

					*	@return	void

					*/

				public	function	register()

				{

								//

				}

				/**

					*	Bootstrap	any	application	services.

					*

					*	@return	void

					*/

				public	function	boot()

				{

								Validator::extend('foo',	function	($attribute,	$value,	$parameters,	$validator)	{

												return	$value	==	'foo';

								});

				}

}

The	custom	validator	Closure	receives	four	arguments:	the	name	of	the	$attribute	being	validated,	the	$value
of	the	attribute,	an	array	of	$parameters	passed	to	the	rule,	and	the	Validator	instance.

You	may	also	pass	a	class	and	method	to	the	extend	method	instead	of	a	Closure:

Validator::extend('foo',	'FooValidator@validate');

Defining	The	Error	Message

You	will	also	need	to	define	an	error	message	for	your	custom	rule.	You	can	do	so	either	using	an	inline	custom
message	array	or	by	adding	an	entry	in	the	validation	language	file.	This	message	should	be	placed	in	the	first
level	of	the	array,	not	within	the	custom	array,	which	is	only	for	attribute-specific	error	messages:

"foo"	=>	"Your	input	was	invalid!",

"accepted"	=>	"The	:attribute	must	be	accepted.",

Laravel	Documentation	-	7.x	/	Validation 144

//	The	rest	of	the	validation	error	messages...

When	creating	a	custom	validation	rule,	you	may	sometimes	need	to	define	custom	placeholder	replacements
for	error	messages.	You	may	do	so	by	creating	a	custom	Validator	as	described	above	then	making	a	call	to	the	
replacer	method	on	the	Validator	facade.	You	may	do	this	within	the	boot	method	of	a	service	provider:

/**

	*	Bootstrap	any	application	services.

	*

	*	@return	void

	*/

public	function	boot()

{

				Validator::extend(...);

				Validator::replacer('foo',	function	($message,	$attribute,	$rule,	$parameters)	{

								return	str_replace(...);

				});

}

Implicit	Extensions

By	default,	when	an	attribute	being	validated	is	not	present	or	contains	an	empty	string,	normal	validation	rules,
including	custom	extensions,	are	not	run.	For	example,	the	unique	rule	will	not	be	run	against	an	empty	string:

$rules	=	['name'	=>	'unique:users,name'];

$input	=	['name'	=>	''];

Validator::make($input,	$rules)->passes();	//	true

For	a	rule	to	run	even	when	an	attribute	is	empty,	the	rule	must	imply	that	the	attribute	is	required.	To	create
such	an	"implicit"	extension,	use	the	Validator::extendImplicit()	method:

Validator::extendImplicit('foo',	function	($attribute,	$value,	$parameters,	$validator)	{

				return	$value	==	'foo';

});

NOTE	An	"implicit"	extension	only	implies	that	the	attribute	is	required.	Whether	it	actually	invalidates	a
missing	or	empty	attribute	is	up	to	you.

Implicit	Rule	Objects

If	you	would	like	a	rule	object	to	run	when	an	attribute	is	empty,	you	should	implement	the	
Illuminate\Contracts\Validation\ImplicitRule	interface.	This	interface	serves	as	a	"marker	interface"	for	the
validator;	therefore,	it	does	not	contain	any	methods	you	need	to	implement.

Laravel	Documentation	-	7.x	/	Validation 145

The	Basics

Error	Handling
Introduction
Configuration
The	Exception	Handler

Report	Method
Render	Method
Reportable	&	Renderable	Exceptions

HTTP	Exceptions
Custom	HTTP	Error	Pages

Introduction

When	you	start	a	new	Laravel	project,	error	and	exception	handling	is	already	configured	for	you.	The	
App\Exceptions\Handler	class	is	where	all	exceptions	triggered	by	your	application	are	logged	and	then	rendered
back	to	the	user.	We'll	dive	deeper	into	this	class	throughout	this	documentation.

Configuration

The	debug	option	in	your	config/app.php	configuration	file	determines	how	much	information	about	an	error	is
actually	displayed	to	the	user.	By	default,	this	option	is	set	to	respect	the	value	of	the	APP_DEBUG	environment
variable,	which	is	stored	in	your	.env	file.

For	local	development,	you	should	set	the	APP_DEBUG	environment	variable	to	true.	In	your	production
environment,	this	value	should	always	be	false.	If	the	value	is	set	to	true	in	production,	you	risk	exposing
sensitive	configuration	values	to	your	application's	end	users.

The	Exception	Handler

The	Report	Method

All	exceptions	are	handled	by	the	App\Exceptions\Handler	class.	This	class	contains	two	methods:	report	and	
render.	We'll	examine	each	of	these	methods	in	detail.	The	report	method	is	used	to	log	exceptions	or	send
them	to	an	external	service	like	Flare,	Bugsnag	or	Sentry.	By	default,	the	report	method	passes	the	exception	to
the	base	class	where	the	exception	is	logged.	However,	you	are	free	to	log	exceptions	however	you	wish.

For	example,	if	you	need	to	report	different	types	of	exceptions	in	different	ways,	you	may	use	the	PHP	
instanceof	comparison	operator:

/**

	*	Report	or	log	an	exception.

	*

	*	This	is	a	great	spot	to	send	exceptions	to	Flare,	Sentry,	Bugsnag,	etc.

	*

	*	@param		\Throwable		$exception

	*	@return	void

	*/

public	function	report(Throwable	$exception)

{

				if	($exception	instanceof	CustomException)	{

								//

				}

				parent::report($exception);

}

TIP	Instead	of	making	a	lot	of	instanceof	checks	in	your	report	method,	consider	using	reportable
exceptions

Global	Log	Context

Laravel	Documentation	-	7.x	/	Error	Handling 146

https://flareapp.io
https://bugsnag.com
https://github.com/getsentry/sentry-laravel

If	available,	Laravel	automatically	adds	the	current	user's	ID	to	every	exception's	log	message	as	contextual
data.	You	may	define	your	own	global	contextual	data	by	overriding	the	context	method	of	your	application's	
App\Exceptions\Handler	class.	This	information	will	be	included	in	every	exception's	log	message	written	by
your	application:

/**

	*	Get	the	default	context	variables	for	logging.

	*

	*	@return	array

	*/

protected	function	context()

{

				return	array_merge(parent::context(),	[

								'foo'	=>	'bar',

]);

}

The	report	Helper

Sometimes	you	may	need	to	report	an	exception	but	continue	handling	the	current	request.	The	report	helper
function	allows	you	to	quickly	report	an	exception	using	your	exception	handler's	report	method	without
rendering	an	error	page:

public	function	isValid($value)

{

				try	{

								//	Validate	the	value...

				}	catch	(Throwable	$e)	{

								report($e);

								return	false;

				}

}

Ignoring	Exceptions	By	Type

The	$dontReport	property	of	the	exception	handler	contains	an	array	of	exception	types	that	will	not	be	logged.
For	example,	exceptions	resulting	from	404	errors,	as	well	as	several	other	types	of	errors,	are	not	written	to
your	log	files.	You	may	add	other	exception	types	to	this	array	as	needed:

/**

	*	A	list	of	the	exception	types	that	should	not	be	reported.

	*

	*	@var	array

	*/

protected	$dontReport	=	[

				\Illuminate\Auth\AuthenticationException::class,

				\Illuminate\Auth\Access\AuthorizationException::class,

				\Symfony\Component\HttpKernel\Exception\HttpException::class,

				\Illuminate\Database\Eloquent\ModelNotFoundException::class,

				\Illuminate\Validation\ValidationException::class,

];

The	Render	Method

The	render	method	is	responsible	for	converting	a	given	exception	into	an	HTTP	response	that	should	be	sent
back	to	the	browser.	By	default,	the	exception	is	passed	to	the	base	class	which	generates	a	response	for	you.
However,	you	are	free	to	check	the	exception	type	or	return	your	own	custom	response:

/**

	*	Render	an	exception	into	an	HTTP	response.

	*

	*	@param		\Illuminate\Http\Request		$request

	*	@param		\Throwable		$exception

	*	@return	\Illuminate\Http\Response

	*/

public	function	render($request,	Throwable	$exception)

{

				if	($exception	instanceof	CustomException)	{

								return	response()->view('errors.custom',	[],	500);

				}

Laravel	Documentation	-	7.x	/	Error	Handling 147

				return	parent::render($request,	$exception);

}

Reportable	&	Renderable	Exceptions

Instead	of	type-checking	exceptions	in	the	exception	handler's	report	and	render	methods,	you	may	define	
report	and	render	methods	directly	on	your	custom	exception.	When	these	methods	exist,	they	will	be	called
automatically	by	the	framework:

<?php

namespace	App\Exceptions;

use	Exception;

class	RenderException	extends	Exception

{

				/**

					*	Report	the	exception.

					*

					*	@return	void

					*/

				public	function	report()

				{

								//

				}

				/**

					*	Render	the	exception	into	an	HTTP	response.

					*

					*	@param		\Illuminate\Http\Request		$request

					*	@return	\Illuminate\Http\Response

					*/

				public	function	render($request)

				{

								return	response(...);

				}

}

TIP	You	may	type-hint	any	required	dependencies	of	the	report	method	and	they	will	automatically	be
injected	into	the	method	by	Laravel's	service	container.

HTTP	Exceptions

Some	exceptions	describe	HTTP	error	codes	from	the	server.	For	example,	this	may	be	a	"page	not	found"	error
(404),	an	"unauthorized	error"	(401)	or	even	a	developer	generated	500	error.	In	order	to	generate	such	a
response	from	anywhere	in	your	application,	you	may	use	the	abort	helper:

abort(404);

The	abort	helper	will	immediately	raise	an	exception	which	will	be	rendered	by	the	exception	handler.
Optionally,	you	may	provide	the	response	text:

abort(403,	'Unauthorized	action.');

Custom	HTTP	Error	Pages

Laravel	makes	it	easy	to	display	custom	error	pages	for	various	HTTP	status	codes.	For	example,	if	you	wish	to
customize	the	error	page	for	404	HTTP	status	codes,	create	a	resources/views/errors/404.blade.php.	This	file
will	be	served	on	all	404	errors	generated	by	your	application.	The	views	within	this	directory	should	be	named
to	match	the	HTTP	status	code	they	correspond	to.	The	HttpException	instance	raised	by	the	abort	function	will
be	passed	to	the	view	as	an	$exception	variable:

<h2>{{	$exception->getMessage()	}}</h2>

You	may	publish	Laravel's	error	page	templates	using	the	vendor:publish	Artisan	command.	Once	the	templates
have	been	published,	you	may	customize	them	to	your	liking:

Laravel	Documentation	-	7.x	/	Error	Handling 148

php	artisan	vendor:publish	--tag=laravel-errors

Laravel	Documentation	-	7.x	/	Error	Handling 149

The	Basics

Logging
Introduction
Configuration

Building	Log	Stacks
Writing	Log	Messages

Writing	To	Specific	Channels
Advanced	Monolog	Channel	Customization

Customizing	Monolog	For	Channels
Creating	Monolog	Handler	Channels
Creating	Channels	Via	Factories

Introduction

To	help	you	learn	more	about	what's	happening	within	your	application,	Laravel	provides	robust	logging
services	that	allow	you	to	log	messages	to	files,	the	system	error	log,	and	even	to	Slack	to	notify	your	entire
team.

Under	the	hood,	Laravel	utilizes	the	Monolog	library,	which	provides	support	for	a	variety	of	powerful	log
handlers.	Laravel	makes	it	a	cinch	to	configure	these	handlers,	allowing	you	to	mix	and	match	them	to
customize	your	application's	log	handling.

Configuration

All	of	the	configuration	for	your	application's	logging	system	is	housed	in	the	config/logging.php	configuration
file.	This	file	allows	you	to	configure	your	application's	log	channels,	so	be	sure	to	review	each	of	the	available
channels	and	their	options.	We'll	review	a	few	common	options	below.

By	default,	Laravel	will	use	the	stack	channel	when	logging	messages.	The	stack	channel	is	used	to	aggregate
multiple	log	channels	into	a	single	channel.	For	more	information	on	building	stacks,	check	out	the
documentation	below.

Configuring	The	Channel	Name

By	default,	Monolog	is	instantiated	with	a	"channel	name"	that	matches	the	current	environment,	such	as	
production	or	local.	To	change	this	value,	add	a	name	option	to	your	channel's	configuration:

'stack'	=>	[

				'driver'	=>	'stack',

				'name'	=>	'channel-name',

				'channels'	=>	['single',	'slack'],

],

Available	Channel	Drivers

Name Description
stack A	wrapper	to	facilitate	creating	"multi-channel"	channels
single A	single	file	or	path	based	logger	channel	(StreamHandler)
daily A	RotatingFileHandler	based	Monolog	driver	which	rotates	daily
slack A	SlackWebhookHandler	based	Monolog	driver
papertrail A	SyslogUdpHandler	based	Monolog	driver
syslog A	SyslogHandler	based	Monolog	driver
errorlog A	ErrorLogHandler	based	Monolog	driver
monolog A	Monolog	factory	driver	that	may	use	any	supported	Monolog	handler
custom A	driver	that	calls	a	specified	factory	to	create	a	channel

Laravel	Documentation	-	7.x	/	Logging 150

https://github.com/Seldaek/monolog

TIP	Check	out	the	documentation	on	advanced	channel	customization	to	learn	more	about	the	monolog	and	
custom	drivers.

Configuring	The	Single	and	Daily	Channels

The	single	and	daily	channels	have	three	optional	configuration	options:	bubble,	permission,	and	locking.

Name Description Default
bubble Indicates	if	messages	should	bubble	up	to	other	channels	after	being	handled true

permission The	log	file's	permissions 0644

locking Attempt	to	lock	the	log	file	before	writing	to	it false

Configuring	The	Papertrail	Channel

The	papertrail	channel	requires	the	url	and	port	configuration	options.	You	can	obtain	these	values	from
Papertrail.

Configuring	The	Slack	Channel

The	slack	channel	requires	a	url	configuration	option.	This	URL	should	match	a	URL	for	an	incoming
webhook	that	you	have	configured	for	your	Slack	team.	By	default,	Slack	will	only	receive	logs	at	the	critical
level	and	above;	however,	you	can	adjust	this	in	your	logging	configuration	file.

Building	Log	Stacks

As	previously	mentioned,	the	stack	driver	allows	you	to	combine	multiple	channels	into	a	single	log	channel.
To	illustrate	how	to	use	log	stacks,	let's	take	a	look	at	an	example	configuration	that	you	might	see	in	a
production	application:

'channels'	=>	[

				'stack'	=>	[

								'driver'	=>	'stack',

								'channels'	=>	['syslog',	'slack'],

],

				'syslog'	=>	[

								'driver'	=>	'syslog',

								'level'	=>	'debug',

],

				'slack'	=>	[

								'driver'	=>	'slack',

								'url'	=>	env('LOG_SLACK_WEBHOOK_URL'),

								'username'	=>	'Laravel	Log',

								'emoji'	=>	':boom:',

								'level'	=>	'critical',

],

],

Let's	dissect	this	configuration.	First,	notice	our	stack	channel	aggregates	two	other	channels	via	its	channels
option:	syslog	and	slack.	So,	when	logging	messages,	both	of	these	channels	will	have	the	opportunity	to	log
the	message.

Log	Levels

Take	note	of	the	level	configuration	option	present	on	the	syslog	and	slack	channel	configurations	in	the
example	above.	This	option	determines	the	minimum	"level"	a	message	must	be	in	order	to	be	logged	by	the
channel.	Monolog,	which	powers	Laravel's	logging	services,	offers	all	of	the	log	levels	defined	in	the	RFC
5424	specification:	emergency,	alert,	critical,	error,	warning,	notice,	info,	and	debug.

So,	imagine	we	log	a	message	using	the	debug	method:

Log::debug('An	informational	message.');

Laravel	Documentation	-	7.x	/	Logging 151

https://help.papertrailapp.com/kb/configuration/configuring-centralized-logging-from-php-apps/#send-events-from-php-app
https://slack.com/apps/A0F7XDUAZ-incoming-webhooks
https://tools.ietf.org/html/rfc5424

Given	our	configuration,	the	syslog	channel	will	write	the	message	to	the	system	log;	however,	since	the	error
message	is	not	critical	or	above,	it	will	not	be	sent	to	Slack.	However,	if	we	log	an	emergency	message,	it	will
be	sent	to	both	the	system	log	and	Slack	since	the	emergency	level	is	above	our	minimum	level	threshold	for
both	channels:

Log::emergency('The	system	is	down!');

Writing	Log	Messages

You	may	write	information	to	the	logs	using	the	Log	facade.	As	previously	mentioned,	the	logger	provides	the
eight	logging	levels	defined	in	the	RFC	5424	specification:	emergency,	alert,	critical,	error,	warning,	notice,
info	and	debug:

Log::emergency($message);

Log::alert($message);

Log::critical($message);

Log::error($message);

Log::warning($message);

Log::notice($message);

Log::info($message);

Log::debug($message);

So,	you	may	call	any	of	these	methods	to	log	a	message	for	the	corresponding	level.	By	default,	the	message
will	be	written	to	the	default	log	channel	as	configured	by	your	config/logging.php	configuration	file:

<?php

namespace	App\Http\Controllers;

use	App\Http\Controllers\Controller;

use	App\User;

use	Illuminate\Support\Facades\Log;

class	UserController	extends	Controller

{

				/**

					*	Show	the	profile	for	the	given	user.

					*

					*	@param		int		$id

					*	@return	Response

					*/

				public	function	showProfile($id)

				{

								Log::info('Showing	user	profile	for	user:	'.$id);

								return	view('user.profile',	['user'	=>	User::findOrFail($id)]);

				}

}

Contextual	Information

An	array	of	contextual	data	may	also	be	passed	to	the	log	methods.	This	contextual	data	will	be	formatted	and
displayed	with	the	log	message:

Log::info('User	failed	to	login.',	['id'	=>	$user->id]);

Writing	To	Specific	Channels

Sometimes	you	may	wish	to	log	a	message	to	a	channel	other	than	your	application's	default	channel.	You	may
use	the	channel	method	on	the	Log	facade	to	retrieve	and	log	to	any	channel	defined	in	your	configuration	file:

Log::channel('slack')->info('Something	happened!');

If	you	would	like	to	create	an	on-demand	logging	stack	consisting	of	multiple	channels,	you	may	use	the	stack
method:

Log::stack(['single',	'slack'])->info('Something	happened!');

Laravel	Documentation	-	7.x	/	Logging 152

https://tools.ietf.org/html/rfc5424

Advanced	Monolog	Channel	Customization

Customizing	Monolog	For	Channels

Sometimes	you	may	need	complete	control	over	how	Monolog	is	configured	for	an	existing	channel.	For
example,	you	may	want	to	configure	a	custom	Monolog	FormatterInterface	implementation	for	a	given
channel's	handlers.

To	get	started,	define	a	tap	array	on	the	channel's	configuration.	The	tap	array	should	contain	a	list	of	classes
that	should	have	an	opportunity	to	customize	(or	"tap"	into)	the	Monolog	instance	after	it	is	created:

'single'	=>	[

				'driver'	=>	'single',

				'tap'	=>	[App\Logging\CustomizeFormatter::class],

				'path'	=>	storage_path('logs/laravel.log'),

				'level'	=>	'debug',

],

Once	you	have	configured	the	tap	option	on	your	channel,	you're	ready	to	define	the	class	that	will	customize
your	Monolog	instance.	This	class	only	needs	a	single	method:	__invoke,	which	receives	an	
Illuminate\Log\Logger	instance.	The	Illuminate\Log\Logger	instance	proxies	all	method	calls	to	the	underlying
Monolog	instance:

<?php

namespace	App\Logging;

use	Monolog\Formatter\LineFormatter;

class	CustomizeFormatter

{

				/**

					*	Customize	the	given	logger	instance.

					*

					*	@param		\Illuminate\Log\Logger		$logger

					*	@return	void

					*/

				public	function	__invoke($logger)

				{

								foreach	($logger->getHandlers()	as	$handler)	{

												$handler->setFormatter(new	LineFormatter(

																'[%datetime%]	%channel%.%level_name%:	%message%	%context%	%extra%'

));

								}

				}

}

TIP	All	of	your	"tap"	classes	are	resolved	by	the	service	container,	so	any	constructor	dependencies	they
require	will	automatically	be	injected.

Creating	Monolog	Handler	Channels

Monolog	has	a	variety	of	available	handlers.	In	some	cases,	the	type	of	logger	you	wish	to	create	is	merely	a
Monolog	driver	with	an	instance	of	a	specific	handler.	These	channels	can	be	created	using	the	monolog	driver.

When	using	the	monolog	driver,	the	handler	configuration	option	is	used	to	specify	which	handler	will	be
instantiated.	Optionally,	any	constructor	parameters	the	handler	needs	may	be	specified	using	the	with
configuration	option:

'logentries'	=>	[

				'driver'		=>	'monolog',

				'handler'	=>	Monolog\Handler\SyslogUdpHandler::class,

				'with'	=>	[

								'host'	=>	'my.logentries.internal.datahubhost.company.com',

								'port'	=>	'10000',

],

],

Monolog	Formatters

Laravel	Documentation	-	7.x	/	Logging 153

https://github.com/Seldaek/monolog/tree/master/src/Monolog/Handler

When	using	the	monolog	driver,	the	Monolog	LineFormatter	will	be	used	as	the	default	formatter.	However,	you
may	customize	the	type	of	formatter	passed	to	the	handler	using	the	formatter	and	formatter_with	configuration
options:

'browser'	=>	[

				'driver'	=>	'monolog',

				'handler'	=>	Monolog\Handler\BrowserConsoleHandler::class,

				'formatter'	=>	Monolog\Formatter\HtmlFormatter::class,

				'formatter_with'	=>	[

								'dateFormat'	=>	'Y-m-d',

],

],

If	you	are	using	a	Monolog	handler	that	is	capable	of	providing	its	own	formatter,	you	may	set	the	value	of	the	
formatter	configuration	option	to	default:

'newrelic'	=>	[

				'driver'	=>	'monolog',

				'handler'	=>	Monolog\Handler\NewRelicHandler::class,

				'formatter'	=>	'default',

],

Creating	Channels	Via	Factories

If	you	would	like	to	define	an	entirely	custom	channel	in	which	you	have	full	control	over	Monolog's
instantiation	and	configuration,	you	may	specify	a	custom	driver	type	in	your	config/logging.php	configuration
file.	Your	configuration	should	include	a	via	option	to	point	to	the	factory	class	which	will	be	invoked	to	create
the	Monolog	instance:

'channels'	=>	[

				'custom'	=>	[

								'driver'	=>	'custom',

								'via'	=>	App\Logging\CreateCustomLogger::class,

],

],

Once	you	have	configured	the	custom	channel,	you're	ready	to	define	the	class	that	will	create	your	Monolog
instance.	This	class	only	needs	a	single	method:	__invoke,	which	should	return	the	Monolog	instance:

<?php

namespace	App\Logging;

use	Monolog\Logger;

class	CreateCustomLogger

{

				/**

					*	Create	a	custom	Monolog	instance.

					*

					*	@param		array		$config

					*	@return	\Monolog\Logger

					*/

				public	function	__invoke(array	$config)

				{

								return	new	Logger(...);

				}

}

Laravel	Documentation	-	7.x	/	Logging 154

Frontend

Blade	Templates
Introduction
Template	Inheritance

Defining	A	Layout
Extending	A	Layout

Displaying	Data
Blade	&	JavaScript	Frameworks

Control	Structures
If	Statements
Switch	Statements
Loops
The	Loop	Variable
Comments
PHP
The	@once	Directive

Forms
CSRF	Field
Method	Field
Validation	Errors

Components
Displaying	Components
Passing	Data	To	Components
Managing	Attributes
Slots
Inline	Component	Views
Anonymous	Components

Including	Subviews
Rendering	Views	For	Collections

Stacks
Service	Injection
Extending	Blade

Custom	If	Statements

Introduction

Blade	is	the	simple,	yet	powerful	templating	engine	provided	with	Laravel.	Unlike	other	popular	PHP
templating	engines,	Blade	does	not	restrict	you	from	using	plain	PHP	code	in	your	views.	In	fact,	all	Blade
views	are	compiled	into	plain	PHP	code	and	cached	until	they	are	modified,	meaning	Blade	adds	essentially
zero	overhead	to	your	application.	Blade	view	files	use	the	.blade.php	file	extension	and	are	typically	stored	in
the	resources/views	directory.

Template	Inheritance

Defining	A	Layout

Two	of	the	primary	benefits	of	using	Blade	are	template	inheritance	and	sections.	To	get	started,	let's	take	a
look	at	a	simple	example.	First,	we	will	examine	a	"master"	page	layout.	Since	most	web	applications	maintain
the	same	general	layout	across	various	pages,	it's	convenient	to	define	this	layout	as	a	single	Blade	view:

<!--	Stored	in	resources/views/layouts/app.blade.php	-->

<html>

				<head>

								<title>App	Name	-	@yield('title')</title>

				</head>

				<body>

								@section('sidebar')

Laravel	Documentation	-	7.x	/	Frontend 155

												This	is	the	master	sidebar.

								@show

								<div	class="container">

												@yield('content')

								</div>

				</body>

</html>

As	you	can	see,	this	file	contains	typical	HTML	mark-up.	However,	take	note	of	the	@section	and	@yield
directives.	The	@section	directive,	as	the	name	implies,	defines	a	section	of	content,	while	the	@yield	directive
is	used	to	display	the	contents	of	a	given	section.

Now	that	we	have	defined	a	layout	for	our	application,	let's	define	a	child	page	that	inherits	the	layout.

Extending	A	Layout

When	defining	a	child	view,	use	the	Blade	@extends	directive	to	specify	which	layout	the	child	view	should
"inherit".	Views	which	extend	a	Blade	layout	may	inject	content	into	the	layout's	sections	using	@section
directives.	Remember,	as	seen	in	the	example	above,	the	contents	of	these	sections	will	be	displayed	in	the
layout	using	@yield:

<!--	Stored	in	resources/views/child.blade.php	-->

@extends('layouts.app')

@section('title',	'Page	Title')

@section('sidebar')

				@@parent

				<p>This	is	appended	to	the	master	sidebar.</p>

@endsection

@section('content')

				<p>This	is	my	body	content.</p>

@endsection

In	this	example,	the	sidebar	section	is	utilizing	the	@@parent	directive	to	append	(rather	than	overwriting)
content	to	the	layout's	sidebar.	The	@@parent	directive	will	be	replaced	by	the	content	of	the	layout	when	the
view	is	rendered.

TIP	Contrary	to	the	previous	example,	this	sidebar	section	ends	with	@endsection	instead	of	@show.	The	
@endsection	directive	will	only	define	a	section	while	@show	will	define	and	immediately	yield	the	section.

The	@yield	directive	also	accepts	a	default	value	as	its	second	parameter.	This	value	will	be	rendered	if	the
section	being	yielded	is	undefined:

@yield('content',	View::make('view.name'))

Blade	views	may	be	returned	from	routes	using	the	global	view	helper:

Route::get('blade',	function	()	{

				return	view('child');

});

Displaying	Data

You	may	display	data	passed	to	your	Blade	views	by	wrapping	the	variable	in	curly	braces.	For	example,	given
the	following	route:

Route::get('greeting',	function	()	{

				return	view('welcome',	['name'	=>	'Samantha']);

});

You	may	display	the	contents	of	the	name	variable	like	so:

Hello,	{{	$name	}}.

Laravel	Documentation	-	7.x	/	Frontend 156

TIP	Blade	{{	}}	statements	are	automatically	sent	through	PHP's	htmlspecialchars	function	to	prevent
XSS	attacks.

You	are	not	limited	to	displaying	the	contents	of	the	variables	passed	to	the	view.	You	may	also	echo	the	results
of	any	PHP	function.	In	fact,	you	can	put	any	PHP	code	you	wish	inside	of	a	Blade	echo	statement:

The	current	UNIX	timestamp	is	{{	time()	}}.

Displaying	Unescaped	Data

By	default,	Blade	{{	}}	statements	are	automatically	sent	through	PHP's	htmlspecialchars	function	to	prevent
XSS	attacks.	If	you	do	not	want	your	data	to	be	escaped,	you	may	use	the	following	syntax:

Hello,	{!!	$name	!!}.

NOTE	Be	very	careful	when	echoing	content	that	is	supplied	by	users	of	your	application.	Always	use	the
escaped,	double	curly	brace	syntax	to	prevent	XSS	attacks	when	displaying	user	supplied	data.

Rendering	JSON

Sometimes	you	may	pass	an	array	to	your	view	with	the	intention	of	rendering	it	as	JSON	in	order	to	initialize	a
JavaScript	variable.	For	example:

<script>

				var	app	=	<?php	echo	json_encode($array);	?>;

</script>

However,	instead	of	manually	calling	json_encode,	you	may	use	the	@json	Blade	directive.	The	@json	directive
accepts	the	same	arguments	as	PHP's	json_encode	function:

<script>

				var	app	=	@json($array);

				var	app	=	@json($array,	JSON_PRETTY_PRINT);

</script>

NOTE	You	should	only	use	the	@json	directive	to	render	existing	variables	as	JSON.	The	Blade	templating
is	based	on	regular	expressions	and	attempts	to	pass	a	complex	expression	to	the	directive	may	cause
unexpected	failures.

HTML	Entity	Encoding

By	default,	Blade	(and	the	Laravel	e	helper)	will	double	encode	HTML	entities.	If	you	would	like	to	disable
double	encoding,	call	the	Blade::withoutDoubleEncoding	method	from	the	boot	method	of	your	
AppServiceProvider:

<?php

namespace	App\Providers;

use	Illuminate\Support\Facades\Blade;

use	Illuminate\Support\ServiceProvider;

class	AppServiceProvider	extends	ServiceProvider

{

				/**

					*	Bootstrap	any	application	services.

					*

					*	@return	void

					*/

				public	function	boot()

				{

								Blade::withoutDoubleEncoding();

				}

}

Blade	&	JavaScript	Frameworks

Laravel	Documentation	-	7.x	/	Frontend 157

Since	many	JavaScript	frameworks	also	use	"curly"	braces	to	indicate	a	given	expression	should	be	displayed
in	the	browser,	you	may	use	the	@	symbol	to	inform	the	Blade	rendering	engine	an	expression	should	remain
untouched.	For	example:

<h1>Laravel</h1>

Hello,	@{{	name	}}.

In	this	example,	the	@	symbol	will	be	removed	by	Blade;	however,	{{	name	}}	expression	will	remain
untouched	by	the	Blade	engine,	allowing	it	to	instead	be	rendered	by	your	JavaScript	framework.

The	@	symbol	may	also	be	used	to	escape	Blade	directives:

{{--	Blade	--}}

@@json()

<!--	HTML	output	-->

@json()

The	@verbatim	Directive

If	you	are	displaying	JavaScript	variables	in	a	large	portion	of	your	template,	you	may	wrap	the	HTML	in	the	
@verbatim	directive	so	that	you	do	not	have	to	prefix	each	Blade	echo	statement	with	an	@	symbol:

@verbatim

				<div	class="container">

								Hello,	{{	name	}}.

				</div>

@endverbatim

Control	Structures

In	addition	to	template	inheritance	and	displaying	data,	Blade	also	provides	convenient	shortcuts	for	common
PHP	control	structures,	such	as	conditional	statements	and	loops.	These	shortcuts	provide	a	very	clean,	terse
way	of	working	with	PHP	control	structures,	while	also	remaining	familiar	to	their	PHP	counterparts.

If	Statements

You	may	construct	if	statements	using	the	@if,	@elseif,	@else,	and	@endif	directives.	These	directives	function
identically	to	their	PHP	counterparts:

@if	(count($records)	===	1)

				I	have	one	record!

@elseif	(count($records)	>	1)

				I	have	multiple	records!

@else

				I	don't	have	any	records!

@endif

For	convenience,	Blade	also	provides	an	@unless	directive:

@unless	(Auth::check())

				You	are	not	signed	in.

@endunless

In	addition	to	the	conditional	directives	already	discussed,	the	@isset	and	@empty	directives	may	be	used	as
convenient	shortcuts	for	their	respective	PHP	functions:

@isset($records)

				//	$records	is	defined	and	is	not	null...

@endisset

@empty($records)

				//	$records	is	"empty"...

@endempty

Authentication	Directives

Laravel	Documentation	-	7.x	/	Frontend 158

The	@auth	and	@guest	directives	may	be	used	to	quickly	determine	if	the	current	user	is	authenticated	or	is	a
guest:

@auth

				//	The	user	is	authenticated...

@endauth

@guest

				//	The	user	is	not	authenticated...

@endguest

If	needed,	you	may	specify	the	authentication	guard	that	should	be	checked	when	using	the	@auth	and	@guest
directives:

@auth('admin')

				//	The	user	is	authenticated...

@endauth

@guest('admin')

				//	The	user	is	not	authenticated...

@endguest

Section	Directives

You	may	check	if	a	section	has	content	using	the	@hasSection	directive:

@hasSection('navigation')

				<div	class="pull-right">

								@yield('navigation')

				</div>

				<div	class="clearfix"></div>

@endif

You	may	use	the	sectionMissing	directive	to	determine	if	a	section	does	not	have	content:

@sectionMissing('navigation')

				<div	class="pull-right">

								@include('default-navigation')

				</div>

@endif

Environment	Directives

You	may	check	if	the	application	is	running	in	the	production	environment	using	the	@production	directive:

@production

				//	Production	specific	content...

@endproduction

Or,	you	may	determine	if	the	application	is	running	in	a	specific	environment	using	the	@env	directive:

@env('staging')

				//	The	application	is	running	in	"staging"...

@endenv

@env(['staging',	'production'])

				//	The	application	is	running	in	"staging"	or	"production"...

@endenv

Switch	Statements

Switch	statements	can	be	constructed	using	the	@switch,	@case,	@break,	@default	and	@endswitch	directives:

@switch($i)

				@case(1)

								First	case...

								@break

				@case(2)

								Second	case...

								@break

Laravel	Documentation	-	7.x	/	Frontend 159

				@default

								Default	case...

@endswitch

Loops

In	addition	to	conditional	statements,	Blade	provides	simple	directives	for	working	with	PHP's	loop	structures.
Again,	each	of	these	directives	functions	identically	to	their	PHP	counterparts:

@for	($i	=	0;	$i	<	10;	$i++)

				The	current	value	is	{{	$i	}}

@endfor

@foreach	($users	as	$user)

				<p>This	is	user	{{	$user->id	}}</p>

@endforeach

@forelse	($users	as	$user)

				{{	$user->name	}}

@empty

				<p>No	users</p>

@endforelse

@while	(true)

				<p>I'm	looping	forever.</p>

@endwhile

TIP	When	looping,	you	may	use	the	loop	variable	to	gain	valuable	information	about	the	loop,	such	as
whether	you	are	in	the	first	or	last	iteration	through	the	loop.

When	using	loops	you	may	also	end	the	loop	or	skip	the	current	iteration:

@foreach	($users	as	$user)

				@if	($user->type	==	1)

								@continue

				@endif

				{{	$user->name	}}

				@if	($user->number	==	5)

								@break

				@endif

@endforeach

You	may	also	include	the	condition	with	the	directive	declaration	in	one	line:

@foreach	($users	as	$user)

				@continue($user->type	==	1)

				{{	$user->name	}}

				@break($user->number	==	5)

@endforeach

The	Loop	Variable

When	looping,	a	$loop	variable	will	be	available	inside	of	your	loop.	This	variable	provides	access	to	some
useful	bits	of	information	such	as	the	current	loop	index	and	whether	this	is	the	first	or	last	iteration	through	the
loop:

@foreach	($users	as	$user)

				@if	($loop->first)

								This	is	the	first	iteration.

				@endif

				@if	($loop->last)

								This	is	the	last	iteration.

				@endif

				<p>This	is	user	{{	$user->id	}}</p>

@endforeach

Laravel	Documentation	-	7.x	/	Frontend 160

If	you	are	in	a	nested	loop,	you	may	access	the	parent	loop's	$loop	variable	via	the	parent	property:

@foreach	($users	as	$user)

				@foreach	($user->posts	as	$post)

								@if	($loop->parent->first)

												This	is	first	iteration	of	the	parent	loop.

								@endif

				@endforeach

@endforeach

The	$loop	variable	also	contains	a	variety	of	other	useful	properties:

Property Description
$loop->index The	index	of	the	current	loop	iteration	(starts	at	0).
$loop->iteration The	current	loop	iteration	(starts	at	1).
$loop->remaining The	iterations	remaining	in	the	loop.
$loop->count The	total	number	of	items	in	the	array	being	iterated.
$loop->first Whether	this	is	the	first	iteration	through	the	loop.
$loop->last Whether	this	is	the	last	iteration	through	the	loop.
$loop->even Whether	this	is	an	even	iteration	through	the	loop.
$loop->odd Whether	this	is	an	odd	iteration	through	the	loop.
$loop->depth The	nesting	level	of	the	current	loop.
$loop->parent When	in	a	nested	loop,	the	parent's	loop	variable.

Comments

Blade	also	allows	you	to	define	comments	in	your	views.	However,	unlike	HTML	comments,	Blade	comments
are	not	included	in	the	HTML	returned	by	your	application:

{{--	This	comment	will	not	be	present	in	the	rendered	HTML	--}}

PHP

In	some	situations,	it's	useful	to	embed	PHP	code	into	your	views.	You	can	use	the	Blade	@php	directive	to
execute	a	block	of	plain	PHP	within	your	template:

@php

				//

@endphp

TIP	While	Blade	provides	this	feature,	using	it	frequently	may	be	a	signal	that	you	have	too	much	logic
embedded	within	your	template.

The	@once	Directive

The	@once	directive	allows	you	to	define	a	portion	of	the	template	that	will	only	be	evaluated	once	per	rendering
cycle.	This	may	be	useful	for	pushing	a	given	piece	of	JavaScript	into	the	page's	header	using	stacks.	For
example,	if	you	are	rendering	a	given	component	within	a	loop,	you	may	wish	to	only	push	the	JavaScript	to
the	header	the	first	time	the	component	is	rendered:

@once

				@push('scripts')

								<script>

												//	Your	custom	JavaScript...

								</script>

				@endpush

@endonce

Forms

CSRF	Field

Laravel	Documentation	-	7.x	/	Frontend 161

Anytime	you	define	an	HTML	form	in	your	application,	you	should	include	a	hidden	CSRF	token	field	in	the
form	so	that	the	CSRF	protection	middleware	can	validate	the	request.	You	may	use	the	@csrf	Blade	directive
to	generate	the	token	field:

<form	method="POST"	action="/profile">

				@csrf

				...

</form>

Method	Field

Since	HTML	forms	can't	make	PUT,	PATCH,	or	DELETE	requests,	you	will	need	to	add	a	hidden	_method	field	to
spoof	these	HTTP	verbs.	The	@method	Blade	directive	can	create	this	field	for	you:

<form	action="/foo/bar"	method="POST">

				@method('PUT')

				...

</form>

Validation	Errors

The	@error	directive	may	be	used	to	quickly	check	if	validation	error	messages	exist	for	a	given	attribute.
Within	an	@error	directive,	you	may	echo	the	$message	variable	to	display	the	error	message:

<!--	/resources/views/post/create.blade.php	-->

<label	for="title">Post	Title</label>

<input	id="title"	type="text"	class="@error('title')	is-invalid	@enderror">

@error('title')

				<div	class="alert	alert-danger">{{	$message	}}</div>

@enderror

You	may	pass	the	name	of	a	specific	error	bag	as	the	second	parameter	to	the	@error	directive	to	retrieve
validation	error	messages	on	pages	containing	multiple	forms:

<!--	/resources/views/auth.blade.php	-->

<label	for="email">Email	address</label>

<input	id="email"	type="email"	class="@error('email',	'login')	is-invalid	@enderror">

@error('email',	'login')

				<div	class="alert	alert-danger">{{	$message	}}</div>

@enderror

Components

Components	and	slots	provide	similar	benefits	to	sections	and	layouts;	however,	some	may	find	the	mental
model	of	components	and	slots	easier	to	understand.	There	are	two	approaches	to	writing	components:	class
based	components	and	anonymous	components.

To	create	a	class	based	component,	you	may	use	the	make:component	Artisan	command.	To	illustrate	how	to	use
components,	we	will	create	a	simple	Alert	component.	The	make:component	command	will	place	the	component
in	the	App\View\Components	directory:

php	artisan	make:component	Alert

The	make:component	command	will	also	create	a	view	template	for	the	component.	The	view	will	be	placed	in
the	resources/views/components	directory.

Manually	Registering	Package	Components

When	writing	components	for	your	own	application,	components	are	automatically	discovered	within	the	

Laravel	Documentation	-	7.x	/	Frontend 162

https://laravel.com/docs/{{version}}/csrf

app/View/Components	directory	and	resources/views/components	directory.

However,	if	you	are	building	a	package	that	utilizes	Blade	components,	you	will	need	to	manually	register	your
component	class	and	its	HTML	tag	alias.	You	should	typically	register	your	components	in	the	boot	method	of
your	package's	service	provider:

use	Illuminate\Support\Facades\Blade;

/**

	*	Bootstrap	your	package's	services.

	*/

public	function	boot()

{

				Blade::component('package-alert',	AlertComponent::class);

}

Once	your	component	has	been	registered,	it	may	be	rendered	using	its	tag	alias:

<x-package-alert/>

Displaying	Components

To	display	a	component,	you	may	use	a	Blade	component	tag	within	one	of	your	Blade	templates.	Blade
component	tags	start	with	the	string	x-	followed	by	the	kebab	case	name	of	the	component	class:

<x-alert/>

<x-user-profile/>

If	the	component	class	is	nested	deeper	within	the	App\View\Components	directory,	you	may	use	the	.	character	to
indicate	directory	nesting.	For	example,	if	we	assume	a	component	is	located	at	
App\View\Components\Inputs\Button.php,	we	may	render	it	like	so:

<x-inputs.button/>

Passing	Data	To	Components

You	may	pass	data	to	Blade	components	using	HTML	attributes.	Hard-coded,	primitive	values	may	be	passed
to	the	component	using	simple	HTML	attributes.	PHP	expressions	and	variables	should	be	passed	to	the
component	via	attributes	that	are	prefixed	with	::

<x-alert	type="error"	:message="$message"/>

You	should	define	the	component's	required	data	in	its	class	constructor.	All	public	properties	on	a	component
will	automatically	be	made	available	to	the	component's	view.	It	is	not	necessary	to	pass	the	data	to	the	view
from	the	component's	render	method:

<?php

namespace	App\View\Components;

use	Illuminate\View\Component;

class	Alert	extends	Component

{

				/**

					*	The	alert	type.

					*

					*	@var	string

					*/

				public	$type;

				/**

					*	The	alert	message.

					*

					*	@var	string

					*/

				public	$message;

				/**

					*	Create	the	component	instance.

Laravel	Documentation	-	7.x	/	Frontend 163

					*

					*	@param		string		$type

					*	@param		string		$message

					*	@return	void

					*/

				public	function	__construct($type,	$message)

				{

								$this->type	=	$type;

								$this->message	=	$message;

				}

				/**

					*	Get	the	view	/	contents	that	represent	the	component.

					*

					*	@return	\Illuminate\View\View|\Closure|string

					*/

				public	function	render()

				{

								return	view('components.alert');

				}

}

When	your	component	is	rendered,	you	may	display	the	contents	of	your	component's	public	variables	by
echoing	the	variables	by	name:

<div	class="alert	alert-{{	$type	}}">

				{{	$message	}}

</div>

Casing

Component	constructor	arguments	should	be	specified	using	camelCase,	while	kebab-case	should	be	used	when
referencing	the	argument	names	in	your	HTML	attributes.	For	example,	given	the	following	component
constructor:

/**

	*	Create	the	component	instance.

	*

	*	@param		string		$alertType

	*	@return	void

	*/

public	function	__construct($alertType)

{

				$this->alertType	=	$alertType;

}

The	$alertType	argument	may	be	provided	like	so:

<x-alert	alert-type="danger"	/>

Component	Methods

In	addition	to	public	variables	being	available	to	your	component	template,	any	public	methods	on	the
component	may	also	be	executed.	For	example,	imagine	a	component	that	has	a	isSelected	method:

/**

	*	Determine	if	the	given	option	is	the	current	selected	option.

	*

	*	@param		string		$option

	*	@return	bool

	*/

public	function	isSelected($option)

{

				return	$option	===	$this->selected;

}

You	may	execute	this	method	from	your	component	template	by	invoking	the	variable	matching	the	name	of
the	method:

<option	{{	$isSelected($value)	?	'selected="selected"'	:	''	}}	value="{{	$value	}}">

				{{	$label	}}

</option>

Laravel	Documentation	-	7.x	/	Frontend 164

Using	Attributes	&	Slots	Inside	The	Class

Blade	components	also	allow	you	to	access	the	component	name,	attributes,	and	slot	inside	the	class's	render
method.	However,	in	order	to	access	this	data,	you	should	return	a	Closure	from	your	component's	render
method.	The	Closure	will	receive	a	$data	array	as	its	only	argument:

/**

	*	Get	the	view	/	contents	that	represent	the	component.

	*

	*	@return	\Illuminate\View\View|\Closure|string

	*/

public	function	render()

{

				return	function	(array	$data)	{

								//	$data['componentName'];

								//	$data['attributes'];

								//	$data['slot'];

								return	'<div>Component	content</div>';

				};

}

The	componentName	is	equal	to	the	name	used	in	the	HTML	tag	after	the	x-	prefix.	So	<x-alert	/>'s	
componentName	will	be	alert.	The	attributes	element	will	contain	all	of	the	attributes	that	were	present	on	the
HTML	tag.	The	slot	element	is	a	Illuminate\Support\HtmlString	instance	with	the	contents	of	the	slot	from	the
component.

Additional	Dependencies

If	your	component	requires	dependencies	from	Laravel's	service	container,	you	may	list	them	before	any	of	the
component's	data	attributes	and	they	will	automatically	be	injected	by	the	container:

use	App\AlertCreator

/**

	*	Create	the	component	instance.

	*

	*	@param		\App\AlertCreator		$creator

	*	@param		string		$type

	*	@param		string		$message

	*	@return	void

	*/

public	function	__construct(AlertCreator	$creator,	$type,	$message)

{

				$this->creator	=	$creator;

				$this->type	=	$type;

				$this->message	=	$message;

}

Managing	Attributes

We've	already	examined	how	to	pass	data	attributes	to	a	component;	however,	sometimes	you	may	need	to
specify	additional	HTML	attributes,	such	as	class,	that	are	not	part	of	the	data	required	for	a	component	to
function.	Typically,	you	want	to	pass	these	additional	attributes	down	to	the	root	element	of	the	component
template.	For	example,	imagine	we	want	to	render	an	alert	component	like	so:

<x-alert	type="error"	:message="$message"	class="mt-4"/>

All	of	the	attributes	that	are	not	part	of	the	component's	constructor	will	automatically	be	added	to	the
component's	"attribute	bag".	This	attribute	bag	is	automatically	made	available	to	the	component	via	the	
$attributes	variable.	All	of	the	attributes	may	be	rendered	within	the	component	by	echoing	this	variable:

<div	{{	$attributes	}}>

				<!--	Component	Content	-->

</div>

NOTE	Echoing	variables	({{	$attributes	}})	or	using	directives	such	as	@env	directly	on	a	component	is
not	supported	at	this	time.

Laravel	Documentation	-	7.x	/	Frontend 165

Default	/	Merged	Attributes

Sometimes	you	may	need	to	specify	default	values	for	attributes	or	merge	additional	values	into	some	of	the
component's	attributes.	To	accomplish	this,	you	may	use	the	attribute	bag's	merge	method:

<div	{{	$attributes->merge(['class'	=>	'alert	alert-'.$type])	}}>

				{{	$message	}}

</div>

If	we	assume	this	component	is	utilized	like	so:

<x-alert	type="error"	:message="$message"	class="mb-4"/>

The	final,	rendered	HTML	of	the	component	will	appear	like	the	following:

<div	class="alert	alert-error	mb-4">

				<!--	Contents	of	the	$message	variable	-->

</div>

Filtering	Attributes

You	may	filter	attributes	using	the	filter	method.	This	method	accepts	a	Closure	which	should	return	true	if
you	wish	to	retain	the	attribute	in	the	attribute	bag:

{{	$attributes->filter(fn	($value,	$key)	=>	$key	==	'foo')	}}

For	convenience,	you	may	use	the	whereStartsWith	method	to	retrieve	all	attributes	whose	keys	begin	with	a
given	string:

{{	$attributes->whereStartsWith('wire:model')	}}

Using	the	first	method,	you	may	render	the	first	attribute	in	a	given	attribute	bag:

{{	$attributes->whereStartsWith('wire:model')->first()	}}

Slots

Often,	you	will	need	to	pass	additional	content	to	your	component	via	"slots".	Let's	imagine	that	an	alert
component	we	created	has	the	following	markup:

<!--	/resources/views/components/alert.blade.php	-->

<div	class="alert	alert-danger">

				{{	$slot	}}

</div>

We	may	pass	content	to	the	slot	by	injecting	content	into	the	component:

<x-alert>

				Whoops!	Something	went	wrong!

</x-alert>

Sometimes	a	component	may	need	to	render	multiple	different	slots	in	different	locations	within	the
component.	Let's	modify	our	alert	component	to	allow	for	the	injection	of	a	"title":

<!--	/resources/views/components/alert.blade.php	-->

{{	$title	}}

<div	class="alert	alert-danger">

				{{	$slot	}}

</div>

You	may	define	the	content	of	the	named	slot	using	the	x-slot	tag.	Any	content	not	within	a	x-slot	tag	will	be
passed	to	the	component	in	the	$slot	variable:

<x-alert>

				<x-slot	name="title">

								Server	Error

Laravel	Documentation	-	7.x	/	Frontend 166

				</x-slot>

				Whoops!	Something	went	wrong!

</x-alert>

Scoped	Slots

If	you	have	used	a	JavaScript	framework	such	as	Vue,	you	may	be	familiar	with	"scoped	slots",	which	allow
you	to	access	data	or	methods	from	the	component	within	your	slot.	You	may	achieve	similar	behavior	in
Laravel	by	defining	public	methods	or	properties	on	your	component	and	accessing	the	component	within	your
slot	via	the	$component	variable:

<x-alert>

				<x-slot	name="title">

								{{	$component->formatAlert('Server	Error')	}}

				</x-slot>

				Whoops!	Something	went	wrong!

</x-alert>

Inline	Component	Views

For	very	small	components,	it	may	feel	cumbersome	to	manage	both	the	component	class	and	the	component's
view	template.	For	this	reason,	you	may	return	the	component's	markup	directly	from	the	render	method:

/**

	*	Get	the	view	/	contents	that	represent	the	component.

	*

	*	@return	\Illuminate\View\View|\Closure|string

	*/

public	function	render()

{

				return	<<<'blade'

								<div	class="alert	alert-danger">

												{{	$slot	}}

								</div>

				blade;

}

Generating	Inline	View	Components

To	create	a	component	that	renders	an	inline	view,	you	may	use	the	inline	option	when	executing	the	
make:component	command:

php	artisan	make:component	Alert	--inline

Anonymous	Components

Similar	to	inline	components,	anonymous	components	provide	a	mechanism	for	managing	a	component	via	a
single	file.	However,	anonymous	components	utilize	a	single	view	file	and	have	no	associated	class.	To	define
an	anonymous	component,	you	only	need	to	place	a	Blade	template	within	your	resources/views/components
directory.	For	example,	assuming	you	have	defined	a	component	at	
resources/views/components/alert.blade.php:

<x-alert/>

You	may	use	the	.	character	to	indicate	if	a	component	is	nested	deeper	inside	the	components	directory.	For
example,	assuming	the	component	is	defined	at	resources/views/components/inputs/button.blade.php,	you	may
render	it	like	so:

<x-inputs.button/>

Data	Properties	/	Attributes

Since	anonymous	components	do	not	have	any	associated	class,	you	may	wonder	how	you	may	differentiate
which	data	should	be	passed	to	the	component	as	variables	and	which	attributes	should	be	placed	in	the

Laravel	Documentation	-	7.x	/	Frontend 167

component's	attribute	bag.

You	may	specify	which	attributes	should	be	considered	data	variables	using	the	@props	directive	at	the	top	of
your	component's	Blade	template.	All	other	attributes	on	the	component	will	be	available	via	the	component's
attribute	bag.	If	you	wish	to	give	a	data	variable	a	default	value,	you	may	specify	the	variable's	name	as	the
array	key	and	the	default	value	as	the	array	value:

<!--	/resources/views/components/alert.blade.php	-->

@props(['type'	=>	'info',	'message'])

<div	{{	$attributes->merge(['class'	=>	'alert	alert-'.$type])	}}>

				{{	$message	}}

</div>

Including	Subviews

Blade's	@include	directive	allows	you	to	include	a	Blade	view	from	within	another	view.	All	variables	that	are
available	to	the	parent	view	will	be	made	available	to	the	included	view:

<div>

				@include('shared.errors')

				<form>

								<!--	Form	Contents	-->

				</form>

</div>

Even	though	the	included	view	will	inherit	all	data	available	in	the	parent	view,	you	may	also	pass	an	array	of
extra	data	to	the	included	view:

@include('view.name',	['some'	=>	'data'])

If	you	attempt	to	@include	a	view	which	does	not	exist,	Laravel	will	throw	an	error.	If	you	would	like	to	include
a	view	that	may	or	may	not	be	present,	you	should	use	the	@includeIf	directive:

@includeIf('view.name',	['some'	=>	'data'])

If	you	would	like	to	@include	a	view	if	a	given	boolean	expression	evaluates	to	true,	you	may	use	the	
@includeWhen	directive:

@includeWhen($boolean,	'view.name',	['some'	=>	'data'])

If	you	would	like	to	@include	a	view	if	a	given	boolean	expression	evaluates	to	false,	you	may	use	the	
@includeUnless	directive:

@includeUnless($boolean,	'view.name',	['some'	=>	'data'])

To	include	the	first	view	that	exists	from	a	given	array	of	views,	you	may	use	the	includeFirst	directive:

@includeFirst(['custom.admin',	'admin'],	['some'	=>	'data'])

NOTE	You	should	avoid	using	the	__DIR__	and	__FILE__	constants	in	your	Blade	views,	since	they	will
refer	to	the	location	of	the	cached,	compiled	view.

Aliasing	Includes

If	your	Blade	includes	are	stored	in	a	subdirectory,	you	may	wish	to	alias	them	for	easier	access.	For	example,
imagine	a	Blade	include	that	is	stored	at	resources/views/includes/input.blade.php	with	the	following	content:

<input	type="{{	$type	??	'text'	}}">

You	may	use	the	include	method	to	alias	the	include	from	includes.input	to	input.	Typically,	this	should	be
done	in	the	boot	method	of	your	AppServiceProvider:

use	Illuminate\Support\Facades\Blade;

Blade::include('includes.input',	'input');

Laravel	Documentation	-	7.x	/	Frontend 168

Once	the	include	has	been	aliased,	you	may	render	it	using	the	alias	name	as	the	Blade	directive:

@input(['type'	=>	'email'])

Rendering	Views	For	Collections

You	may	combine	loops	and	includes	into	one	line	with	Blade's	@each	directive:

@each('view.name',	$jobs,	'job')

The	first	argument	is	the	view	partial	to	render	for	each	element	in	the	array	or	collection.	The	second	argument
is	the	array	or	collection	you	wish	to	iterate	over,	while	the	third	argument	is	the	variable	name	that	will	be
assigned	to	the	current	iteration	within	the	view.	So,	for	example,	if	you	are	iterating	over	an	array	of	jobs,
typically	you	will	want	to	access	each	job	as	a	job	variable	within	your	view	partial.	The	key	for	the	current
iteration	will	be	available	as	the	key	variable	within	your	view	partial.

You	may	also	pass	a	fourth	argument	to	the	@each	directive.	This	argument	determines	the	view	that	will	be
rendered	if	the	given	array	is	empty.

@each('view.name',	$jobs,	'job',	'view.empty')

NOTE	Views	rendered	via	@each	do	not	inherit	the	variables	from	the	parent	view.	If	the	child	view
requires	these	variables,	you	should	use	@foreach	and	@include	instead.

Stacks

Blade	allows	you	to	push	to	named	stacks	which	can	be	rendered	somewhere	else	in	another	view	or	layout.
This	can	be	particularly	useful	for	specifying	any	JavaScript	libraries	required	by	your	child	views:

@push('scripts')

				<script	src="/example.js"></script>

@endpush

You	may	push	to	a	stack	as	many	times	as	needed.	To	render	the	complete	stack	contents,	pass	the	name	of	the
stack	to	the	@stack	directive:

<head>

				<!--	Head	Contents	-->

				@stack('scripts')

</head>

If	you	would	like	to	prepend	content	onto	the	beginning	of	a	stack,	you	should	use	the	@prepend	directive:

@push('scripts')

				This	will	be	second...

@endpush

//	Later...

@prepend('scripts')

				This	will	be	first...

@endprepend

Service	Injection

The	@inject	directive	may	be	used	to	retrieve	a	service	from	the	Laravel	service	container.	The	first	argument
passed	to	@inject	is	the	name	of	the	variable	the	service	will	be	placed	into,	while	the	second	argument	is	the
class	or	interface	name	of	the	service	you	wish	to	resolve:

@inject('metrics',	'App\Services\MetricsService')

<div>

				Monthly	Revenue:	{{	$metrics->monthlyRevenue()	}}.

</div>

Laravel	Documentation	-	7.x	/	Frontend 169

Extending	Blade

Blade	allows	you	to	define	your	own	custom	directives	using	the	directive	method.	When	the	Blade	compiler
encounters	the	custom	directive,	it	will	call	the	provided	callback	with	the	expression	that	the	directive
contains.

The	following	example	creates	a	@datetime($var)	directive	which	formats	a	given	$var,	which	should	be	an
instance	of	DateTime:

<?php

namespace	App\Providers;

use	Illuminate\Support\Facades\Blade;

use	Illuminate\Support\ServiceProvider;

class	AppServiceProvider	extends	ServiceProvider

{

				/**

					*	Register	any	application	services.

					*

					*	@return	void

					*/

				public	function	register()

				{

								//

				}

				/**

					*	Bootstrap	any	application	services.

					*

					*	@return	void

					*/

				public	function	boot()

				{

								Blade::directive('datetime',	function	($expression)	{

												return	"<?php	echo	($expression)->format('m/d/Y	H:i');	?>";

								});

				}

}

As	you	can	see,	we	will	chain	the	format	method	onto	whatever	expression	is	passed	into	the	directive.	So,	in
this	example,	the	final	PHP	generated	by	this	directive	will	be:

<?php	echo	($var)->format('m/d/Y	H:i');	?>

NOTE	After	updating	the	logic	of	a	Blade	directive,	you	will	need	to	delete	all	of	the	cached	Blade	views.
The	cached	Blade	views	may	be	removed	using	the	view:clear	Artisan	command.

Custom	If	Statements

Programming	a	custom	directive	is	sometimes	more	complex	than	necessary	when	defining	simple,	custom
conditional	statements.	For	that	reason,	Blade	provides	a	Blade::if	method	which	allows	you	to	quickly	define
custom	conditional	directives	using	Closures.	For	example,	let's	define	a	custom	conditional	that	checks	the
current	application	cloud	provider.	We	may	do	this	in	the	boot	method	of	our	AppServiceProvider:

use	Illuminate\Support\Facades\Blade;

/**

	*	Bootstrap	any	application	services.

	*

	*	@return	void

	*/

public	function	boot()

{

				Blade::if('cloud',	function	($provider)	{

								return	config('filesystems.default')	===	$provider;

				});

}

Once	the	custom	conditional	has	been	defined,	we	can	easily	use	it	on	our	templates:

Laravel	Documentation	-	7.x	/	Frontend 170

@cloud('digitalocean')

				//	The	application	is	using	the	digitalocean	cloud	provider...

@elsecloud('aws')

				//	The	application	is	using	the	aws	provider...

@else

				//	The	application	is	not	using	the	digitalocean	or	aws	environment...

@endcloud

@unlesscloud('aws')

				//	The	application	is	not	using	the	aws	environment...

@endcloud

Laravel	Documentation	-	7.x	/	Frontend 171

Frontend

Localization
Introduction

Configuring	The	Locale
Defining	Translation	Strings

Using	Short	Keys
Using	Translation	Strings	As	Keys

Retrieving	Translation	Strings
Replacing	Parameters	In	Translation	Strings
Pluralization

Overriding	Package	Language	Files

Introduction

Laravel's	localization	features	provide	a	convenient	way	to	retrieve	strings	in	various	languages,	allowing	you
to	easily	support	multiple	languages	within	your	application.	Language	strings	are	stored	in	files	within	the	
resources/lang	directory.	Within	this	directory	there	should	be	a	subdirectory	for	each	language	supported	by
the	application:

/resources

				/lang

								/en

												messages.php

								/es

												messages.php

All	language	files	return	an	array	of	keyed	strings.	For	example:

<?php

return	[

				'welcome'	=>	'Welcome	to	our	application',

];

NOTE	For	languages	that	differ	by	territory,	you	should	name	the	language	directories	according	to	the
ISO	15897.	For	example,	"en_GB"	should	be	used	for	British	English	rather	than	"en-gb".

Configuring	The	Locale

The	default	language	for	your	application	is	stored	in	the	config/app.php	configuration	file.	You	may	modify
this	value	to	suit	the	needs	of	your	application.	You	may	also	change	the	active	language	at	runtime	using	the	
setLocale	method	on	the	App	facade:

Route::get('welcome/{locale}',	function	($locale)	{

				if	(!	in_array($locale,	['en',	'es',	'fr']))	{

								abort(400);

				}

				App::setLocale($locale);

				//

});

You	may	configure	a	"fallback	language",	which	will	be	used	when	the	active	language	does	not	contain	a
given	translation	string.	Like	the	default	language,	the	fallback	language	is	also	configured	in	the	
config/app.php	configuration	file:

'fallback_locale'	=>	'en',

Determining	The	Current	Locale

You	may	use	the	getLocale	and	isLocale	methods	on	the	App	facade	to	determine	the	current	locale	or	check	if
the	locale	is	a	given	value:

Laravel	Documentation	-	7.x	/	Localization 172

$locale	=	App::getLocale();

if	(App::isLocale('en'))	{

				//

}

Defining	Translation	Strings

Using	Short	Keys

Typically,	translation	strings	are	stored	in	files	within	the	resources/lang	directory.	Within	this	directory	there
should	be	a	subdirectory	for	each	language	supported	by	the	application:

/resources

				/lang

								/en

												messages.php

								/es

												messages.php

All	language	files	return	an	array	of	keyed	strings.	For	example:

<?php

//	resources/lang/en/messages.php

return	[

				'welcome'	=>	'Welcome	to	our	application',

];

Using	Translation	Strings	As	Keys

For	applications	with	heavy	translation	requirements,	defining	every	string	with	a	"short	key"	can	become
quickly	confusing	when	referencing	them	in	your	views.	For	this	reason,	Laravel	also	provides	support	for
defining	translation	strings	using	the	"default"	translation	of	the	string	as	the	key.

Translation	files	that	use	translation	strings	as	keys	are	stored	as	JSON	files	in	the	resources/lang	directory.	For
example,	if	your	application	has	a	Spanish	translation,	you	should	create	a	resources/lang/es.json	file:

{

				"I	love	programming.":	"Me	encanta	programar."

}

Retrieving	Translation	Strings

You	may	retrieve	lines	from	language	files	using	the	__	helper	function.	The	__	method	accepts	the	file	and	key
of	the	translation	string	as	its	first	argument.	For	example,	let's	retrieve	the	welcome	translation	string	from	the	
resources/lang/messages.php	language	file:

echo	__('messages.welcome');

echo	__('I	love	programming.');

If	you	are	using	the	Blade	templating	engine,	you	may	use	the	{{	}}	syntax	to	echo	the	translation	string	or	use
the	@lang	directive:

{{	__('messages.welcome')	}}

@lang('messages.welcome')

If	the	specified	translation	string	does	not	exist,	the	__	function	will	return	the	translation	string	key.	So,	using
the	example	above,	the	__	function	would	return	messages.welcome	if	the	translation	string	does	not	exist.

NOTE	The	@lang	directive	does	not	escape	any	output.	You	are	fully	responsible	for	escaping	your	own
output	when	using	this	directive.

Laravel	Documentation	-	7.x	/	Localization 173

Replacing	Parameters	In	Translation	Strings

If	you	wish,	you	may	define	placeholders	in	your	translation	strings.	All	placeholders	are	prefixed	with	a	:.	For
example,	you	may	define	a	welcome	message	with	a	placeholder	name:

'welcome'	=>	'Welcome,	:name',

To	replace	the	placeholders	when	retrieving	a	translation	string,	pass	an	array	of	replacements	as	the	second
argument	to	the	__	function:

echo	__('messages.welcome',	['name'	=>	'dayle']);

If	your	placeholder	contains	all	capital	letters,	or	only	has	its	first	letter	capitalized,	the	translated	value	will	be
capitalized	accordingly:

'welcome'	=>	'Welcome,	:NAME',	//	Welcome,	DAYLE

'goodbye'	=>	'Goodbye,	:Name',	//	Goodbye,	Dayle

Pluralization

Pluralization	is	a	complex	problem,	as	different	languages	have	a	variety	of	complex	rules	for	pluralization.	By
using	a	"pipe"	character,	you	may	distinguish	singular	and	plural	forms	of	a	string:

'apples'	=>	'There	is	one	apple|There	are	many	apples',

You	may	even	create	more	complex	pluralization	rules	which	specify	translation	strings	for	multiple	number
ranges:

'apples'	=>	'{0}	There	are	none|[1,19]	There	are	some|[20,*]	There	are	many',

After	defining	a	translation	string	that	has	pluralization	options,	you	may	use	the	trans_choice	function	to
retrieve	the	line	for	a	given	"count".	In	this	example,	since	the	count	is	greater	than	one,	the	plural	form	of	the
translation	string	is	returned:

echo	trans_choice('messages.apples',	10);

You	may	also	define	placeholder	attributes	in	pluralization	strings.	These	placeholders	may	be	replaced	by
passing	an	array	as	the	third	argument	to	the	trans_choice	function:

'minutes_ago'	=>	'{1}	:value	minute	ago|[2,*]	:value	minutes	ago',

echo	trans_choice('time.minutes_ago',	5,	['value'	=>	5]);

If	you	would	like	to	display	the	integer	value	that	was	passed	to	the	trans_choice	function,	you	may	use	the	
:count	placeholder:

'apples'	=>	'{0}	There	are	none|{1}	There	is	one|[2,*]	There	are	:count',

Overriding	Package	Language	Files

Some	packages	may	ship	with	their	own	language	files.	Instead	of	changing	the	package's	core	files	to	tweak
these	lines,	you	may	override	them	by	placing	files	in	the	resources/lang/vendor/{package}/{locale}	directory.

So,	for	example,	if	you	need	to	override	the	English	translation	strings	in	messages.php	for	a	package	named	
skyrim/hearthfire,	you	should	place	a	language	file	at:	resources/lang/vendor/hearthfire/en/messages.php.
Within	this	file,	you	should	only	define	the	translation	strings	you	wish	to	override.	Any	translation	strings	you
don't	override	will	still	be	loaded	from	the	package's	original	language	files.

Laravel	Documentation	-	7.x	/	Localization 174

Frontend

JavaScript	&	CSS	Scaffolding
Introduction
Writing	CSS
Writing	JavaScript

Writing	Vue	Components
Using	React

Adding	Presets

Introduction

While	Laravel	does	not	dictate	which	JavaScript	or	CSS	pre-processors	you	use,	it	does	provide	a	basic	starting
point	using	Bootstrap,	React,	and	/	or	Vue	that	will	be	helpful	for	many	applications.	By	default,	Laravel	uses
NPM	to	install	both	of	these	frontend	packages.

The	Bootstrap	and	Vue	scaffolding	provided	by	Laravel	is	located	in	the	laravel/ui	Composer	package,	which
may	be	installed	using	Composer:

composer	require	laravel/ui:^2.4

Once	the	laravel/ui	package	has	been	installed,	you	may	install	the	frontend	scaffolding	using	the	ui	Artisan
command:

//	Generate	basic	scaffolding...

php	artisan	ui	bootstrap

php	artisan	ui	vue

php	artisan	ui	react

//	Generate	login	/	registration	scaffolding...

php	artisan	ui	bootstrap	--auth

php	artisan	ui	vue	--auth

php	artisan	ui	react	--auth

CSS

Laravel	Mix	provides	a	clean,	expressive	API	over	compiling	SASS	or	Less,	which	are	extensions	of	plain	CSS
that	add	variables,	mixins,	and	other	powerful	features	that	make	working	with	CSS	much	more	enjoyable.	In
this	document,	we	will	briefly	discuss	CSS	compilation	in	general;	however,	you	should	consult	the	full
Laravel	Mix	documentation	for	more	information	on	compiling	SASS	or	Less.

JavaScript

Laravel	does	not	require	you	to	use	a	specific	JavaScript	framework	or	library	to	build	your	applications.	In
fact,	you	don't	have	to	use	JavaScript	at	all.	However,	Laravel	does	include	some	basic	scaffolding	to	make	it
easier	to	get	started	writing	modern	JavaScript	using	the	Vue	library.	Vue	provides	an	expressive	API	for
building	robust	JavaScript	applications	using	components.	As	with	CSS,	we	may	use	Laravel	Mix	to	easily
compile	JavaScript	components	into	a	single,	browser-ready	JavaScript	file.

Writing	CSS

After	installing	the	laravel/ui	Composer	package	and	generating	the	frontend	scaffolding,	Laravel's	
package.json	file	will	include	the	bootstrap	package	to	help	you	get	started	prototyping	your	application's
frontend	using	Bootstrap.	However,	feel	free	to	add	or	remove	packages	from	the	package.json	file	as	needed
for	your	own	application.	You	are	not	required	to	use	the	Bootstrap	framework	to	build	your	Laravel
application	-	it	is	provided	as	a	good	starting	point	for	those	who	choose	to	use	it.

Before	compiling	your	CSS,	install	your	project's	frontend	dependencies	using	the	Node	package	manager
(NPM):

Laravel	Documentation	-	7.x	/	Frontend	Scaffolding 175

https://getbootstrap.com/
https://reactjs.org/
https://vuejs.org/
https://www.npmjs.org
https://vuejs.org
https://www.npmjs.org

npm	install

Once	the	dependencies	have	been	installed	using	npm	install,	you	can	compile	your	SASS	files	to	plain	CSS
using	Laravel	Mix.	The	npm	run	dev	command	will	process	the	instructions	in	your	webpack.mix.js	file.
Typically,	your	compiled	CSS	will	be	placed	in	the	public/css	directory:

npm	run	dev

The	webpack.mix.js	file	included	with	Laravel's	frontend	scaffolding	will	compile	the	resources/sass/app.scss
SASS	file.	This	app.scss	file	imports	a	file	of	SASS	variables	and	loads	Bootstrap,	which	provides	a	good
starting	point	for	most	applications.	Feel	free	to	customize	the	app.scss	file	however	you	wish	or	even	use	an
entirely	different	pre-processor	by	configuring	Laravel	Mix.

Writing	JavaScript

All	of	the	JavaScript	dependencies	required	by	your	application	can	be	found	in	the	package.json	file	in	the
project's	root	directory.	This	file	is	similar	to	a	composer.json	file	except	it	specifies	JavaScript	dependencies
instead	of	PHP	dependencies.	You	can	install	these	dependencies	using	the	Node	package	manager	(NPM):

npm	install

TIP	By	default,	the	Laravel	package.json	file	includes	a	few	packages	such	as	lodash	and	axios	to	help	you
get	started	building	your	JavaScript	application.	Feel	free	to	add	or	remove	from	the	package.json	file	as
needed	for	your	own	application.

Once	the	packages	are	installed,	you	can	use	the	npm	run	dev	command	to	compile	your	assets.	Webpack	is	a
module	bundler	for	modern	JavaScript	applications.	When	you	run	the	npm	run	dev	command,	Webpack	will
execute	the	instructions	in	your	webpack.mix.js	file:

npm	run	dev

By	default,	the	Laravel	webpack.mix.js	file	compiles	your	SASS	and	the	resources/js/app.js	file.	Within	the	
app.js	file	you	may	register	your	Vue	components	or,	if	you	prefer	a	different	framework,	configure	your	own
JavaScript	application.	Your	compiled	JavaScript	will	typically	be	placed	in	the	public/js	directory.

TIP	The	app.js	file	will	load	the	resources/js/bootstrap.js	file	which	bootstraps	and	configures	Vue,
Axios,	jQuery,	and	all	other	JavaScript	dependencies.	If	you	have	additional	JavaScript	dependencies	to
configure,	you	may	do	so	in	this	file.

Writing	Vue	Components

When	using	the	laravel/ui	package	to	scaffold	your	frontend,	an	ExampleComponent.vue	Vue	component	will	be
placed	in	the	resources/js/components	directory.	The	ExampleComponent.vue	file	is	an	example	of	a	single	file
Vue	component	which	defines	its	JavaScript	and	HTML	template	in	the	same	file.	Single	file	components
provide	a	very	convenient	approach	to	building	JavaScript	driven	applications.	The	example	component	is
registered	in	your	app.js	file:

Vue.component(

				'example-component',

				require('./components/ExampleComponent.vue').default

);

To	use	the	component	in	your	application,	you	may	drop	it	into	one	of	your	HTML	templates.	For	example,
after	running	the	php	artisan	ui	vue	--auth	Artisan	command	to	scaffold	your	application's	authentication	and
registration	screens,	you	could	drop	the	component	into	the	home.blade.php	Blade	template:

@extends('layouts.app')

@section('content')

				<example-component></example-component>

@endsection

TIP	Remember,	you	should	run	the	npm	run	dev	command	each	time	you	change	a	Vue	component.	Or,
you	may	run	the	npm	run	watch	command	to	monitor	and	automatically	recompile	your	components	each
time	they	are	modified.

Laravel	Documentation	-	7.x	/	Frontend	Scaffolding 176

https://www.npmjs.org
https://vuejs.org/guide/single-file-components

If	you	are	interested	in	learning	more	about	writing	Vue	components,	you	should	read	the	Vue	documentation,
which	provides	a	thorough,	easy-to-read	overview	of	the	entire	Vue	framework.

Using	React

If	you	prefer	to	use	React	to	build	your	JavaScript	application,	Laravel	makes	it	a	cinch	to	swap	the	Vue
scaffolding	with	React	scaffolding:

composer	require	laravel/ui

//	Generate	basic	scaffolding...

php	artisan	ui	react

//	Generate	login	/	registration	scaffolding...

php	artisan	ui	react	--auth

Adding	Presets

Presets	are	"macroable",	which	allows	you	to	add	additional	methods	to	the	UiCommand	class	at	runtime.	For
example,	the	following	code	adds	a	nextjs	method	to	the	UiCommand	class.	Typically,	you	should	declare	preset
macros	in	a	service	provider:

use	Laravel\Ui\UiCommand;

UiCommand::macro('nextjs',	function	(UiCommand	$command)	{

				//	Scaffold	your	frontend...

});

Then,	you	may	call	the	new	preset	via	the	ui	command:

php	artisan	ui	nextjs

Laravel	Documentation	-	7.x	/	Frontend	Scaffolding 177

https://vuejs.org/guide/

Frontend

Compiling	Assets	(Mix)
Introduction
Installation	&	Setup
Running	Mix
Working	With	Stylesheets

Less
Sass
Stylus
PostCSS
Plain	CSS
URL	Processing
Source	Maps

Working	With	JavaScript
Vendor	Extraction
React
Vanilla	JS
Custom	Webpack	Configuration

Copying	Files	&	Directories
Versioning	/	Cache	Busting
Browsersync	Reloading
Environment	Variables
Notifications

Introduction

Laravel	Mix	provides	a	fluent	API	for	defining	Webpack	build	steps	for	your	Laravel	application	using	several
common	CSS	and	JavaScript	pre-processors.	Through	simple	method	chaining,	you	can	fluently	define	your
asset	pipeline.	For	example:

mix.js('resources/js/app.js',	'public/js')

				.sass('resources/sass/app.scss',	'public/css');

If	you've	ever	been	confused	and	overwhelmed	about	getting	started	with	Webpack	and	asset	compilation,	you
will	love	Laravel	Mix.	However,	you	are	not	required	to	use	it	while	developing	your	application;	you	are	free
to	use	any	asset	pipeline	tool	you	wish,	or	even	none	at	all.

Installation	&	Setup

Installing	Node

Before	triggering	Mix,	you	must	first	ensure	that	Node.js	and	NPM	are	installed	on	your	machine.

node	-v

npm	-v

By	default,	Laravel	Homestead	includes	everything	you	need;	however,	if	you	aren't	using	Vagrant,	then	you
can	easily	install	the	latest	version	of	Node	and	NPM	using	simple	graphical	installers	from	their	download
page.

Laravel	Mix

The	only	remaining	step	is	to	install	Laravel	Mix.	Within	a	fresh	installation	of	Laravel,	you'll	find	a	
package.json	file	in	the	root	of	your	directory	structure.	The	default	package.json	file	includes	everything	you
need	to	get	started.	Think	of	this	like	your	composer.json	file,	except	it	defines	Node	dependencies	instead	of
PHP.	You	may	install	the	dependencies	it	references	by	running:

npm	install

Laravel	Documentation	-	7.x	/	Compiling	Assets 178

https://github.com/JeffreyWay/laravel-mix
https://nodejs.org/en/download/

Running	Mix

Mix	is	a	configuration	layer	on	top	of	Webpack,	so	to	run	your	Mix	tasks	you	only	need	to	execute	one	of	the
NPM	scripts	that	is	included	with	the	default	Laravel	package.json	file:

//	Run	all	Mix	tasks...

npm	run	dev

//	Run	all	Mix	tasks	and	minify	output...

npm	run	production

Watching	Assets	For	Changes

The	npm	run	watch	command	will	continue	running	in	your	terminal	and	watch	all	relevant	files	for	changes.
Webpack	will	then	automatically	recompile	your	assets	when	it	detects	a	change:

npm	run	watch

You	may	find	that	in	certain	environments	Webpack	isn't	updating	when	your	files	change.	If	this	is	the	case	on
your	system,	consider	using	the	watch-poll	command:

npm	run	watch-poll

Working	With	Stylesheets

The	webpack.mix.js	file	is	your	entry	point	for	all	asset	compilation.	Think	of	it	as	a	light	configuration	wrapper
around	Webpack.	Mix	tasks	can	be	chained	together	to	define	exactly	how	your	assets	should	be	compiled.

Less

The	less	method	may	be	used	to	compile	Less	into	CSS.	Let's	compile	our	primary	app.less	file	to	
public/css/app.css.

mix.less('resources/less/app.less',	'public/css');

Multiple	calls	to	the	less	method	may	be	used	to	compile	multiple	files:

mix.less('resources/less/app.less',	'public/css')

				.less('resources/less/admin.less',	'public/css');

If	you	wish	to	customize	the	file	name	of	the	compiled	CSS,	you	may	pass	a	full	file	path	as	the	second
argument	to	the	less	method:

mix.less('resources/less/app.less',	'public/stylesheets/styles.css');

If	you	need	to	override	the	underlying	Less	plug-in	options,	you	may	pass	an	object	as	the	third	argument	to	
mix.less():

mix.less('resources/less/app.less',	'public/css',	{

				strictMath:	true

});

Sass

The	sass	method	allows	you	to	compile	Sass	into	CSS.	You	may	use	the	method	like	so:

mix.sass('resources/sass/app.scss',	'public/css');

Again,	like	the	less	method,	you	may	compile	multiple	Sass	files	into	their	own	respective	CSS	files	and	even
customize	the	output	directory	of	the	resulting	CSS:

mix.sass('resources/sass/app.sass',	'public/css')

				.sass('resources/sass/admin.sass',	'public/css/admin');

Additional	Node-Sass	plug-in	options	may	be	provided	as	the	third	argument:

Laravel	Documentation	-	7.x	/	Compiling	Assets 179

https://webpack.js.org
http://lesscss.org/
https://github.com/webpack-contrib/less-loader#options
https://sass-lang.com/
https://github.com/sass/node-sass#options

mix.sass('resources/sass/app.sass',	'public/css',	{

				precision:	5

});

Stylus

Similar	to	Less	and	Sass,	the	stylus	method	allows	you	to	compile	Stylus	into	CSS:

mix.stylus('resources/stylus/app.styl',	'public/css');

You	may	also	install	additional	Stylus	plug-ins,	such	as	Rupture.	First,	install	the	plug-in	in	question	through
NPM	(npm	install	rupture)	and	then	require	it	in	your	call	to	mix.stylus():

mix.stylus('resources/stylus/app.styl',	'public/css',	{

				use:	[

								require('rupture')()

]

});

PostCSS

PostCSS,	a	powerful	tool	for	transforming	your	CSS,	is	included	with	Laravel	Mix	out	of	the	box.	By	default,
Mix	leverages	the	popular	Autoprefixer	plug-in	to	automatically	apply	all	necessary	CSS3	vendor	prefixes.
However,	you're	free	to	add	any	additional	plug-ins	that	are	appropriate	for	your	application.	First,	install	the
desired	plug-in	through	NPM	and	then	reference	it	in	your	webpack.mix.js	file:

mix.sass('resources/sass/app.scss',	'public/css')

				.options({

								postCss:	[

												require('postcss-css-variables')()

]

				});

Plain	CSS

If	you	would	just	like	to	concatenate	some	plain	CSS	stylesheets	into	a	single	file,	you	may	use	the	styles
method.

mix.styles([

				'public/css/vendor/normalize.css',

				'public/css/vendor/videojs.css'

],	'public/css/all.css');

URL	Processing

Because	Laravel	Mix	is	built	on	top	of	Webpack,	it's	important	to	understand	a	few	Webpack	concepts.	For
CSS	compilation,	Webpack	will	rewrite	and	optimize	any	url()	calls	within	your	stylesheets.	While	this	might
initially	sound	strange,	it's	an	incredibly	powerful	piece	of	functionality.	Imagine	that	we	want	to	compile	Sass
that	includes	a	relative	URL	to	an	image:

.example	{

				background:	url('../images/example.png');

}

NOTE	Absolute	paths	for	any	given	url()	will	be	excluded	from	URL-rewriting.	For	example,	
url('/images/thing.png')	or	url('http://example.com/images/thing.png')	won't	be	modified.

By	default,	Laravel	Mix	and	Webpack	will	find	example.png,	copy	it	to	your	public/images	folder,	and	then
rewrite	the	url()	within	your	generated	stylesheet.	As	such,	your	compiled	CSS	will	be:

.example	{

				background:	url(/images/example.png?d41d8cd98f00b204e9800998ecf8427e);

}

As	useful	as	this	feature	may	be,	it's	possible	that	your	existing	folder	structure	is	already	configured	in	a	way
you	like.	If	this	is	the	case,	you	may	disable	url()	rewriting	like	so:

Laravel	Documentation	-	7.x	/	Compiling	Assets 180

http://stylus-lang.com/
https://github.com/jescalan/rupture
https://postcss.org/
https://github.com/postcss/autoprefixer

mix.sass('resources/sass/app.scss',	'public/css')

				.options({

								processCssUrls:	false

				});

With	this	addition	to	your	webpack.mix.js	file,	Mix	will	no	longer	match	any	url()	or	copy	assets	to	your	public
directory.	In	other	words,	the	compiled	CSS	will	look	just	like	how	you	originally	typed	it:

.example	{

				background:	url("../images/thing.png");

}

Source	Maps

Though	disabled	by	default,	source	maps	may	be	activated	by	calling	the	mix.sourceMaps()	method	in	your	
webpack.mix.js	file.	Though	it	comes	with	a	compile/performance	cost,	this	will	provide	extra	debugging
information	to	your	browser's	developer	tools	when	using	compiled	assets.

mix.js('resources/js/app.js',	'public/js')

				.sourceMaps();

Style	Of	Source	Mapping

Webpack	offers	a	variety	of	source	mapping	styles.	By	default,	Mix's	source	mapping	style	is	set	to	eval-
source-map,	which	provides	a	fast	rebuild	time.	If	you	want	to	change	the	mapping	style,	you	may	do	so	using
the	sourceMaps	method:

let	productionSourceMaps	=	false;

mix.js('resources/js/app.js',	'public/js')

				.sourceMaps(productionSourceMaps,	'source-map');

Working	With	JavaScript

Mix	provides	several	features	to	help	you	work	with	your	JavaScript	files,	such	as	compiling	ECMAScript
2015,	module	bundling,	minification,	and	concatenating	plain	JavaScript	files.	Even	better,	this	all	works
seamlessly,	without	requiring	an	ounce	of	custom	configuration:

mix.js('resources/js/app.js',	'public/js');

With	this	single	line	of	code,	you	may	now	take	advantage	of:

ES2015	syntax.
Modules
Compilation	of	.vue	files.
Minification	for	production	environments.

Vendor	Extraction

One	potential	downside	to	bundling	all	application-specific	JavaScript	with	your	vendor	libraries	is	that	it
makes	long-term	caching	more	difficult.	For	example,	a	single	update	to	your	application	code	will	force	the
browser	to	re-download	all	of	your	vendor	libraries	even	if	they	haven't	changed.

If	you	intend	to	make	frequent	updates	to	your	application's	JavaScript,	you	should	consider	extracting	all	of
your	vendor	libraries	into	their	own	file.	This	way,	a	change	to	your	application	code	will	not	affect	the	caching
of	your	large	vendor.js	file.	Mix's	extract	method	makes	this	a	breeze:

mix.js('resources/js/app.js',	'public/js')

				.extract(['vue'])

The	extract	method	accepts	an	array	of	all	libraries	or	modules	that	you	wish	to	extract	into	a	vendor.js	file.
Using	the	above	snippet	as	an	example,	Mix	will	generate	the	following	files:

public/js/manifest.js:	The	Webpack	manifest	runtime

Laravel	Documentation	-	7.x	/	Compiling	Assets 181

https://webpack.js.org/configuration/devtool/#devtool

public/js/vendor.js:	Your	vendor	libraries
public/js/app.js:	Your	application	code

To	avoid	JavaScript	errors,	be	sure	to	load	these	files	in	the	proper	order:

<script	src="/js/manifest.js"></script>

<script	src="/js/vendor.js"></script>

<script	src="/js/app.js"></script>

React

Mix	can	automatically	install	the	Babel	plug-ins	necessary	for	React	support.	To	get	started,	replace	your	
mix.js()	call	with	mix.react():

mix.react('resources/js/app.jsx',	'public/js');

Behind	the	scenes,	Mix	will	download	and	include	the	appropriate	babel-preset-react	Babel	plug-in.

Vanilla	JS

Similar	to	combining	stylesheets	with	mix.styles(),	you	may	also	combine	and	minify	any	number	of
JavaScript	files	with	the	scripts()	method:

mix.scripts([

				'public/js/admin.js',

				'public/js/dashboard.js'

],	'public/js/all.js');

This	option	is	particularly	useful	for	legacy	projects	where	you	don't	require	Webpack	compilation	for	your
JavaScript.

TIP	A	slight	variation	of	mix.scripts()	is	mix.babel().	Its	method	signature	is	identical	to	scripts;
however,	the	concatenated	file	will	receive	Babel	compilation,	which	translates	any	ES2015	code	to
vanilla	JavaScript	that	all	browsers	will	understand.

Custom	Webpack	Configuration

Behind	the	scenes,	Laravel	Mix	references	a	pre-configured	webpack.config.js	file	to	get	you	up	and	running	as
quickly	as	possible.	Occasionally,	you	may	need	to	manually	modify	this	file.	You	might	have	a	special	loader
or	plug-in	that	needs	to	be	referenced,	or	maybe	you	prefer	to	use	Stylus	instead	of	Sass.	In	such	instances,	you
have	two	choices:

Merging	Custom	Configuration

Mix	provides	a	useful	webpackConfig	method	that	allows	you	to	merge	any	short	Webpack	configuration
overrides.	This	is	a	particularly	appealing	choice,	as	it	doesn't	require	you	to	copy	and	maintain	your	own	copy
of	the	webpack.config.js	file.	The	webpackConfig	method	accepts	an	object,	which	should	contain	any	Webpack-
specific	configuration	that	you	wish	to	apply.

mix.webpackConfig({

				resolve:	{

								modules:	[

												path.resolve(__dirname,	'vendor/laravel/spark/resources/assets/js')

]

				}

});

Custom	Configuration	Files

If	you	would	like	to	completely	customize	your	Webpack	configuration,	copy	the	node_modules/laravel-
mix/setup/webpack.config.js	file	to	your	project's	root	directory.	Next,	point	all	of	the	--config	references	in
your	package.json	file	to	the	newly	copied	configuration	file.	If	you	choose	to	take	this	approach	to
customization,	any	future	upstream	updates	to	Mix's	webpack.config.js	must	be	manually	merged	into	your
customized	file.

Laravel	Documentation	-	7.x	/	Compiling	Assets 182

https://webpack.js.org/configuration/

Copying	Files	&	Directories

The	copy	method	may	be	used	to	copy	files	and	directories	to	new	locations.	This	can	be	useful	when	a
particular	asset	within	your	node_modules	directory	needs	to	be	relocated	to	your	public	folder.

mix.copy('node_modules/foo/bar.css',	'public/css/bar.css');

When	copying	a	directory,	the	copy	method	will	flatten	the	directory's	structure.	To	maintain	the	directory's
original	structure,	you	should	use	the	copyDirectory	method	instead:

mix.copyDirectory('resources/img',	'public/img');

Versioning	/	Cache	Busting

Many	developers	suffix	their	compiled	assets	with	a	timestamp	or	unique	token	to	force	browsers	to	load	the
fresh	assets	instead	of	serving	stale	copies	of	the	code.	Mix	can	handle	this	for	you	using	the	version	method.

The	version	method	will	automatically	append	a	unique	hash	to	the	filenames	of	all	compiled	files,	allowing	for
more	convenient	cache	busting:

mix.js('resources/js/app.js',	'public/js')

				.version();

After	generating	the	versioned	file,	you	won't	know	the	exact	file	name.	So,	you	should	use	Laravel's	global	mix
function	within	your	views	to	load	the	appropriately	hashed	asset.	The	mix	function	will	automatically
determine	the	current	name	of	the	hashed	file:

<script	src="{{	mix('/js/app.js')	}}"></script>

Because	versioned	files	are	usually	unnecessary	in	development,	you	may	instruct	the	versioning	process	to
only	run	during	npm	run	production:

mix.js('resources/js/app.js',	'public/js');

if	(mix.inProduction())	{

				mix.version();

}

Custom	Mix	Base	URLs

If	your	Mix	compiled	assets	are	deployed	to	a	CDN	separate	from	your	application,	you	will	need	to	change	the
base	URL	generated	by	the	mix	function.	You	may	do	so	by	adding	a	mix_url	configuration	option	to	your	
config/app.php	configuration	file:

'mix_url'	=>	env('MIX_ASSET_URL',	null)

After	configuring	the	Mix	URL,	The	mix	function	will	prefix	the	configured	URL	when	generating	URLs	to
assets:

https://cdn.example.com/js/app.js?id=1964becbdd96414518cd

Browsersync	Reloading

BrowserSync	can	automatically	monitor	your	files	for	changes,	and	inject	your	changes	into	the	browser
without	requiring	a	manual	refresh.	You	may	enable	support	by	calling	the	mix.browserSync()	method:

mix.browserSync('my-domain.test');

//	Or...

//	https://browsersync.io/docs/options

mix.browserSync({

				proxy:	'my-domain.test'

});

Laravel	Documentation	-	7.x	/	Compiling	Assets 183

https://browsersync.io/

You	may	pass	either	a	string	(proxy)	or	object	(BrowserSync	settings)	to	this	method.	Next,	start	Webpack's	dev
server	using	the	npm	run	watch	command.	Now,	when	you	modify	a	script	or	PHP	file,	watch	as	the	browser
instantly	refreshes	the	page	to	reflect	your	changes.

Environment	Variables

You	may	inject	environment	variables	into	Mix	by	prefixing	a	key	in	your	.env	file	with	MIX_:

MIX_SENTRY_DSN_PUBLIC=http://example.com

After	the	variable	has	been	defined	in	your	.env	file,	you	may	access	it	via	the	process.env	object.	If	the	value
changes	while	you	are	running	a	watch	task,	you	will	need	to	restart	the	task:

process.env.MIX_SENTRY_DSN_PUBLIC

Notifications

When	available,	Mix	will	automatically	display	OS	notifications	for	each	bundle.	This	will	give	you	instant
feedback,	as	to	whether	the	compilation	was	successful	or	not.	However,	there	may	be	instances	when	you'd
prefer	to	disable	these	notifications.	One	such	example	might	be	triggering	Mix	on	your	production	server.
Notifications	may	be	deactivated,	via	the	disableNotifications	method.

mix.disableNotifications();

Laravel	Documentation	-	7.x	/	Compiling	Assets 184

Security

Authentication
Introduction

Database	Considerations
Authentication	Quickstart

Routing
Views
Authenticating
Retrieving	The	Authenticated	User
Protecting	Routes
Password	Confirmation
Login	Throttling

Manually	Authenticating	Users
Remembering	Users
Other	Authentication	Methods

HTTP	Basic	Authentication
Stateless	HTTP	Basic	Authentication

Logging	Out
Invalidating	Sessions	On	Other	Devices

Social	Authentication
Adding	Custom	Guards

Closure	Request	Guards
Adding	Custom	User	Providers

The	User	Provider	Contract
The	Authenticatable	Contract

Events

Introduction

TIP	Want	to	get	started	fast?	Install	the	laravel/ui	Composer	package	and	run	php	artisan	ui	vue	--
auth	in	a	fresh	Laravel	application.	After	migrating	your	database,	navigate	your	browser	to	http://your-
app.test/register	or	any	other	URL	that	is	assigned	to	your	application.	These	commands	will	take	care
of	scaffolding	your	entire	authentication	system!

Laravel	makes	implementing	authentication	very	simple.	In	fact,	almost	everything	is	configured	for	you	out	of
the	box.	The	authentication	configuration	file	is	located	at	config/auth.php,	which	contains	several	well
documented	options	for	tweaking	the	behavior	of	the	authentication	services.

At	its	core,	Laravel's	authentication	facilities	are	made	up	of	"guards"	and	"providers".	Guards	define	how	users
are	authenticated	for	each	request.	For	example,	Laravel	ships	with	a	session	guard	which	maintains	state	using
session	storage	and	cookies.

Providers	define	how	users	are	retrieved	from	your	persistent	storage.	Laravel	ships	with	support	for	retrieving
users	using	Eloquent	and	the	database	query	builder.	However,	you	are	free	to	define	additional	providers	as
needed	for	your	application.

Don't	worry	if	this	all	sounds	confusing	now!	Many	applications	will	never	need	to	modify	the	default
authentication	configuration.

Database	Considerations

By	default,	Laravel	includes	an	App\User	Eloquent	model	in	your	app	directory.	This	model	may	be	used	with
the	default	Eloquent	authentication	driver.	If	your	application	is	not	using	Eloquent,	you	may	use	the	database
authentication	driver	which	uses	the	Laravel	query	builder.

When	building	the	database	schema	for	the	App\User	model,	make	sure	the	password	column	is	at	least	60
characters	in	length.	Maintaining	the	default	string	column	length	of	255	characters	would	be	a	good	choice.

Laravel	Documentation	-	7.x	/	Security 185

https://github.com/laravel/socialite

Also,	you	should	verify	that	your	users	(or	equivalent)	table	contains	a	nullable,	string	remember_token	column
of	100	characters.	This	column	will	be	used	to	store	a	token	for	users	that	select	the	"remember	me"	option
when	logging	into	your	application.

Authentication	Quickstart

Routing

Laravel's	laravel/ui	package	provides	a	quick	way	to	scaffold	all	of	the	routes	and	views	you	need	for
authentication	using	a	few	simple	commands:

composer	require	laravel/ui:^2.4

php	artisan	ui	vue	--auth

This	command	should	be	used	on	fresh	applications	and	will	install	a	layout	view,	registration	and	login	views,
as	well	as	routes	for	all	authentication	end-points.	A	HomeController	will	also	be	generated	to	handle	post-login
requests	to	your	application's	dashboard.

The	laravel/ui	package	also	generates	several	pre-built	authentication	controllers,	which	are	located	in	the	
App\Http\Controllers\Auth	namespace.	The	RegisterController	handles	new	user	registration,	the	
LoginController	handles	authentication,	the	ForgotPasswordController	handles	e-mailing	links	for	resetting
passwords,	and	the	ResetPasswordController	contains	the	logic	to	reset	passwords.	Each	of	these	controllers
uses	a	trait	to	include	their	necessary	methods.	For	many	applications,	you	will	not	need	to	modify	these
controllers	at	all.

TIP	If	your	application	doesn’t	need	registration,	you	may	disable	it	by	removing	the	newly	created	
RegisterController	and	modifying	your	route	declaration:	Auth::routes(['register'	=>	false]);.

Creating	Applications	Including	Authentication

If	you	are	starting	a	brand	new	application	and	would	like	to	include	the	authentication	scaffolding,	you	may
use	the	--auth	directive	when	creating	your	application.	This	command	will	create	a	new	application	with	all	of
the	authentication	scaffolding	compiled	and	installed:

laravel	new	blog	--auth

Views

As	mentioned	in	the	previous	section,	the	laravel/ui	package's	php	artisan	ui	vue	--auth	command	will	create
all	of	the	views	you	need	for	authentication	and	place	them	in	the	resources/views/auth	directory.

The	ui	command	will	also	create	a	resources/views/layouts	directory	containing	a	base	layout	for	your
application.	All	of	these	views	use	the	Bootstrap	CSS	framework,	but	you	are	free	to	customize	them	however
you	wish.

Authenticating

Now	that	you	have	routes	and	views	setup	for	the	included	authentication	controllers,	you	are	ready	to	register
and	authenticate	new	users	for	your	application!	You	may	access	your	application	in	a	browser	since	the
authentication	controllers	already	contain	the	logic	(via	their	traits)	to	authenticate	existing	users	and	store	new
users	in	the	database.

Path	Customization

When	a	user	is	successfully	authenticated,	they	will	be	redirected	to	the	/home	URI.	You	can	customize	the	post-
authentication	redirect	path	using	the	HOME	constant	defined	in	your	RouteServiceProvider:

public	const	HOME	=	'/home';

If	you	need	more	robust	customization	of	the	response	returned	when	a	user	is	authenticated,	Laravel	provides

Laravel	Documentation	-	7.x	/	Security 186

an	empty	authenticated(Request	$request,	$user)	method	within	the	AuthenticatesUsers	trait.	This	trait	is	used
by	the	LoginController	class	that	is	installed	into	your	application	when	using	the	laravel/ui	package.
Therefore,	you	can	define	your	own	authenticated	method	within	the	LoginController	class:

/**

	*	The	user	has	been	authenticated.

	*

	*	@param		\Illuminate\Http\Request		$request

	*	@param		mixed		$user

	*	@return	mixed

	*/

protected	function	authenticated(Request	$request,	$user)

{

				return	response([

								//

]);

}

Username	Customization

By	default,	Laravel	uses	the	email	field	for	authentication.	If	you	would	like	to	customize	this,	you	may	define
a	username	method	on	your	LoginController:

public	function	username()

{

				return	'username';

}

Guard	Customization

You	may	also	customize	the	"guard"	that	is	used	to	authenticate	and	register	users.	To	get	started,	define	a	guard
method	on	your	LoginController,	RegisterController,	and	ResetPasswordController.	The	method	should	return
a	guard	instance:

use	Illuminate\Support\Facades\Auth;

protected	function	guard()

{

				return	Auth::guard('guard-name');

}

Validation	/	Storage	Customization

To	modify	the	form	fields	that	are	required	when	a	new	user	registers	with	your	application,	or	to	customize
how	new	users	are	stored	into	your	database,	you	may	modify	the	RegisterController	class.	This	class	is
responsible	for	validating	and	creating	new	users	of	your	application.

The	validator	method	of	the	RegisterController	contains	the	validation	rules	for	new	users	of	the	application.
You	are	free	to	modify	this	method	as	you	wish.

The	create	method	of	the	RegisterController	is	responsible	for	creating	new	App\User	records	in	your	database
using	the	Eloquent	ORM.	You	are	free	to	modify	this	method	according	to	the	needs	of	your	database.

Retrieving	The	Authenticated	User

You	may	access	the	authenticated	user	via	the	Auth	facade:

use	Illuminate\Support\Facades\Auth;

//	Get	the	currently	authenticated	user...

$user	=	Auth::user();

//	Get	the	currently	authenticated	user's	ID...

$id	=	Auth::id();

Alternatively,	once	a	user	is	authenticated,	you	may	access	the	authenticated	user	via	an	
Illuminate\Http\Request	instance.	Remember,	type-hinted	classes	will	automatically	be	injected	into	your
controller	methods:

Laravel	Documentation	-	7.x	/	Security 187

<?php

namespace	App\Http\Controllers;

use	Illuminate\Http\Request;

class	ProfileController	extends	Controller

{

				/**

					*	Update	the	user's	profile.

					*

					*	@param		Request		$request

					*	@return	Response

					*/

				public	function	update(Request	$request)

				{

								//	$request->user()	returns	an	instance	of	the	authenticated	user...

				}

}

Determining	If	The	Current	User	Is	Authenticated

To	determine	if	the	user	is	already	logged	into	your	application,	you	may	use	the	check	method	on	the	Auth
facade,	which	will	return	true	if	the	user	is	authenticated:

use	Illuminate\Support\Facades\Auth;

if	(Auth::check())	{

				//	The	user	is	logged	in...

}

TIP	Even	though	it	is	possible	to	determine	if	a	user	is	authenticated	using	the	check	method,	you	will
typically	use	a	middleware	to	verify	that	the	user	is	authenticated	before	allowing	the	user	access	to	certain
routes	/	controllers.	To	learn	more	about	this,	check	out	the	documentation	on	protecting	routes.

Protecting	Routes

Route	middleware	can	be	used	to	only	allow	authenticated	users	to	access	a	given	route.	Laravel	ships	with	an	
auth	middleware,	which	is	defined	at	Illuminate\Auth\Middleware\Authenticate.	Since	this	middleware	is
already	registered	in	your	HTTP	kernel,	all	you	need	to	do	is	attach	the	middleware	to	a	route	definition:

Route::get('profile',	function	()	{

				//	Only	authenticated	users	may	enter...

})->middleware('auth');

If	you	are	using	controllers,	you	may	call	the	middleware	method	from	the	controller's	constructor	instead	of
attaching	it	in	the	route	definition	directly:

public	function	__construct()

{

				$this->middleware('auth');

}

Redirecting	Unauthenticated	Users

When	the	auth	middleware	detects	an	unauthorized	user,	it	will	redirect	the	user	to	the	login	named	route.	You
may	modify	this	behavior	by	updating	the	redirectTo	function	in	your	app/Http/Middleware/Authenticate.php
file:

/**

	*	Get	the	path	the	user	should	be	redirected	to.

	*

	*	@param		\Illuminate\Http\Request		$request

	*	@return	string

	*/

protected	function	redirectTo($request)

{

				return	route('login');

}

Laravel	Documentation	-	7.x	/	Security 188

Specifying	A	Guard

When	attaching	the	auth	middleware	to	a	route,	you	may	also	specify	which	guard	should	be	used	to
authenticate	the	user.	The	guard	specified	should	correspond	to	one	of	the	keys	in	the	guards	array	of	your	
auth.php	configuration	file:

public	function	__construct()

{

				$this->middleware('auth:api');

}

Password	Confirmation

Sometimes,	you	may	wish	to	require	the	user	to	confirm	their	password	before	accessing	a	specific	area	of	your
application.	For	example,	you	may	require	this	before	the	user	modifies	any	billing	settings	within	the
application.

To	accomplish	this,	Laravel	provides	a	password.confirm	middleware.	Attaching	the	password.confirm
middleware	to	a	route	will	redirect	users	to	a	screen	where	they	need	to	confirm	their	password	before	they	can
continue:

Route::get('/settings/security',	function	()	{

				//	Users	must	confirm	their	password	before	continuing...

})->middleware(['auth',	'password.confirm']);

After	the	user	has	successfully	confirmed	their	password,	the	user	is	redirected	to	the	route	they	originally	tried
to	access.	By	default,	after	confirming	their	password,	the	user	will	not	have	to	confirm	their	password	again
for	three	hours.	You	are	free	to	customize	the	length	of	time	before	the	user	must	re-confirm	their	password
using	the	auth.password_timeout	configuration	option.

Login	Throttling

If	you	are	using	Laravel's	built-in	LoginController	class,	the	Illuminate\Foundation\Auth\ThrottlesLogins	trait
will	already	be	included	in	your	controller.	By	default,	the	user	will	not	be	able	to	login	for	one	minute	if	they
fail	to	provide	the	correct	credentials	after	several	attempts.	The	throttling	is	unique	to	the	user's	username	/	e-
mail	address	and	their	IP	address.

Manually	Authenticating	Users

Note	that	you	are	not	required	to	use	the	authentication	controllers	included	with	Laravel.	If	you	choose	to
remove	these	controllers,	you	will	need	to	manage	user	authentication	using	the	Laravel	authentication	classes
directly.	Don't	worry,	it's	a	cinch!

We	will	access	Laravel's	authentication	services	via	the	Auth	facade,	so	we'll	need	to	make	sure	to	import	the	
Auth	facade	at	the	top	of	the	class.	Next,	let's	check	out	the	attempt	method:

<?php

namespace	App\Http\Controllers;

use	Illuminate\Http\Request;

use	Illuminate\Support\Facades\Auth;

class	LoginController	extends	Controller

{

				/**

					*	Handle	an	authentication	attempt.

					*

					*	@param		\Illuminate\Http\Request	$request

					*

					*	@return	Response

					*/

				public	function	authenticate(Request	$request)

				{

								$credentials	=	$request->only('email',	'password');

								if	(Auth::attempt($credentials))	{

Laravel	Documentation	-	7.x	/	Security 189

												//	Authentication	passed...

												return	redirect()->intended('dashboard');

								}

				}

}

The	attempt	method	accepts	an	array	of	key	/	value	pairs	as	its	first	argument.	The	values	in	the	array	will	be
used	to	find	the	user	in	your	database	table.	So,	in	the	example	above,	the	user	will	be	retrieved	by	the	value	of
the	email	column.	If	the	user	is	found,	the	hashed	password	stored	in	the	database	will	be	compared	with	the	
password	value	passed	to	the	method	via	the	array.	You	should	not	hash	the	password	specified	as	the	password
value,	since	the	framework	will	automatically	hash	the	value	before	comparing	it	to	the	hashed	password	in	the
database.	If	the	two	hashed	passwords	match	an	authenticated	session	will	be	started	for	the	user.

The	attempt	method	will	return	true	if	authentication	was	successful.	Otherwise,	false	will	be	returned.

The	intended	method	on	the	redirector	will	redirect	the	user	to	the	URL	they	were	attempting	to	access	before
being	intercepted	by	the	authentication	middleware.	A	fallback	URI	may	be	given	to	this	method	in	case	the
intended	destination	is	not	available.

Specifying	Additional	Conditions

If	you	wish,	you	may	also	add	extra	conditions	to	the	authentication	query	in	addition	to	the	user's	e-mail	and
password.	For	example,	we	may	verify	that	user	is	marked	as	"active":

if	(Auth::attempt(['email'	=>	$email,	'password'	=>	$password,	'active'	=>	1]))	{

				//	The	user	is	active,	not	suspended,	and	exists.

}

NOTE	In	these	examples,	email	is	not	a	required	option,	it	is	merely	used	as	an	example.	You	should	use
whatever	column	name	corresponds	to	a	"username"	in	your	database.

Accessing	Specific	Guard	Instances

You	may	specify	which	guard	instance	you	would	like	to	utilize	using	the	guard	method	on	the	Auth	facade.
This	allows	you	to	manage	authentication	for	separate	parts	of	your	application	using	entirely	separate
authenticatable	models	or	user	tables.

The	guard	name	passed	to	the	guard	method	should	correspond	to	one	of	the	guards	configured	in	your	auth.php
configuration	file:

if	(Auth::guard('admin')->attempt($credentials))	{

				//

}

Logging	Out

To	log	users	out	of	your	application,	you	may	use	the	logout	method	on	the	Auth	facade.	This	will	clear	the
authentication	information	in	the	user's	session:

Auth::logout();

Remembering	Users

If	you	would	like	to	provide	"remember	me"	functionality	in	your	application,	you	may	pass	a	boolean	value	as
the	second	argument	to	the	attempt	method,	which	will	keep	the	user	authenticated	indefinitely,	or	until	they
manually	logout.	Your	users	table	must	include	the	string	remember_token	column,	which	will	be	used	to	store
the	"remember	me"	token.

if	(Auth::attempt(['email'	=>	$email,	'password'	=>	$password],	$remember))	{

				//	The	user	is	being	remembered...

}

TIP	If	you	are	using	the	built-in	LoginController	that	is	shipped	with	Laravel,	the	proper	logic	to
"remember"	users	is	already	implemented	by	the	traits	used	by	the	controller.

Laravel	Documentation	-	7.x	/	Security 190

If	you	are	"remembering"	users,	you	may	use	the	viaRemember	method	to	determine	if	the	user	was	authenticated
using	the	"remember	me"	cookie:

if	(Auth::viaRemember())	{

				//

}

Other	Authentication	Methods

Authenticate	A	User	Instance

If	you	need	to	log	an	existing	user	instance	into	your	application,	you	may	call	the	login	method	with	the	user
instance.	The	given	object	must	be	an	implementation	of	the	Illuminate\Contracts\Auth\Authenticatable
contract.	The	App\User	model	included	with	Laravel	already	implements	this	interface:

Auth::login($user);

//	Login	and	"remember"	the	given	user...

Auth::login($user,	true);

You	may	specify	the	guard	instance	you	would	like	to	use:

Auth::guard('admin')->login($user);

Authenticate	A	User	By	ID

To	log	a	user	into	the	application	by	their	ID,	you	may	use	the	loginUsingId	method.	This	method	accepts	the
primary	key	of	the	user	you	wish	to	authenticate:

Auth::loginUsingId(1);

//	Login	and	"remember"	the	given	user...

Auth::loginUsingId(1,	true);

Authenticate	A	User	Once

You	may	use	the	once	method	to	log	a	user	into	the	application	for	a	single	request.	No	sessions	or	cookies	will
be	utilized,	which	means	this	method	may	be	helpful	when	building	a	stateless	API:

if	(Auth::once($credentials))	{

				//

}

HTTP	Basic	Authentication

HTTP	Basic	Authentication	provides	a	quick	way	to	authenticate	users	of	your	application	without	setting	up	a
dedicated	"login"	page.	To	get	started,	attach	the	auth.basic	middleware	to	your	route.	The	auth.basic
middleware	is	included	with	the	Laravel	framework,	so	you	do	not	need	to	define	it:

Route::get('profile',	function	()	{

				//	Only	authenticated	users	may	enter...

})->middleware('auth.basic');

Once	the	middleware	has	been	attached	to	the	route,	you	will	automatically	be	prompted	for	credentials	when
accessing	the	route	in	your	browser.	By	default,	the	auth.basic	middleware	will	use	the	email	column	on	the
user	record	as	the	"username".

A	Note	On	FastCGI

If	you	are	using	PHP	FastCGI,	HTTP	Basic	authentication	may	not	work	correctly	out	of	the	box.	The
following	lines	should	be	added	to	your	.htaccess	file:

RewriteCond	%{HTTP:Authorization}	^(.+)$

RewriteRule	.*	-	[E=HTTP_AUTHORIZATION:%{HTTP:Authorization}]

Laravel	Documentation	-	7.x	/	Security 191

https://en.wikipedia.org/wiki/Basic_access_authentication

Stateless	HTTP	Basic	Authentication

You	may	also	use	HTTP	Basic	Authentication	without	setting	a	user	identifier	cookie	in	the	session,	which	is
particularly	useful	for	API	authentication.	To	do	so,	define	a	middleware	that	calls	the	onceBasic	method.	If	no
response	is	returned	by	the	onceBasic	method,	the	request	may	be	passed	further	into	the	application:

<?php

namespace	App\Http\Middleware;

use	Illuminate\Support\Facades\Auth;

class	AuthenticateOnceWithBasicAuth

{

				/**

					*	Handle	an	incoming	request.

					*

					*	@param		\Illuminate\Http\Request		$request

					*	@param		\Closure		$next

					*	@return	mixed

					*/

				public	function	handle($request,	$next)

				{

								return	Auth::onceBasic()	?:	$next($request);

				}

}

Next,	register	the	route	middleware	and	attach	it	to	a	route:

Route::get('api/user',	function	()	{

				//	Only	authenticated	users	may	enter...

})->middleware('auth.basic.once');

Logging	Out

To	manually	log	users	out	of	your	application,	you	may	use	the	logout	method	on	the	Auth	facade.	This	will
clear	the	authentication	information	in	the	user's	session:

use	Illuminate\Support\Facades\Auth;

Auth::logout();

Invalidating	Sessions	On	Other	Devices

Laravel	also	provides	a	mechanism	for	invalidating	and	"logging	out"	a	user's	sessions	that	are	active	on	other
devices	without	invalidating	the	session	on	their	current	device.	This	feature	is	typically	utilized	when	a	user	is
changing	or	updating	their	password	and	you	would	like	to	invalidate	sessions	on	other	devices	while	keeping
the	current	device	authenticated.

Before	getting	started,	you	should	make	sure	that	the	Illuminate\Session\Middleware\AuthenticateSession
middleware	is	present	and	un-commented	in	your	app/Http/Kernel.php	class'	web	middleware	group:

'web'	=>	[

				//	...

				\Illuminate\Session\Middleware\AuthenticateSession::class,

				//	...

],

Then,	you	may	use	the	logoutOtherDevices	method	on	the	Auth	facade.	This	method	requires	the	user	to	provide
their	current	password,	which	your	application	should	accept	through	an	input	form:

use	Illuminate\Support\Facades\Auth;

Auth::logoutOtherDevices($password);

When	the	logoutOtherDevices	method	is	invoked,	the	user's	other	sessions	will	be	invalidated	entirely,	meaning
they	will	be	"logged	out"	of	all	guards	they	were	previously	authenticated	by.

Laravel	Documentation	-	7.x	/	Security 192

NOTE	When	using	the	AuthenticateSession	middleware	in	combination	with	a	custom	route	name	for	the	
login	route,	you	must	override	the	unauthenticated	method	on	your	application's	exception	handler	to
properly	redirect	users	to	your	login	page.

Adding	Custom	Guards

You	may	define	your	own	authentication	guards	using	the	extend	method	on	the	Auth	facade.	You	should	place
this	call	to	extend	within	a	service	provider.	Since	Laravel	already	ships	with	an	AuthServiceProvider,	we	can
place	the	code	in	that	provider:

<?php

namespace	App\Providers;

use	App\Services\Auth\JwtGuard;

use	Illuminate\Foundation\Support\Providers\AuthServiceProvider	as	ServiceProvider;

use	Illuminate\Support\Facades\Auth;

class	AuthServiceProvider	extends	ServiceProvider

{

				/**

					*	Register	any	application	authentication	/	authorization	services.

					*

					*	@return	void

					*/

				public	function	boot()

				{

								$this->registerPolicies();

								Auth::extend('jwt',	function	($app,	$name,	array	$config)	{

												//	Return	an	instance	of	Illuminate\Contracts\Auth\Guard...

												return	new	JwtGuard(Auth::createUserProvider($config['provider']));

								});

				}

}

As	you	can	see	in	the	example	above,	the	callback	passed	to	the	extend	method	should	return	an
implementation	of	Illuminate\Contracts\Auth\Guard.	This	interface	contains	a	few	methods	you	will	need	to
implement	to	define	a	custom	guard.	Once	your	custom	guard	has	been	defined,	you	may	use	this	guard	in	the	
guards	configuration	of	your	auth.php	configuration	file:

'guards'	=>	[

				'api'	=>	[

								'driver'	=>	'jwt',

								'provider'	=>	'users',

],

],

Closure	Request	Guards

The	simplest	way	to	implement	a	custom,	HTTP	request	based	authentication	system	is	by	using	the	
Auth::viaRequest	method.	This	method	allows	you	to	quickly	define	your	authentication	process	using	a	single
Closure.

To	get	started,	call	the	Auth::viaRequest	method	within	the	boot	method	of	your	AuthServiceProvider.	The	
viaRequest	method	accepts	an	authentication	driver	name	as	its	first	argument.	This	name	can	be	any	string	that
describes	your	custom	guard.	The	second	argument	passed	to	the	method	should	be	a	Closure	that	receives	the
incoming	HTTP	request	and	returns	a	user	instance	or,	if	authentication	fails,	null:

use	App\User;

use	Illuminate\Http\Request;

use	Illuminate\Support\Facades\Auth;

/**

	*	Register	any	application	authentication	/	authorization	services.

	*

	*	@return	void

	*/

public	function	boot()

{

Laravel	Documentation	-	7.x	/	Security 193

				$this->registerPolicies();

				Auth::viaRequest('custom-token',	function	($request)	{

								return	User::where('token',	$request->token)->first();

				});

}

Once	your	custom	authentication	driver	has	been	defined,	you	use	it	as	a	driver	within	guards	configuration	of
your	auth.php	configuration	file:

'guards'	=>	[

				'api'	=>	[

								'driver'	=>	'custom-token',

],

],

Adding	Custom	User	Providers

If	you	are	not	using	a	traditional	relational	database	to	store	your	users,	you	will	need	to	extend	Laravel	with
your	own	authentication	user	provider.	We	will	use	the	provider	method	on	the	Auth	facade	to	define	a	custom
user	provider:

<?php

namespace	App\Providers;

use	App\Extensions\RiakUserProvider;

use	Illuminate\Foundation\Support\Providers\AuthServiceProvider	as	ServiceProvider;

use	Illuminate\Support\Facades\Auth;

class	AuthServiceProvider	extends	ServiceProvider

{

				/**

					*	Register	any	application	authentication	/	authorization	services.

					*

					*	@return	void

					*/

				public	function	boot()

				{

								$this->registerPolicies();

								Auth::provider('riak',	function	($app,	array	$config)	{

												//	Return	an	instance	of	Illuminate\Contracts\Auth\UserProvider...

												return	new	RiakUserProvider($app->make('riak.connection'));

								});

				}

}

After	you	have	registered	the	provider	using	the	provider	method,	you	may	switch	to	the	new	user	provider	in
your	auth.php	configuration	file.	First,	define	a	provider	that	uses	your	new	driver:

'providers'	=>	[

				'users'	=>	[

								'driver'	=>	'riak',

],

],

Finally,	you	may	use	this	provider	in	your	guards	configuration:

'guards'	=>	[

				'web'	=>	[

								'driver'	=>	'session',

								'provider'	=>	'users',

],

],

The	User	Provider	Contract

The	Illuminate\Contracts\Auth\UserProvider	implementations	are	only	responsible	for	fetching	a	
Illuminate\Contracts\Auth\Authenticatable	implementation	out	of	a	persistent	storage	system,	such	as
MySQL,	Riak,	etc.	These	two	interfaces	allow	the	Laravel	authentication	mechanisms	to	continue	functioning

Laravel	Documentation	-	7.x	/	Security 194

regardless	of	how	the	user	data	is	stored	or	what	type	of	class	is	used	to	represent	it.

Let's	take	a	look	at	the	Illuminate\Contracts\Auth\UserProvider	contract:

<?php

namespace	Illuminate\Contracts\Auth;

interface	UserProvider

{

				public	function	retrieveById($identifier);

				public	function	retrieveByToken($identifier,	$token);

				public	function	updateRememberToken(Authenticatable	$user,	$token);

				public	function	retrieveByCredentials(array	$credentials);

				public	function	validateCredentials(Authenticatable	$user,	array	$credentials);

}

The	retrieveById	function	typically	receives	a	key	representing	the	user,	such	as	an	auto-incrementing	ID	from
a	MySQL	database.	The	Authenticatable	implementation	matching	the	ID	should	be	retrieved	and	returned	by
the	method.

The	retrieveByToken	function	retrieves	a	user	by	their	unique	$identifier	and	"remember	me"	$token,	stored	in
a	field	remember_token.	As	with	the	previous	method,	the	Authenticatable	implementation	should	be	returned.

The	updateRememberToken	method	updates	the	$user	field	remember_token	with	the	new	$token.	A	fresh	token	is
assigned	on	a	successful	"remember	me"	login	attempt	or	when	the	user	is	logging	out.

The	retrieveByCredentials	method	receives	the	array	of	credentials	passed	to	the	Auth::attempt	method	when
attempting	to	sign	into	an	application.	The	method	should	then	"query"	the	underlying	persistent	storage	for	the
user	matching	those	credentials.	Typically,	this	method	will	run	a	query	with	a	"where"	condition	on	
$credentials['username'].	The	method	should	then	return	an	implementation	of	Authenticatable.	This	method
should	not	attempt	to	do	any	password	validation	or	authentication.

The	validateCredentials	method	should	compare	the	given	$user	with	the	$credentials	to	authenticate	the	user.
For	example,	this	method	should	probably	use	Hash::check	to	compare	the	value	of	$user->getAuthPassword()	to
the	value	of	$credentials['password'].	This	method	should	return	true	or	false	indicating	on	whether	the
password	is	valid.

The	Authenticatable	Contract

Now	that	we	have	explored	each	of	the	methods	on	the	UserProvider,	let's	take	a	look	at	the	Authenticatable
contract.	Remember,	the	provider	should	return	implementations	of	this	interface	from	the	retrieveById,	
retrieveByToken,	and	retrieveByCredentials	methods:

<?php

namespace	Illuminate\Contracts\Auth;

interface	Authenticatable

{

				public	function	getAuthIdentifierName();

				public	function	getAuthIdentifier();

				public	function	getAuthPassword();

				public	function	getRememberToken();

				public	function	setRememberToken($value);

				public	function	getRememberTokenName();

}

This	interface	is	simple.	The	getAuthIdentifierName	method	should	return	the	name	of	the	"primary	key"	field
of	the	user	and	the	getAuthIdentifier	method	should	return	the	"primary	key"	of	the	user.	In	a	MySQL	back-
end,	again,	this	would	be	the	auto-incrementing	primary	key.	The	getAuthPassword	should	return	the	user's
hashed	password.	This	interface	allows	the	authentication	system	to	work	with	any	User	class,	regardless	of
what	ORM	or	storage	abstraction	layer	you	are	using.	By	default,	Laravel	includes	a	User	class	in	the	app
directory	which	implements	this	interface,	so	you	may	consult	this	class	for	an	implementation	example.

Events

Laravel	Documentation	-	7.x	/	Security 195

Laravel	raises	a	variety	of	events	during	the	authentication	process.	You	may	attach	listeners	to	these	events	in
your	EventServiceProvider:

/**

	*	The	event	listener	mappings	for	the	application.

	*

	*	@var	array

	*/

protected	$listen	=	[

				'Illuminate\Auth\Events\Registered'	=>	[

								'App\Listeners\LogRegisteredUser',

],

				'Illuminate\Auth\Events\Attempting'	=>	[

								'App\Listeners\LogAuthenticationAttempt',

],

				'Illuminate\Auth\Events\Authenticated'	=>	[

								'App\Listeners\LogAuthenticated',

],

				'Illuminate\Auth\Events\Login'	=>	[

								'App\Listeners\LogSuccessfulLogin',

],

				'Illuminate\Auth\Events\Failed'	=>	[

								'App\Listeners\LogFailedLogin',

],

				'Illuminate\Auth\Events\Validated'	=>	[

								'App\Listeners\LogValidated',

],

				

				'Illuminate\Auth\Events\Verified'	=>	[

								'App\Listeners\LogVerified',

],

				'Illuminate\Auth\Events\Logout'	=>	[

								'App\Listeners\LogSuccessfulLogout',

],

				'Illuminate\Auth\Events\CurrentDeviceLogout'	=>	[

								'App\Listeners\LogCurrentDeviceLogout',

],

				'Illuminate\Auth\Events\OtherDeviceLogout'	=>	[

								'App\Listeners\LogOtherDeviceLogout',

],

				'Illuminate\Auth\Events\Lockout'	=>	[

								'App\Listeners\LogLockout',

],

				'Illuminate\Auth\Events\PasswordReset'	=>	[

								'App\Listeners\LogPasswordReset',

],

];

Laravel	Documentation	-	7.x	/	Security 196

Security

Authorization
Introduction
Gates

Writing	Gates
Authorizing	Actions
Gate	Responses
Intercepting	Gate	Checks

Creating	Policies
Generating	Policies
Registering	Policies

Writing	Policies
Policy	Methods
Policy	Responses
Methods	Without	Models
Guest	Users
Policy	Filters

Authorizing	Actions	Using	Policies
Via	The	User	Model
Via	Middleware
Via	Controller	Helpers
Via	Blade	Templates
Supplying	Additional	Context

Introduction

In	addition	to	providing	authentication	services	out	of	the	box,	Laravel	also	provides	a	simple	way	to	authorize
user	actions	against	a	given	resource.	Like	authentication,	Laravel's	approach	to	authorization	is	simple,	and
there	are	two	primary	ways	of	authorizing	actions:	gates	and	policies.

Think	of	gates	and	policies	like	routes	and	controllers.	Gates	provide	a	simple,	Closure	based	approach	to
authorization	while	policies,	like	controllers,	group	their	logic	around	a	particular	model	or	resource.	We'll
explore	gates	first	and	then	examine	policies.

You	do	not	need	to	choose	between	exclusively	using	gates	or	exclusively	using	policies	when	building	an
application.	Most	applications	will	most	likely	contain	a	mixture	of	gates	and	policies,	and	that	is	perfectly
fine!	Gates	are	most	applicable	to	actions	which	are	not	related	to	any	model	or	resource,	such	as	viewing	an
administrator	dashboard.	In	contrast,	policies	should	be	used	when	you	wish	to	authorize	an	action	for	a
particular	model	or	resource.

Gates

Writing	Gates

Gates	are	Closures	that	determine	if	a	user	is	authorized	to	perform	a	given	action	and	are	typically	defined	in
the	App\Providers\AuthServiceProvider	class	using	the	Gate	facade.	Gates	always	receive	a	user	instance	as	their
first	argument,	and	may	optionally	receive	additional	arguments	such	as	a	relevant	Eloquent	model:

/**

	*	Register	any	authentication	/	authorization	services.

	*

	*	@return	void

	*/

public	function	boot()

{

				$this->registerPolicies();

				Gate::define('edit-settings',	function	($user)	{

								return	$user->isAdmin;

Laravel	Documentation	-	7.x	/	Authorization 197

				});

				Gate::define('update-post',	function	($user,	$post)	{

								return	$user->id	===	$post->user_id;

				});

}

Gates	may	also	be	defined	using	a	Class@method	style	callback	string,	like	controllers:

/**

	*	Register	any	authentication	/	authorization	services.

	*

	*	@return	void

	*/

public	function	boot()

{

				$this->registerPolicies();

				Gate::define('update-post',	'App\Policies\PostPolicy@update');

}

Authorizing	Actions

To	authorize	an	action	using	gates,	you	should	use	the	allows	or	denies	methods.	Note	that	you	are	not	required
to	pass	the	currently	authenticated	user	to	these	methods.	Laravel	will	automatically	take	care	of	passing	the
user	into	the	gate	Closure:

if	(Gate::allows('edit-settings'))	{

				//	The	current	user	can	edit	settings

}

if	(Gate::allows('update-post',	$post))	{

				//	The	current	user	can	update	the	post...

}

if	(Gate::denies('update-post',	$post))	{

				//	The	current	user	can't	update	the	post...

}

If	you	would	like	to	determine	if	a	particular	user	is	authorized	to	perform	an	action,	you	may	use	the	forUser
method	on	the	Gate	facade:

if	(Gate::forUser($user)->allows('update-post',	$post))	{

				//	The	user	can	update	the	post...

}

if	(Gate::forUser($user)->denies('update-post',	$post))	{

				//	The	user	can't	update	the	post...

}

You	may	authorize	multiple	actions	at	a	time	with	the	any	or	none	methods:

if	(Gate::any(['update-post',	'delete-post'],	$post))	{

				//	The	user	can	update	or	delete	the	post

}

if	(Gate::none(['update-post',	'delete-post'],	$post))	{

				//	The	user	cannot	update	or	delete	the	post

}

Authorizing	Or	Throwing	Exceptions

If	you	would	like	to	attempt	to	authorize	an	action	and	automatically	throw	an	
Illuminate\Auth\Access\AuthorizationException	if	the	user	is	not	allowed	to	perform	the	given	action,	you	may
use	the	Gate::authorize	method.	Instances	of	AuthorizationException	are	automatically	converted	to	403	HTTP
response:

Gate::authorize('update-post',	$post);

//	The	action	is	authorized...

Supplying	Additional	Context

Laravel	Documentation	-	7.x	/	Authorization 198

The	gate	methods	for	authorizing	abilities	(allows,	denies,	check,	any,	none,	authorize,	can,	cannot)	and	the
authorization	Blade	directives	(@can,	@cannot,	@canany)	can	receive	an	array	as	the	second	argument.	These	array
elements	are	passed	as	parameters	to	gate,	and	can	be	used	for	additional	context	when	making	authorization
decisions:

Gate::define('create-post',	function	($user,	$category,	$extraFlag)	{

				return	$category->group	>	3	&&	$extraFlag	===	true;

});

if	(Gate::check('create-post',	[$category,	$extraFlag]))	{

				//	The	user	can	create	the	post...

}

Gate	Responses

So	far,	we	have	only	examined	gates	that	return	simple	boolean	values.	However,	sometimes	you	may	wish	to
return	a	more	detailed	response,	including	an	error	message.	To	do	so,	you	may	return	a	
Illuminate\Auth\Access\Response	from	your	gate:

use	Illuminate\Auth\Access\Response;

use	Illuminate\Support\Facades\Gate;

Gate::define('edit-settings',	function	($user)	{

				return	$user->isAdmin

																?	Response::allow()

																:	Response::deny('You	must	be	a	super	administrator.');

});

When	returning	an	authorization	response	from	your	gate,	the	Gate::allows	method	will	still	return	a	simple
boolean	value;	however,	you	may	use	the	Gate::inspect	method	to	get	the	full	authorization	response	returned
by	the	gate:

$response	=	Gate::inspect('edit-settings',	$post);

if	($response->allowed())	{

				//	The	action	is	authorized...

}	else	{

				echo	$response->message();

}

Of	course,	when	using	the	Gate::authorize	method	to	throw	an	AuthorizationException	if	the	action	is	not
authorized,	the	error	message	provided	by	the	authorization	response	will	be	propagated	to	the	HTTP	response:

Gate::authorize('edit-settings',	$post);

//	The	action	is	authorized...

Intercepting	Gate	Checks

Sometimes,	you	may	wish	to	grant	all	abilities	to	a	specific	user.	You	may	use	the	before	method	to	define	a
callback	that	is	run	before	all	other	authorization	checks:

Gate::before(function	($user,	$ability)	{

				if	($user->isSuperAdmin())	{

								return	true;

				}

});

If	the	before	callback	returns	a	non-null	result	that	result	will	be	considered	the	result	of	the	check.

You	may	use	the	after	method	to	define	a	callback	to	be	executed	after	all	other	authorization	checks:

Gate::after(function	($user,	$ability,	$result,	$arguments)	{

				if	($user->isSuperAdmin())	{

								return	true;

				}

});

Similar	to	the	before	check,	if	the	after	callback	returns	a	non-null	result	that	result	will	be	considered	the
result	of	the	check.

Laravel	Documentation	-	7.x	/	Authorization 199

Creating	Policies

Generating	Policies

Policies	are	classes	that	organize	authorization	logic	around	a	particular	model	or	resource.	For	example,	if
your	application	is	a	blog,	you	may	have	a	Post	model	and	a	corresponding	PostPolicy	to	authorize	user	actions
such	as	creating	or	updating	posts.

You	may	generate	a	policy	using	the	make:policy	artisan	command.	The	generated	policy	will	be	placed	in	the	
app/Policies	directory.	If	this	directory	does	not	exist	in	your	application,	Laravel	will	create	it	for	you:

php	artisan	make:policy	PostPolicy

The	make:policy	command	will	generate	an	empty	policy	class.	If	you	would	like	to	generate	a	class	with	the
basic	"CRUD"	policy	methods	already	included	in	the	class,	you	may	specify	a	--model	when	executing	the
command:

php	artisan	make:policy	PostPolicy	--model=Post

TIP	All	policies	are	resolved	via	the	Laravel	service	container,	allowing	you	to	type-hint	any	needed
dependencies	in	the	policy's	constructor	to	have	them	automatically	injected.

Registering	Policies

Once	the	policy	exists,	it	needs	to	be	registered.	The	AuthServiceProvider	included	with	fresh	Laravel
applications	contains	a	policies	property	which	maps	your	Eloquent	models	to	their	corresponding	policies.
Registering	a	policy	will	instruct	Laravel	which	policy	to	utilize	when	authorizing	actions	against	a	given
model:

<?php

namespace	App\Providers;

use	App\Policies\PostPolicy;

use	App\Post;

use	Illuminate\Foundation\Support\Providers\AuthServiceProvider	as	ServiceProvider;

use	Illuminate\Support\Facades\Gate;

class	AuthServiceProvider	extends	ServiceProvider

{

				/**

					*	The	policy	mappings	for	the	application.

					*

					*	@var	array

					*/

				protected	$policies	=	[

								Post::class	=>	PostPolicy::class,

];

				/**

					*	Register	any	application	authentication	/	authorization	services.

					*

					*	@return	void

					*/

				public	function	boot()

				{

								$this->registerPolicies();

								//

				}

}

Policy	Auto-Discovery

Instead	of	manually	registering	model	policies,	Laravel	can	auto-discover	policies	as	long	as	the	model	and
policy	follow	standard	Laravel	naming	conventions.	Specifically,	the	policies	must	be	in	a	Policies	directory
below	the	directory	that	contains	the	models.	So,	for	example,	the	models	may	be	placed	in	the	app	directory
while	the	policies	may	be	placed	in	the	app/Policies	directory.	In	addition,	the	policy	name	must	match	the

Laravel	Documentation	-	7.x	/	Authorization 200

model	name	and	have	a	Policy	suffix.	So,	a	User	model	would	correspond	to	a	UserPolicy	class.

If	you	would	like	to	provide	your	own	policy	discovery	logic,	you	may	register	a	custom	callback	using	the	
Gate::guessPolicyNamesUsing	method.	Typically,	this	method	should	be	called	from	the	boot	method	of	your
application's	AuthServiceProvider:

use	Illuminate\Support\Facades\Gate;

Gate::guessPolicyNamesUsing(function	($modelClass)	{

				//	return	policy	class	name...

});

NOTE	Any	policies	that	are	explicitly	mapped	in	your	AuthServiceProvider	will	take	precedence	over	any
potential	auto-discovered	policies.

Writing	Policies

Policy	Methods

Once	the	policy	has	been	registered,	you	may	add	methods	for	each	action	it	authorizes.	For	example,	let's
define	an	update	method	on	our	PostPolicy	which	determines	if	a	given	User	can	update	a	given	Post	instance.

The	update	method	will	receive	a	User	and	a	Post	instance	as	its	arguments,	and	should	return	true	or	false
indicating	whether	the	user	is	authorized	to	update	the	given	Post.	So,	for	this	example,	let's	verify	that	the
user's	id	matches	the	user_id	on	the	post:

<?php

namespace	App\Policies;

use	App\Post;

use	App\User;

class	PostPolicy

{

				/**

					*	Determine	if	the	given	post	can	be	updated	by	the	user.

					*

					*	@param		\App\User		$user

					*	@param		\App\Post		$post

					*	@return	bool

					*/

				public	function	update(User	$user,	Post	$post)

				{

								return	$user->id	===	$post->user_id;

				}

}

You	may	continue	to	define	additional	methods	on	the	policy	as	needed	for	the	various	actions	it	authorizes.	For
example,	you	might	define	view	or	delete	methods	to	authorize	various	Post	actions,	but	remember	you	are	free
to	give	your	policy	methods	any	name	you	like.

TIP	If	you	used	the	--model	option	when	generating	your	policy	via	the	Artisan	console,	it	will	already
contain	methods	for	the	viewAny,	view,	create,	update,	delete,	restore,	and	forceDelete	actions.

Policy	Responses

So	far,	we	have	only	examined	policy	methods	that	return	simple	boolean	values.	However,	sometimes	you
may	wish	to	return	a	more	detailed	response,	including	an	error	message.	To	do	so,	you	may	return	an	
Illuminate\Auth\Access\Response	from	your	policy	method:

use	Illuminate\Auth\Access\Response;

/**

	*	Determine	if	the	given	post	can	be	updated	by	the	user.

	*

	*	@param		\App\User		$user

	*	@param		\App\Post		$post

	*	@return	\Illuminate\Auth\Access\Response

Laravel	Documentation	-	7.x	/	Authorization 201

	*/

public	function	update(User	$user,	Post	$post)

{

				return	$user->id	===	$post->user_id

																?	Response::allow()

																:	Response::deny('You	do	not	own	this	post.');

}

When	returning	an	authorization	response	from	your	policy,	the	Gate::allows	method	will	still	return	a	simple
boolean	value;	however,	you	may	use	the	Gate::inspect	method	to	get	the	full	authorization	response	returned
by	the	gate:

$response	=	Gate::inspect('update',	$post);

if	($response->allowed())	{

				//	The	action	is	authorized...

}	else	{

				echo	$response->message();

}

Of	course,	when	using	the	Gate::authorize	method	to	throw	an	AuthorizationException	if	the	action	is	not
authorized,	the	error	message	provided	by	the	authorization	response	will	be	propagated	to	the	HTTP	response:

Gate::authorize('update',	$post);

//	The	action	is	authorized...

Methods	Without	Models

Some	policy	methods	only	receive	the	currently	authenticated	user	and	not	an	instance	of	the	model	they
authorize.	This	situation	is	most	common	when	authorizing	create	actions.	For	example,	if	you	are	creating	a
blog,	you	may	wish	to	check	if	a	user	is	authorized	to	create	any	posts	at	all.

When	defining	policy	methods	that	will	not	receive	a	model	instance,	such	as	a	create	method,	it	will	not
receive	a	model	instance.	Instead,	you	should	define	the	method	as	only	expecting	the	authenticated	user:

/**

	*	Determine	if	the	given	user	can	create	posts.

	*

	*	@param		\App\User		$user

	*	@return	bool

	*/

public	function	create(User	$user)

{

				//

}

Guest	Users

By	default,	all	gates	and	policies	automatically	return	false	if	the	incoming	HTTP	request	was	not	initiated	by
an	authenticated	user.	However,	you	may	allow	these	authorization	checks	to	pass	through	to	your	gates	and
policies	by	declaring	an	"optional"	type-hint	or	supplying	a	null	default	value	for	the	user	argument	definition:

<?php

namespace	App\Policies;

use	App\Post;

use	App\User;

class	PostPolicy

{

				/**

					*	Determine	if	the	given	post	can	be	updated	by	the	user.

					*

					*	@param		\App\User		$user

					*	@param		\App\Post		$post

					*	@return	bool

					*/

				public	function	update(?User	$user,	Post	$post)

				{

								return	optional($user)->id	===	$post->user_id;

Laravel	Documentation	-	7.x	/	Authorization 202

				}

}

Policy	Filters

For	certain	users,	you	may	wish	to	authorize	all	actions	within	a	given	policy.	To	accomplish	this,	define	a	
before	method	on	the	policy.	The	before	method	will	be	executed	before	any	other	methods	on	the	policy,
giving	you	an	opportunity	to	authorize	the	action	before	the	intended	policy	method	is	actually	called.	This
feature	is	most	commonly	used	for	authorizing	application	administrators	to	perform	any	action:

public	function	before($user,	$ability)

{

				if	($user->isSuperAdmin())	{

								return	true;

				}

}

If	you	would	like	to	deny	all	authorizations	for	a	user	you	should	return	false	from	the	before	method.	If	null	is
returned,	the	authorization	will	fall	through	to	the	policy	method.

NOTE	The	before	method	of	a	policy	class	will	not	be	called	if	the	class	doesn't	contain	a	method	with	a
name	matching	the	name	of	the	ability	being	checked.

Authorizing	Actions	Using	Policies

Via	The	User	Model

The	User	model	that	is	included	with	your	Laravel	application	includes	two	helpful	methods	for	authorizing
actions:	can	and	cant.	The	can	method	receives	the	action	you	wish	to	authorize	and	the	relevant	model.	For
example,	let's	determine	if	a	user	is	authorized	to	update	a	given	Post	model:

if	($user->can('update',	$post))	{

				//

}

If	a	policy	is	registered	for	the	given	model,	the	can	method	will	automatically	call	the	appropriate	policy	and
return	the	boolean	result.	If	no	policy	is	registered	for	the	model,	the	can	method	will	attempt	to	call	the	Closure
based	Gate	matching	the	given	action	name.

Actions	That	Don't	Require	Models

Remember,	some	actions	like	create	may	not	require	a	model	instance.	In	these	situations,	you	may	pass	a	class
name	to	the	can	method.	The	class	name	will	be	used	to	determine	which	policy	to	use	when	authorizing	the
action:

use	App\Post;

if	($user->can('create',	Post::class))	{

				//	Executes	the	"create"	method	on	the	relevant	policy...

}

Via	Middleware

Laravel	includes	a	middleware	that	can	authorize	actions	before	the	incoming	request	even	reaches	your	routes
or	controllers.	By	default,	the	Illuminate\Auth\Middleware\Authorize	middleware	is	assigned	the	can	key	in
your	App\Http\Kernel	class.	Let's	explore	an	example	of	using	the	can	middleware	to	authorize	that	a	user	can
update	a	blog	post:

use	App\Post;

Route::put('/post/{post}',	function	(Post	$post)	{

				//	The	current	user	may	update	the	post...

})->middleware('can:update,post');

In	this	example,	we're	passing	the	can	middleware	two	arguments.	The	first	is	the	name	of	the	action	we	wish	to

Laravel	Documentation	-	7.x	/	Authorization 203

authorize	and	the	second	is	the	route	parameter	we	wish	to	pass	to	the	policy	method.	In	this	case,	since	we	are
using	implicit	model	binding,	a	Post	model	will	be	passed	to	the	policy	method.	If	the	user	is	not	authorized	to
perform	the	given	action,	a	HTTP	response	with	a	403	status	code	will	be	generated	by	the	middleware.

Actions	That	Don't	Require	Models

Again,	some	actions	like	create	may	not	require	a	model	instance.	In	these	situations,	you	may	pass	a	class
name	to	the	middleware.	The	class	name	will	be	used	to	determine	which	policy	to	use	when	authorizing	the
action:

Route::post('/post',	function	()	{

				//	The	current	user	may	create	posts...

})->middleware('can:create,App\Post');

Via	Controller	Helpers

In	addition	to	helpful	methods	provided	to	the	User	model,	Laravel	provides	a	helpful	authorize	method	to	any
of	your	controllers	which	extend	the	App\Http\Controllers\Controller	base	class.	Like	the	can	method,	this
method	accepts	the	name	of	the	action	you	wish	to	authorize	and	the	relevant	model.	If	the	action	is	not
authorized,	the	authorize	method	will	throw	an	Illuminate\Auth\Access\AuthorizationException,	which	the
default	Laravel	exception	handler	will	convert	to	an	HTTP	response	with	a	403	status	code:

<?php

namespace	App\Http\Controllers;

use	App\Http\Controllers\Controller;

use	App\Post;

use	Illuminate\Http\Request;

class	PostController	extends	Controller

{

				/**

					*	Update	the	given	blog	post.

					*

					*	@param		Request		$request

					*	@param		Post		$post

					*	@return	Response

					*	@throws	\Illuminate\Auth\Access\AuthorizationException

					*/

				public	function	update(Request	$request,	Post	$post)

				{

								$this->authorize('update',	$post);

								//	The	current	user	can	update	the	blog	post...

				}

}

Actions	That	Don't	Require	Models

As	previously	discussed,	some	actions	like	create	may	not	require	a	model	instance.	In	these	situations,	you
should	pass	a	class	name	to	the	authorize	method.	The	class	name	will	be	used	to	determine	which	policy	to
use	when	authorizing	the	action:

/**

	*	Create	a	new	blog	post.

	*

	*	@param		Request		$request

	*	@return	Response

	*	@throws	\Illuminate\Auth\Access\AuthorizationException

	*/

public	function	create(Request	$request)

{

				$this->authorize('create',	Post::class);

				//	The	current	user	can	create	blog	posts...

}

Authorizing	Resource	Controllers

Laravel	Documentation	-	7.x	/	Authorization 204

If	you	are	utilizing	resource	controllers,	you	may	make	use	of	the	authorizeResource	method	in	the	controller's
constructor.	This	method	will	attach	the	appropriate	can	middleware	definitions	to	the	resource	controller's
methods.

The	authorizeResource	method	accepts	the	model's	class	name	as	its	first	argument,	and	the	name	of	the	route	/
request	parameter	that	will	contain	the	model's	ID	as	its	second	argument.	You	should	ensure	your	resource
controller	is	created	with	the	--model	flag	to	have	the	required	method	signatures	and	type	hints:

<?php

namespace	App\Http\Controllers;

use	App\Http\Controllers\Controller;

use	App\Post;

use	Illuminate\Http\Request;

class	PostController	extends	Controller

{

				public	function	__construct()

				{

								$this->authorizeResource(Post::class,	'post');

				}

}

The	following	controller	methods	will	be	mapped	to	their	corresponding	policy	method:

Controller	Method Policy	Method

index viewAny
show view
create create
store create
edit update
update update
destroy delete

TIP	You	may	use	the	make:policy	command	with	the	--model	option	to	quickly	generate	a	policy	class	for	a
given	model:	php	artisan	make:policy	PostPolicy	--model=Post.

Via	Blade	Templates

When	writing	Blade	templates,	you	may	wish	to	display	a	portion	of	the	page	only	if	the	user	is	authorized	to
perform	a	given	action.	For	example,	you	may	wish	to	show	an	update	form	for	a	blog	post	only	if	the	user	can
actually	update	the	post.	In	this	situation,	you	may	use	the	@can	and	@cannot	family	of	directives:

@can('update',	$post)

				<!--	The	Current	User	Can	Update	The	Post	-->

@elsecan('create',	App\Post::class)

				<!--	The	Current	User	Can	Create	New	Post	-->

@endcan

@cannot('update',	$post)

				<!--	The	Current	User	Cannot	Update	The	Post	-->

@elsecannot('create',	App\Post::class)

				<!--	The	Current	User	Cannot	Create	A	New	Post	-->

@endcannot

These	directives	are	convenient	shortcuts	for	writing	@if	and	@unless	statements.	The	@can	and	@cannot
statements	above	respectively	translate	to	the	following	statements:

@if	(Auth::user()->can('update',	$post))

				<!--	The	Current	User	Can	Update	The	Post	-->

@endif

@unless	(Auth::user()->can('update',	$post))

				<!--	The	Current	User	Cannot	Update	The	Post	-->

@endunless

You	may	also	determine	if	a	user	has	any	authorization	ability	from	a	given	list	of	abilities.	To	accomplish	this,

Laravel	Documentation	-	7.x	/	Authorization 205

use	the	@canany	directive:

@canany(['update',	'view',	'delete'],	$post)

				//	The	current	user	can	update,	view,	or	delete	the	post

@elsecanany(['create'],	\App\Post::class)

				//	The	current	user	can	create	a	post

@endcanany

Actions	That	Don't	Require	Models

Like	most	of	the	other	authorization	methods,	you	may	pass	a	class	name	to	the	@can	and	@cannot	directives	if
the	action	does	not	require	a	model	instance:

@can('create',	App\Post::class)

				<!--	The	Current	User	Can	Create	Posts	-->

@endcan

@cannot('create',	App\Post::class)

				<!--	The	Current	User	Can't	Create	Posts	-->

@endcannot

Supplying	Additional	Context

When	authorizing	actions	using	policies,	you	may	pass	an	array	as	the	second	argument	to	the	various
authorization	functions	and	helpers.	The	first	element	in	the	array	will	be	used	to	determine	which	policy
should	be	invoked,	while	the	rest	of	the	array	elements	are	passed	as	parameters	to	the	policy	method	and	can
be	used	for	additional	context	when	making	authorization	decisions.	For	example,	consider	the	following	
PostPolicy	method	definition	which	contains	an	additional	$category	parameter:

/**

	*	Determine	if	the	given	post	can	be	updated	by	the	user.

	*

	*	@param		\App\User		$user

	*	@param		\App\Post		$post

	*	@param		int		$category

	*	@return	bool

	*/

public	function	update(User	$user,	Post	$post,	int	$category)

{

				return	$user->id	===	$post->user_id	&&

											$category	>	3;

}

When	attempting	to	determine	if	the	authenticated	user	can	update	a	given	post,	we	can	invoke	this	policy
method	like	so:

/**

	*	Update	the	given	blog	post.

	*

	*	@param		Request		$request

	*	@param		Post		$post

	*	@return	Response

	*	@throws	\Illuminate\Auth\Access\AuthorizationException

	*/

public	function	update(Request	$request,	Post	$post)

{

				$this->authorize('update',	[$post,	$request->input('category')]);

				//	The	current	user	can	update	the	blog	post...

}

Laravel	Documentation	-	7.x	/	Authorization 206

Security

Email	Verification
Introduction
Model	Preparation
Database	Considerations
Routing

Protecting	Routes
Views
After	Verifying	Emails
Events

Introduction

Many	web	applications	require	users	to	verify	their	email	addresses	before	using	the	application.	Rather	than
forcing	you	to	re-implement	this	on	each	application,	Laravel	provides	convenient	methods	for	sending	and
verifying	email	verification	requests.

Model	Preparation

To	get	started,	verify	that	your	App\User	model	implements	the	Illuminate\Contracts\Auth\MustVerifyEmail
contract:

<?php

namespace	App;

use	Illuminate\Contracts\Auth\MustVerifyEmail;

use	Illuminate\Foundation\Auth\User	as	Authenticatable;

use	Illuminate\Notifications\Notifiable;

class	User	extends	Authenticatable	implements	MustVerifyEmail

{

				use	Notifiable;

				//	...

}

Once	this	interface	has	been	added	to	your	model,	newly	registered	users	will	automatically	be	sent	an	email
containing	an	email	verification	link.	As	you	can	see	by	examining	your	EventServiceProvider,	Laravel	already
contains	a	SendEmailVerificationNotification	listener	that	is	attached	to	the	Illuminate\Auth\Events\Registered
event.

Database	Considerations

The	Email	Verification	Column

Next,	your	user	table	must	contain	an	email_verified_at	column	to	store	the	date	and	time	that	the	email
address	was	verified.	By	default,	the	users	table	migration	included	with	the	Laravel	framework	already
includes	this	column.	So,	all	you	need	to	do	is	run	your	database	migrations:

php	artisan	migrate

Routing

Laravel	includes	the	Auth\VerificationController	class	that	contains	the	necessary	logic	to	send	verification
links	and	verify	emails.	To	register	the	necessary	routes	for	this	controller,	pass	the	verify	option	to	the	
Auth::routes	method:

Auth::routes(['verify'	=>	true]);

Laravel	Documentation	-	7.x	/	Email	Verification 207

Protecting	Routes

Route	middleware	can	be	used	to	only	allow	verified	users	to	access	a	given	route.	Laravel	ships	with	a	
verified	middleware,	which	is	defined	at	Illuminate\Auth\Middleware\EnsureEmailIsVerified.	Since	this
middleware	is	already	registered	in	your	application's	HTTP	kernel,	all	you	need	to	do	is	attach	the	middleware
to	a	route	definition:

Route::get('profile',	function	()	{

				//	Only	verified	users	may	enter...

})->middleware('verified');

Views

To	generate	all	of	the	necessary	view	for	email	verification,	you	may	use	the	laravel/ui	Composer	package:

composer	require	laravel/ui

php	artisan	ui	vue	--auth

The	email	verification	view	is	placed	in	resources/views/auth/verify.blade.php.	You	are	free	to	customize	this
view	as	needed	for	your	application.

After	Verifying	Emails

After	an	email	address	is	verified,	the	user	will	automatically	be	redirected	to	/home.	You	can	customize	the	post
verification	redirect	location	by	defining	a	redirectTo	method	or	property	on	the	VerificationController:

protected	$redirectTo	=	'/dashboard';

Events

Laravel	dispatches	events	during	the	email	verification	process.	You	may	attach	listeners	to	these	events	in	your
EventServiceProvider:

/**

	*	The	event	listener	mappings	for	the	application.

	*

	*	@var	array

	*/

protected	$listen	=	[

				'Illuminate\Auth\Events\Verified'	=>	[

								'App\Listeners\LogVerifiedUser',

],

];

Laravel	Documentation	-	7.x	/	Email	Verification 208

Security

Encryption
Introduction
Configuration
Using	The	Encrypter

Introduction

Laravel's	encrypter	uses	OpenSSL	to	provide	AES-256	and	AES-128	encryption.	You	are	strongly	encouraged
to	use	Laravel's	built-in	encryption	facilities	and	not	attempt	to	roll	your	own	"home	grown"	encryption
algorithms.	All	of	Laravel's	encrypted	values	are	signed	using	a	message	authentication	code	(MAC)	so	that
their	underlying	value	can	not	be	modified	once	encrypted.

Configuration

Before	using	Laravel's	encrypter,	you	must	set	a	key	option	in	your	config/app.php	configuration	file.	You
should	use	the	php	artisan	key:generate	command	to	generate	this	key	since	this	Artisan	command	will	use
PHP's	secure	random	bytes	generator	to	build	your	key.	If	this	value	is	not	properly	set,	all	values	encrypted	by
Laravel	will	be	insecure.

Using	The	Encrypter

Encrypting	A	Value

You	may	encrypt	a	value	using	the	encryptString	method	of	the	Crypt	facade.	All	encrypted	values	are
encrypted	using	OpenSSL	and	the	AES-256-CBC	cipher.	Furthermore,	all	encrypted	values	are	signed	with	a
message	authentication	code	(MAC)	to	detect	any	modifications	to	the	encrypted	string:

<?php

namespace	App\Http\Controllers;

use	App\Http\Controllers\Controller;

use	App\User;

use	Illuminate\Http\Request;

use	Illuminate\Support\Facades\Crypt;

class	UserController	extends	Controller

{

				/**

					*	Store	a	secret	message	for	the	user.

					*

					*	@param		Request		$request

					*	@param		int		$id

					*	@return	Response

					*/

				public	function	storeSecret(Request	$request,	$id)

				{

								$user	=	User::findOrFail($id);

								$user->fill([

												'secret'	=>	Crypt::encryptString($request->secret),

])->save();

				}

}

Decrypting	A	Value

You	may	decrypt	values	using	the	decryptString	method	of	the	Crypt	facade.	If	the	value	can	not	be	properly
decrypted,	such	as	when	the	MAC	is	invalid,	an	Illuminate\Contracts\Encryption\DecryptException	will	be
thrown:

use	Illuminate\Contracts\Encryption\DecryptException;

Laravel	Documentation	-	7.x	/	Encryption 209

use	Illuminate\Support\Facades\Crypt;

try	{

				$decrypted	=	Crypt::decryptString($encryptedValue);

}	catch	(DecryptException	$e)	{

				//

}

Laravel	Documentation	-	7.x	/	Encryption 210

Security

Hashing
Introduction
Configuration
Basic	Usage

Introduction

The	Laravel	Hash	facade	provides	secure	Bcrypt	and	Argon2	hashing	for	storing	user	passwords.	If	you	are
using	the	built-in	LoginController	and	RegisterController	classes	that	are	included	with	your	Laravel
application,	they	will	use	Bcrypt	for	registration	and	authentication	by	default.

TIP	Bcrypt	is	a	great	choice	for	hashing	passwords	because	its	"work	factor"	is	adjustable,	which	means
that	the	time	it	takes	to	generate	a	hash	can	be	increased	as	hardware	power	increases.

Configuration

The	default	hashing	driver	for	your	application	is	configured	in	the	config/hashing.php	configuration	file.	There
are	currently	three	supported	drivers:	Bcrypt	and	Argon2	(Argon2i	and	Argon2id	variants).

NOTE	The	Argon2i	driver	requires	PHP	7.2.0	or	greater	and	the	Argon2id	driver	requires	PHP	7.3.0	or
greater.

Basic	Usage

You	may	hash	a	password	by	calling	the	make	method	on	the	Hash	facade:

<?php

namespace	App\Http\Controllers;

use	App\Http\Controllers\Controller;

use	Illuminate\Http\Request;

use	Illuminate\Support\Facades\Hash;

class	UpdatePasswordController	extends	Controller

{

				/**

					*	Update	the	password	for	the	user.

					*

					*	@param		Request		$request

					*	@return	Response

					*/

				public	function	update(Request	$request)

				{

								//	Validate	the	new	password	length...

								$request->user()->fill([

												'password'	=>	Hash::make($request->newPassword)

])->save();

				}

}

Adjusting	The	Bcrypt	Work	Factor

If	you	are	using	the	Bcrypt	algorithm,	the	make	method	allows	you	to	manage	the	work	factor	of	the	algorithm
using	the	rounds	option;	however,	the	default	is	acceptable	for	most	applications:

$hashed	=	Hash::make('password',	[

				'rounds'	=>	12,

]);

Adjusting	The	Argon2	Work	Factor

Laravel	Documentation	-	7.x	/	Hashing 211

https://en.wikipedia.org/wiki/Bcrypt
https://en.wikipedia.org/wiki/Argon2

If	you	are	using	the	Argon2	algorithm,	the	make	method	allows	you	to	manage	the	work	factor	of	the	algorithm
using	the	memory,	time,	and	threads	options;	however,	the	defaults	are	acceptable	for	most	applications:

$hashed	=	Hash::make('password',	[

				'memory'	=>	1024,

				'time'	=>	2,

				'threads'	=>	2,

]);

TIP	For	more	information	on	these	options,	check	out	the	official	PHP	documentation.

Verifying	A	Password	Against	A	Hash

The	check	method	allows	you	to	verify	that	a	given	plain-text	string	corresponds	to	a	given	hash.	However,	if
you	are	using	the	LoginController	included	with	Laravel,	you	will	probably	not	need	to	use	this	directly,	as	this
controller	automatically	calls	this	method:

if	(Hash::check('plain-text',	$hashedPassword))	{

				//	The	passwords	match...

}

Checking	If	A	Password	Needs	To	Be	Rehashed

The	needsRehash	function	allows	you	to	determine	if	the	work	factor	used	by	the	hasher	has	changed	since	the
password	was	hashed:

if	(Hash::needsRehash($hashed))	{

				$hashed	=	Hash::make('plain-text');

}

Laravel	Documentation	-	7.x	/	Hashing 212

https://secure.php.net/manual/en/function.password-hash.php

Security

Resetting	Passwords
Introduction
Database	Considerations
Routing
Views
After	Resetting	Passwords
Customization

Introduction

TIP	Want	to	get	started	fast?	Install	the	laravel/ui	Composer	package	and	run	php	artisan	ui	vue	--
auth	in	a	fresh	Laravel	application.	After	migrating	your	database,	navigate	your	browser	to	http://your-
app.test/register	or	any	other	URL	that	is	assigned	to	your	application.	This	single	command	will	take
care	of	scaffolding	your	entire	authentication	system,	including	resetting	passwords!

Most	web	applications	provide	a	way	for	users	to	reset	their	forgotten	passwords.	Rather	than	forcing	you	to	re-
implement	this	on	each	application,	Laravel	provides	convenient	methods	for	sending	password	reminders	and
performing	password	resets.

NOTE	Before	using	the	password	reset	features	of	Laravel,	your	user	must	use	the	
Illuminate\Notifications\Notifiable	trait.

Database	Considerations

To	get	started,	verify	that	your	App\User	model	implements	the	Illuminate\Contracts\Auth\CanResetPassword
contract.	The	App\User	model	included	with	the	framework	already	implements	this	interface,	and	uses	the	
Illuminate\Auth\Passwords\CanResetPassword	trait	to	include	the	methods	needed	to	implement	the	interface.

Generating	The	Reset	Token	Table	Migration

Next,	a	table	must	be	created	to	store	the	password	reset	tokens.	The	migration	for	this	table	is	included	in	the	
laravel/ui	Composer	package.	After	installing	the	laravel/ui	package,	you	may	use	the	migrate	command	to
create	the	password	reset	token	database	table:

composer	require	laravel/ui

php	artisan	migrate

Routing

Laravel	includes	Auth\ForgotPasswordController	and	Auth\ResetPasswordController	classes	that	contains	the
logic	necessary	to	e-mail	password	reset	links	and	reset	user	passwords.	All	of	the	routes	needed	to	perform
password	resets	may	be	generated	using	the	laravel/ui	Composer	package:

composer	require	laravel/ui

php	artisan	ui	vue	--auth

Views

To	generate	all	of	the	necessary	view	for	resetting	passwords,	you	may	use	the	laravel/ui	Composer	package:

composer	require	laravel/ui

php	artisan	ui	vue	--auth

These	views	are	placed	in	resources/views/auth/passwords.	You	are	free	to	customize	them	as	needed	for	your

Laravel	Documentation	-	7.x	/	Password	Reset 213

application.

After	Resetting	Passwords

Once	you	have	defined	the	routes	and	views	to	reset	your	user's	passwords,	you	may	access	the	route	in	your
browser	at	/password/reset.	The	ForgotPasswordController	included	with	the	framework	already	includes	the
logic	to	send	the	password	reset	link	e-mails,	while	the	ResetPasswordController	includes	the	logic	to	reset	user
passwords.

After	a	password	is	reset,	the	user	will	automatically	be	logged	into	the	application	and	redirected	to	/home.	You
can	customize	the	post	password	reset	redirect	location	by	defining	a	redirectTo	property	on	the	
ResetPasswordController:

protected	$redirectTo	=	'/dashboard';

NOTE	By	default,	password	reset	tokens	expire	after	one	hour.	You	may	change	this	via	the	password
reset	expire	option	in	your	config/auth.php	file.

Customization

Authentication	Guard	Customization

In	your	auth.php	configuration	file,	you	may	configure	multiple	"guards",	which	may	be	used	to	define
authentication	behavior	for	multiple	user	tables.	You	can	customize	the	included	ResetPasswordController	to
use	the	guard	of	your	choice	by	overriding	the	guard	method	on	the	controller.	This	method	should	return	a
guard	instance:

use	Illuminate\Support\Facades\Auth;

/**

	*	Get	the	guard	to	be	used	during	password	reset.

	*

	*	@return	\Illuminate\Contracts\Auth\StatefulGuard

	*/

protected	function	guard()

{

				return	Auth::guard('guard-name');

}

Password	Broker	Customization

In	your	auth.php	configuration	file,	you	may	configure	multiple	password	"brokers",	which	may	be	used	to
reset	passwords	on	multiple	user	tables.	You	can	customize	the	included	ForgotPasswordController	and	
ResetPasswordController	to	use	the	broker	of	your	choice	by	overriding	the	broker	method:

use	Illuminate\Support\Facades\Password;

/**

	*	Get	the	broker	to	be	used	during	password	reset.

	*

	*	@return	PasswordBroker

	*/

public	function	broker()

{

				return	Password::broker('name');

}

Reset	Email	Customization

You	may	easily	modify	the	notification	class	used	to	send	the	password	reset	link	to	the	user.	To	get	started,
override	the	sendPasswordResetNotification	method	on	your	User	model.	Within	this	method,	you	may	send	the
notification	using	any	notification	class	you	choose.	The	password	reset	$token	is	the	first	argument	received	by
the	method:

/**

	*	Send	the	password	reset	notification.

Laravel	Documentation	-	7.x	/	Password	Reset 214

	*

	*	@param		string		$token

	*	@return	void

	*/

public	function	sendPasswordResetNotification($token)

{

				$this->notify(new	ResetPasswordNotification($token));

}

Laravel	Documentation	-	7.x	/	Password	Reset 215

Digging	Deeper

Artisan	Console
Introduction

Tinker	(REPL)
Writing	Commands

Generating	Commands
Command	Structure
Closure	Commands

Defining	Input	Expectations
Arguments
Options
Input	Arrays
Input	Descriptions

Command	I/O
Retrieving	Input
Prompting	For	Input
Writing	Output

Registering	Commands
Programmatically	Executing	Commands

Calling	Commands	From	Other	Commands
Stub	Customization

Introduction

Artisan	is	the	command-line	interface	included	with	Laravel.	It	provides	a	number	of	helpful	commands	that
can	assist	you	while	you	build	your	application.	To	view	a	list	of	all	available	Artisan	commands,	you	may	use
the	list	command:

php	artisan	list

Every	command	also	includes	a	"help"	screen	which	displays	and	describes	the	command's	available	arguments
and	options.	To	view	a	help	screen,	precede	the	name	of	the	command	with	help:

php	artisan	help	migrate

Tinker	(REPL)

Laravel	Tinker	is	a	powerful	REPL	for	the	Laravel	framework,	powered	by	the	PsySH	package.

Installation

All	Laravel	applications	include	Tinker	by	default.	However,	you	may	install	it	manually	if	needed	using
Composer:

composer	require	laravel/tinker

Usage

Tinker	allows	you	to	interact	with	your	entire	Laravel	application	on	the	command	line,	including	the	Eloquent
ORM,	jobs,	events,	and	more.	To	enter	the	Tinker	environment,	run	the	tinker	Artisan	command:

php	artisan	tinker

You	can	publish	Tinker's	configuration	file	using	the	vendor:publish	command:

php	artisan	vendor:publish	--provider="Laravel\Tinker\TinkerServiceProvider"

NOTE	The	dispatch	helper	function	and	dispatch	method	on	the	Dispatchable	class	depends	on	garbage

Laravel	Documentation	-	7.x	/	Digging	Deeper 216

https://github.com/bobthecow/psysh

collection	to	place	the	job	on	the	queue.	Therefore,	when	using	tinker,	you	should	use	Bus::dispatch	or	
Queue::push	to	dispatch	jobs.

Command	Whitelist

Tinker	utilizes	a	white-list	to	determine	which	Artisan	commands	are	allowed	to	be	run	within	its	shell.	By
default,	you	may	run	the	clear-compiled,	down,	env,	inspire,	migrate,	optimize,	and	up	commands.	If	you	would
like	to	white-list	more	commands	you	may	add	them	to	the	commands	array	in	your	tinker.php	configuration	file:

'commands'	=>	[

				//	App\Console\Commands\ExampleCommand::class,

],

Classes	That	Should	Not	Be	Aliased

Typically,	Tinker	automatically	aliases	classes	as	you	require	them	in	Tinker.	However,	you	may	wish	to	never
alias	some	classes.	You	may	accomplish	this	by	listing	the	classes	in	the	dont_alias	array	of	your	tinker.php
configuration	file:

'dont_alias'	=>	[

				App\User::class,

],

Writing	Commands

In	addition	to	the	commands	provided	with	Artisan,	you	may	also	build	your	own	custom	commands.
Commands	are	typically	stored	in	the	app/Console/Commands	directory;	however,	you	are	free	to	choose	your
own	storage	location	as	long	as	your	commands	can	be	loaded	by	Composer.

Generating	Commands

To	create	a	new	command,	use	the	make:command	Artisan	command.	This	command	will	create	a	new	command
class	in	the	app/Console/Commands	directory.	Don't	worry	if	this	directory	does	not	exist	in	your	application,
since	it	will	be	created	the	first	time	you	run	the	make:command	Artisan	command.	The	generated	command	will
include	the	default	set	of	properties	and	methods	that	are	present	on	all	commands:

php	artisan	make:command	SendEmails

Command	Structure

After	generating	your	command,	you	should	fill	in	the	signature	and	description	properties	of	the	class,	which
will	be	used	when	displaying	your	command	on	the	list	screen.	The	handle	method	will	be	called	when	your
command	is	executed.	You	may	place	your	command	logic	in	this	method.

TIP	For	greater	code	reuse,	it	is	good	practice	to	keep	your	console	commands	light	and	let	them	defer	to
application	services	to	accomplish	their	tasks.	In	the	example	below,	note	that	we	inject	a	service	class	to
do	the	"heavy	lifting"	of	sending	the	e-mails.

Let's	take	a	look	at	an	example	command.	Note	that	we	are	able	to	inject	any	dependencies	we	need	into	the
command's	handle	method.	The	Laravel	service	container	will	automatically	inject	all	dependencies	that	are
type-hinted	in	this	method's	signature:

<?php

namespace	App\Console\Commands;

use	App\DripEmailer;

use	App\User;

use	Illuminate\Console\Command;

class	SendEmails	extends	Command

{

				/**

					*	The	name	and	signature	of	the	console	command.

Laravel	Documentation	-	7.x	/	Digging	Deeper 217

					*

					*	@var	string

					*/

				protected	$signature	=	'email:send	{user}';

				/**

					*	The	console	command	description.

					*

					*	@var	string

					*/

				protected	$description	=	'Send	drip	e-mails	to	a	user';

				/**

					*	Create	a	new	command	instance.

					*

					*	@return	void

					*/

				public	function	__construct()

				{

								parent::__construct();

				}

				/**

					*	Execute	the	console	command.

					*

					*	@param		\App\DripEmailer		$drip

					*	@return	mixed

					*/

				public	function	handle(DripEmailer	$drip)

				{

								$drip->send(User::find($this->argument('user')));

				}

}

Closure	Commands

Closure	based	commands	provide	an	alternative	to	defining	console	commands	as	classes.	In	the	same	way	that
route	Closures	are	an	alternative	to	controllers,	think	of	command	Closures	as	an	alternative	to	command
classes.	Within	the	commands	method	of	your	app/Console/Kernel.php	file,	Laravel	loads	the	routes/console.php
file:

/**

	*	Register	the	Closure	based	commands	for	the	application.

	*

	*	@return	void

	*/

protected	function	commands()

{

				require	base_path('routes/console.php');

}

Even	though	this	file	does	not	define	HTTP	routes,	it	defines	console	based	entry	points	(routes)	into	your
application.	Within	this	file,	you	may	define	all	of	your	Closure	based	routes	using	the	Artisan::command
method.	The	command	method	accepts	two	arguments:	the	command	signature	and	a	Closure	which	receives	the
commands	arguments	and	options:

Artisan::command('build	{project}',	function	($project)	{

				$this->info("Building	{$project}!");

});

The	Closure	is	bound	to	the	underlying	command	instance,	so	you	have	full	access	to	all	of	the	helper	methods
you	would	typically	be	able	to	access	on	a	full	command	class.

Type-Hinting	Dependencies

In	addition	to	receiving	your	command's	arguments	and	options,	command	Closures	may	also	type-hint
additional	dependencies	that	you	would	like	resolved	out	of	the	service	container:

use	App\DripEmailer;

use	App\User;

Artisan::command('email:send	{user}',	function	(DripEmailer	$drip,	$user)	{

				$drip->send(User::find($user));

Laravel	Documentation	-	7.x	/	Digging	Deeper 218

});

Closure	Command	Descriptions

When	defining	a	Closure	based	command,	you	may	use	the	describe	method	to	add	a	description	to	the
command.	This	description	will	be	displayed	when	you	run	the	php	artisan	list	or	php	artisan	help
commands:

Artisan::command('build	{project}',	function	($project)	{

				$this->info("Building	{$project}!");

})->describe('Build	the	project');

Defining	Input	Expectations

When	writing	console	commands,	it	is	common	to	gather	input	from	the	user	through	arguments	or	options.
Laravel	makes	it	very	convenient	to	define	the	input	you	expect	from	the	user	using	the	signature	property	on
your	commands.	The	signature	property	allows	you	to	define	the	name,	arguments,	and	options	for	the
command	in	a	single,	expressive,	route-like	syntax.

Arguments

All	user	supplied	arguments	and	options	are	wrapped	in	curly	braces.	In	the	following	example,	the	command
defines	one	required	argument:	user:

/**

	*	The	name	and	signature	of	the	console	command.

	*

	*	@var	string

	*/

protected	$signature	=	'email:send	{user}';

You	may	also	make	arguments	optional	and	define	default	values	for	arguments:

//	Optional	argument...

email:send	{user?}

//	Optional	argument	with	default	value...

email:send	{user=foo}

Options

Options,	like	arguments,	are	another	form	of	user	input.	Options	are	prefixed	by	two	hyphens	(--)	when	they
are	specified	on	the	command	line.	There	are	two	types	of	options:	those	that	receive	a	value	and	those	that
don't.	Options	that	don't	receive	a	value	serve	as	a	boolean	"switch".	Let's	take	a	look	at	an	example	of	this	type
of	option:

/**

	*	The	name	and	signature	of	the	console	command.

	*

	*	@var	string

	*/

protected	$signature	=	'email:send	{user}	{--queue}';

In	this	example,	the	--queue	switch	may	be	specified	when	calling	the	Artisan	command.	If	the	--queue	switch
is	passed,	the	value	of	the	option	will	be	true.	Otherwise,	the	value	will	be	false:

php	artisan	email:send	1	--queue

Options	With	Values

Next,	let's	take	a	look	at	an	option	that	expects	a	value.	If	the	user	must	specify	a	value	for	an	option,	suffix	the
option	name	with	a	=	sign:

/**

	*	The	name	and	signature	of	the	console	command.

	*

Laravel	Documentation	-	7.x	/	Digging	Deeper 219

	*	@var	string

	*/

protected	$signature	=	'email:send	{user}	{--queue=}';

In	this	example,	the	user	may	pass	a	value	for	the	option	like	so:

php	artisan	email:send	1	--queue=default

You	may	assign	default	values	to	options	by	specifying	the	default	value	after	the	option	name.	If	no	option
value	is	passed	by	the	user,	the	default	value	will	be	used:

email:send	{user}	{--queue=default}

Option	Shortcuts

To	assign	a	shortcut	when	defining	an	option,	you	may	specify	it	before	the	option	name	and	use	a	|	delimiter	to
separate	the	shortcut	from	the	full	option	name:

email:send	{user}	{--Q|queue}

Input	Arrays

If	you	would	like	to	define	arguments	or	options	to	expect	array	inputs,	you	may	use	the	*	character.	First,	let's
take	a	look	at	an	example	that	specifies	an	array	argument:

email:send	{user*}

When	calling	this	method,	the	user	arguments	may	be	passed	in	order	to	the	command	line.	For	example,	the
following	command	will	set	the	value	of	user	to	['foo',	'bar']:

php	artisan	email:send	foo	bar

When	defining	an	option	that	expects	an	array	input,	each	option	value	passed	to	the	command	should	be
prefixed	with	the	option	name:

email:send	{user}	{--id=*}

php	artisan	email:send	--id=1	--id=2

Input	Descriptions

You	may	assign	descriptions	to	input	arguments	and	options	by	separating	the	parameter	from	the	description
using	a	colon.	If	you	need	a	little	extra	room	to	define	your	command,	feel	free	to	spread	the	definition	across
multiple	lines:

/**

	*	The	name	and	signature	of	the	console	command.

	*

	*	@var	string

	*/

protected	$signature	=	'email:send

																								{user	:	The	ID	of	the	user}

																								{--queue=	:	Whether	the	job	should	be	queued}';

Command	I/O

Retrieving	Input

While	your	command	is	executing,	you	will	obviously	need	to	access	the	values	for	the	arguments	and	options
accepted	by	your	command.	To	do	so,	you	may	use	the	argument	and	option	methods:

/**

	*	Execute	the	console	command.

	*

	*	@return	mixed

	*/

Laravel	Documentation	-	7.x	/	Digging	Deeper 220

public	function	handle()

{

				$userId	=	$this->argument('user');

				//

}

If	you	need	to	retrieve	all	of	the	arguments	as	an	array,	call	the	arguments	method:

$arguments	=	$this->arguments();

Options	may	be	retrieved	just	as	easily	as	arguments	using	the	option	method.	To	retrieve	all	of	the	options	as
an	array,	call	the	options	method:

//	Retrieve	a	specific	option...

$queueName	=	$this->option('queue');

//	Retrieve	all	options...

$options	=	$this->options();

If	the	argument	or	option	does	not	exist,	null	will	be	returned.

Prompting	For	Input

In	addition	to	displaying	output,	you	may	also	ask	the	user	to	provide	input	during	the	execution	of	your
command.	The	ask	method	will	prompt	the	user	with	the	given	question,	accept	their	input,	and	then	return	the
user's	input	back	to	your	command:

/**

	*	Execute	the	console	command.

	*

	*	@return	mixed

	*/

public	function	handle()

{

				$name	=	$this->ask('What	is	your	name?');

}

The	secret	method	is	similar	to	ask,	but	the	user's	input	will	not	be	visible	to	them	as	they	type	in	the	console.
This	method	is	useful	when	asking	for	sensitive	information	such	as	a	password:

$password	=	$this->secret('What	is	the	password?');

Asking	For	Confirmation

If	you	need	to	ask	the	user	for	a	simple	confirmation,	you	may	use	the	confirm	method.	By	default,	this	method
will	return	false.	However,	if	the	user	enters	y	or	yes	in	response	to	the	prompt,	the	method	will	return	true.

if	($this->confirm('Do	you	wish	to	continue?'))	{

				//

}

Auto-Completion

The	anticipate	method	can	be	used	to	provide	auto-completion	for	possible	choices.	The	user	can	still	choose
any	answer,	regardless	of	the	auto-completion	hints:

$name	=	$this->anticipate('What	is	your	name?',	['Taylor',	'Dayle']);

Alternatively,	you	may	pass	a	Closure	as	the	second	argument	to	the	anticipate	method.	The	Closure	will	be
called	each	time	the	user	types	an	input	character.	The	Closure	should	accept	a	string	parameter	containing	the
user's	input	so	far,	and	return	an	array	of	options	for	auto-completion:

$name	=	$this->anticipate('What	is	your	name?',	function	($input)	{

				//	Return	auto-completion	options...

});

Multiple	Choice	Questions

Laravel	Documentation	-	7.x	/	Digging	Deeper 221

If	you	need	to	give	the	user	a	predefined	set	of	choices,	you	may	use	the	choice	method.	You	may	set	the	array
index	of	the	default	value	to	be	returned	if	no	option	is	chosen:

$name	=	$this->choice('What	is	your	name?',	['Taylor',	'Dayle'],	$defaultIndex);

In	addition,	the	choice	method	accepts	optional	fourth	and	fifth	arguments	for	determining	the	maximum
number	of	attempts	to	select	a	valid	response	and	whether	multiple	selections	are	permitted:

$name	=	$this->choice(

				'What	is	your	name?',

				['Taylor',	'Dayle'],

				$defaultIndex,

				$maxAttempts	=	null,

				$allowMultipleSelections	=	false

);

Writing	Output

To	send	output	to	the	console,	use	the	line,	info,	comment,	question	and	error	methods.	Each	of	these	methods
will	use	appropriate	ANSI	colors	for	their	purpose.	For	example,	let's	display	some	general	information	to	the
user.	Typically,	the	info	method	will	display	in	the	console	as	green	text:

/**

	*	Execute	the	console	command.

	*

	*	@return	mixed

	*/

public	function	handle()

{

				$this->info('Display	this	on	the	screen');

}

To	display	an	error	message,	use	the	error	method.	Error	message	text	is	typically	displayed	in	red:

$this->error('Something	went	wrong!');

If	you	would	like	to	display	plain,	uncolored	console	output,	use	the	line	method:

$this->line('Display	this	on	the	screen');

Table	Layouts

The	table	method	makes	it	easy	to	correctly	format	multiple	rows	/	columns	of	data.	Just	pass	in	the	headers
and	rows	to	the	method.	The	width	and	height	will	be	dynamically	calculated	based	on	the	given	data:

$headers	=	['Name',	'Email'];

$users	=	App\User::all(['name',	'email'])->toArray();

$this->table($headers,	$users);

Progress	Bars

For	long	running	tasks,	it	could	be	helpful	to	show	a	progress	indicator.	Using	the	output	object,	we	can	start,
advance	and	stop	the	Progress	Bar.	First,	define	the	total	number	of	steps	the	process	will	iterate	through.	Then,
advance	the	Progress	Bar	after	processing	each	item:

$users	=	App\User::all();

$bar	=	$this->output->createProgressBar(count($users));

$bar->start();

foreach	($users	as	$user)	{

				$this->performTask($user);

				$bar->advance();

}

$bar->finish();

Laravel	Documentation	-	7.x	/	Digging	Deeper 222

For	more	advanced	options,	check	out	the	Symfony	Progress	Bar	component	documentation.

Registering	Commands

Because	of	the	load	method	call	in	your	console	kernel's	commands	method,	all	commands	within	the	
app/Console/Commands	directory	will	automatically	be	registered	with	Artisan.	In	fact,	you	are	free	to	make
additional	calls	to	the	load	method	to	scan	other	directories	for	Artisan	commands:

/**

	*	Register	the	commands	for	the	application.

	*

	*	@return	void

	*/

protected	function	commands()

{

				$this->load(__DIR__.'/Commands');

				$this->load(__DIR__.'/MoreCommands');

				//	...

}

You	may	also	manually	register	commands	by	adding	its	class	name	to	the	$commands	property	of	your	
app/Console/Kernel.php	file.	When	Artisan	boots,	all	the	commands	listed	in	this	property	will	be	resolved	by
the	service	container	and	registered	with	Artisan:

protected	$commands	=	[

				Commands\SendEmails::class

];

Programmatically	Executing	Commands

Sometimes	you	may	wish	to	execute	an	Artisan	command	outside	of	the	CLI.	For	example,	you	may	wish	to
fire	an	Artisan	command	from	a	route	or	controller.	You	may	use	the	call	method	on	the	Artisan	facade	to
accomplish	this.	The	call	method	accepts	either	the	command's	name	or	class	as	the	first	argument,	and	an
array	of	command	parameters	as	the	second	argument.	The	exit	code	will	be	returned:

Route::get('/foo',	function	()	{

				$exitCode	=	Artisan::call('email:send',	[

								'user'	=>	1,	'--queue'	=>	'default'

]);

				//

});

Alternatively,	you	may	pass	the	entire	Artisan	command	to	the	call	method	as	a	string:

Artisan::call('email:send	1	--queue=default');

Using	the	queue	method	on	the	Artisan	facade,	you	may	even	queue	Artisan	commands	so	they	are	processed	in
the	background	by	your	queue	workers.	Before	using	this	method,	make	sure	you	have	configured	your	queue
and	are	running	a	queue	listener:

Route::get('/foo',	function	()	{

				Artisan::queue('email:send',	[

								'user'	=>	1,	'--queue'	=>	'default'

]);

				//

});

You	may	also	specify	the	connection	or	queue	the	Artisan	command	should	be	dispatched	to:

Artisan::queue('email:send',	[

				'user'	=>	1,	'--queue'	=>	'default'

])->onConnection('redis')->onQueue('commands');

Passing	Array	Values

If	your	command	defines	an	option	that	accepts	an	array,	you	may	pass	an	array	of	values	to	that	option:

Laravel	Documentation	-	7.x	/	Digging	Deeper 223

https://symfony.com/doc/current/components/console/helpers/progressbar.html

Route::get('/foo',	function	()	{

				$exitCode	=	Artisan::call('email:send',	[

								'user'	=>	1,	'--id'	=>	[5,	13]

]);

});

Passing	Boolean	Values

If	you	need	to	specify	the	value	of	an	option	that	does	not	accept	string	values,	such	as	the	--force	flag	on	the	
migrate:refresh	command,	you	should	pass	true	or	false:

$exitCode	=	Artisan::call('migrate:refresh',	[

				'--force'	=>	true,

]);

Calling	Commands	From	Other	Commands

Sometimes	you	may	wish	to	call	other	commands	from	an	existing	Artisan	command.	You	may	do	so	using	the	
call	method.	This	call	method	accepts	the	command	name	and	an	array	of	command	parameters:

/**

	*	Execute	the	console	command.

	*

	*	@return	mixed

	*/

public	function	handle()

{

				$this->call('email:send',	[

								'user'	=>	1,	'--queue'	=>	'default'

]);

				//

}

If	you	would	like	to	call	another	console	command	and	suppress	all	of	its	output,	you	may	use	the	callSilent
method.	The	callSilent	method	has	the	same	signature	as	the	call	method:

$this->callSilent('email:send',	[

				'user'	=>	1,	'--queue'	=>	'default'

]);

Stub	Customization

The	Artisan	console's	make	commands	are	used	to	create	a	variety	of	classes,	such	as	controllers,	jobs,
migrations,	and	tests.	These	classes	are	generated	using	"stub"	files	that	are	populated	with	values	based	on
your	input.	However,	you	may	sometimes	wish	to	make	small	changes	to	files	generated	by	Artisan.	To
accomplish	this,	you	may	use	the	stub:publish	command	to	publish	the	most	common	stubs	for	customization:

php	artisan	stub:publish

The	published	stubs	will	be	located	within	a	stubs	directory	in	the	root	of	your	application.	Any	changes	you
make	to	these	stubs	will	be	reflected	when	you	generate	their	corresponding	classes	using	Artisan	make
commands.

Laravel	Documentation	-	7.x	/	Digging	Deeper 224

Digging	Deeper

Broadcasting
Introduction

Configuration
Driver	Prerequisites

Concept	Overview
Using	An	Example	Application

Defining	Broadcast	Events
Broadcast	Name
Broadcast	Data
Broadcast	Queue
Broadcast	Conditions

Authorizing	Channels
Defining	Authorization	Routes
Defining	Authorization	Callbacks
Defining	Channel	Classes

Broadcasting	Events
Only	To	Others

Receiving	Broadcasts
Installing	Laravel	Echo
Listening	For	Events
Leaving	A	Channel
Namespaces

Presence	Channels
Authorizing	Presence	Channels
Joining	Presence	Channels
Broadcasting	To	Presence	Channels

Client	Events
Notifications

Introduction

In	many	modern	web	applications,	WebSockets	are	used	to	implement	realtime,	live-updating	user	interfaces.
When	some	data	is	updated	on	the	server,	a	message	is	typically	sent	over	a	WebSocket	connection	to	be
handled	by	the	client.	This	provides	a	more	robust,	efficient	alternative	to	continually	polling	your	application
for	changes.

To	assist	you	in	building	these	types	of	applications,	Laravel	makes	it	easy	to	"broadcast"	your	events	over	a
WebSocket	connection.	Broadcasting	your	Laravel	events	allows	you	to	share	the	same	event	names	between
your	server-side	code	and	your	client-side	JavaScript	application.

TIP	Before	diving	into	event	broadcasting,	make	sure	you	have	read	all	of	the	documentation	regarding
Laravel	events	and	listeners.

Configuration

All	of	your	application's	event	broadcasting	configuration	is	stored	in	the	config/broadcasting.php
configuration	file.	Laravel	supports	several	broadcast	drivers	out	of	the	box:	Pusher	Channels,	Redis,	and	a	log
driver	for	local	development	and	debugging.	Additionally,	a	null	driver	is	included	which	allows	you	to	totally
disable	broadcasting.	A	configuration	example	is	included	for	each	of	these	drivers	in	the	
config/broadcasting.php	configuration	file.

Broadcast	Service	Provider

Before	broadcasting	any	events,	you	will	first	need	to	register	the	App\Providers\BroadcastServiceProvider.	In
fresh	Laravel	applications,	you	only	need	to	uncomment	this	provider	in	the	providers	array	of	your	
config/app.php	configuration	file.	This	provider	will	allow	you	to	register	the	broadcast	authorization	routes

Laravel	Documentation	-	7.x	/	Broadcasting 225

https://pusher.com/channels

and	callbacks.

CSRF	Token

Laravel	Echo	will	need	access	to	the	current	session's	CSRF	token.	You	should	verify	that	your	application's	
head	HTML	element	defines	a	meta	tag	containing	the	CSRF	token:

<meta	name="csrf-token"	content="{{	csrf_token()	}}">

Driver	Prerequisites

Pusher	Channels

If	you	are	broadcasting	your	events	over	Pusher	Channels,	you	should	install	the	Pusher	Channels	PHP	SDK
using	the	Composer	package	manager:

composer	require	pusher/pusher-php-server	"~4.0"

Next,	you	should	configure	your	Channels	credentials	in	the	config/broadcasting.php	configuration	file.	An
example	Channels	configuration	is	already	included	in	this	file,	allowing	you	to	quickly	specify	your	Channels
key,	secret,	and	application	ID.	The	config/broadcasting.php	file's	pusher	configuration	also	allows	you	to
specify	additional	options	that	are	supported	by	Channels,	such	as	the	cluster:

'options'	=>	[

				'cluster'	=>	'eu',

				'useTLS'	=>	true

],

When	using	Channels	and	Laravel	Echo,	you	should	specify	pusher	as	your	desired	broadcaster	when
instantiating	the	Echo	instance	in	your	resources/js/bootstrap.js	file:

import	Echo	from	"laravel-echo";

window.Pusher	=	require('pusher-js');

window.Echo	=	new	Echo({

				broadcaster:	'pusher',

				key:	'your-pusher-channels-key'

});

Finally,	you	will	need	to	change	your	broadcast	driver	to	pusher	in	your	.env	file:

BROADCAST_DRIVER=pusher

Pusher	Compatible	Laravel	Websockets

The	laravel-websockets	is	a	pure	PHP,	Pusher	compatible	websocket	package	for	Laravel.	This	package	allows
you	to	leverage	the	full	power	of	Laravel	broadcasting	without	an	external	websocket	provider	or	Node.	For
more	information	on	installing	and	using	this	package,	please	consult	its	official	documentation.

Redis

If	you	are	using	the	Redis	broadcaster,	you	should	either	install	the	phpredis	PHP	extension	via	PECL	or	install
the	Predis	library	via	Composer:

composer	require	predis/predis

Next,	you	should	update	your	broadcast	driver	to	redis	in	your	.env	file:

BROADCAST_DRIVER=redis

The	Redis	broadcaster	will	broadcast	messages	using	Redis'	pub	/	sub	feature;	however,	you	will	need	to	pair
this	with	a	WebSocket	server	that	can	receive	the	messages	from	Redis	and	broadcast	them	to	your	WebSocket
channels.

Laravel	Documentation	-	7.x	/	Broadcasting 226

https://pusher.com/channels
https://github.com/beyondcode/laravel-websockets
https://beyondco.de/docs/laravel-websockets

When	the	Redis	broadcaster	publishes	an	event,	it	will	be	published	on	the	event's	specified	channel	names	and
the	payload	will	be	a	JSON	encoded	string	containing	the	event	name,	a	data	payload,	and	the	user	that
generated	the	event's	socket	ID	(if	applicable).

Socket.IO

If	you	are	going	to	pair	the	Redis	broadcaster	with	a	Socket.IO	server,	you	will	need	to	include	the	Socket.IO
JavaScript	client	library	in	your	application.	You	may	install	it	via	the	NPM	package	manager:

npm	install	--save	socket.io-client

Next,	you	will	need	to	instantiate	Echo	with	the	socket.io	connector	and	a	host.

import	Echo	from	"laravel-echo"

window.io	=	require('socket.io-client');

window.Echo	=	new	Echo({

				broadcaster:	'socket.io',

				host:	window.location.hostname	+	':6001'

});

Finally,	you	will	need	to	run	a	compatible	Socket.IO	server.	Laravel	does	not	include	a	Socket.IO	server
implementation;	however,	a	community	driven	Socket.IO	server	is	currently	maintained	at	the
tlaverdure/laravel-echo-server	GitHub	repository.

Queue	Prerequisites

Before	broadcasting	events,	you	will	also	need	to	configure	and	run	a	queue	listener.	All	event	broadcasting	is
done	via	queued	jobs	so	that	the	response	time	of	your	application	is	not	seriously	affected.

Concept	Overview

Laravel's	event	broadcasting	allows	you	to	broadcast	your	server-side	Laravel	events	to	your	client-side
JavaScript	application	using	a	driver-based	approach	to	WebSockets.	Currently,	Laravel	ships	with	Pusher
Channels	and	Redis	drivers.	The	events	may	be	easily	consumed	on	the	client-side	using	the	Laravel	Echo
Javascript	package.

Events	are	broadcast	over	"channels",	which	may	be	specified	as	public	or	private.	Any	visitor	to	your
application	may	subscribe	to	a	public	channel	without	any	authentication	or	authorization;	however,	in	order	to
subscribe	to	a	private	channel,	a	user	must	be	authenticated	and	authorized	to	listen	on	that	channel.

TIP	If	you	would	like	to	use	an	open	source,	PHP	driven	alternative	to	Pusher,	check	out	the	laravel-
websockets	package.

Using	An	Example	Application

Before	diving	into	each	component	of	event	broadcasting,	let's	take	a	high	level	overview	using	an	e-commerce
store	as	an	example.	We	won't	discuss	the	details	of	configuring	Pusher	Channels	or	Laravel	Echo	since	that
will	be	discussed	in	detail	in	other	sections	of	this	documentation.

In	our	application,	let's	assume	we	have	a	page	that	allows	users	to	view	the	shipping	status	for	their	orders.
Let's	also	assume	that	a	ShippingStatusUpdated	event	is	fired	when	a	shipping	status	update	is	processed	by	the
application:

event(new	ShippingStatusUpdated($update));

The	ShouldBroadcast	Interface

When	a	user	is	viewing	one	of	their	orders,	we	don't	want	them	to	have	to	refresh	the	page	to	view	status
updates.	Instead,	we	want	to	broadcast	the	updates	to	the	application	as	they	are	created.	So,	we	need	to	mark
the	ShippingStatusUpdated	event	with	the	ShouldBroadcast	interface.	This	will	instruct	Laravel	to	broadcast	the

Laravel	Documentation	-	7.x	/	Broadcasting 227

https://github.com/tlaverdure/laravel-echo-server
https://pusher.com/channels
https://github.com/beyondcode/laravel-websockets
https://pusher.com/channels

event	when	it	is	fired:

<?php

namespace	App\Events;

use	Illuminate\Broadcasting\Channel;

use	Illuminate\Broadcasting\InteractsWithSockets;

use	Illuminate\Broadcasting\PresenceChannel;

use	Illuminate\Broadcasting\PrivateChannel;

use	Illuminate\Contracts\Broadcasting\ShouldBroadcast;

use	Illuminate\Queue\SerializesModels;

class	ShippingStatusUpdated	implements	ShouldBroadcast

{

				/**

					*	Information	about	the	shipping	status	update.

					*

					*	@var	string

					*/

				public	$update;

}

The	ShouldBroadcast	interface	requires	our	event	to	define	a	broadcastOn	method.	This	method	is	responsible	for
returning	the	channels	that	the	event	should	broadcast	on.	An	empty	stub	of	this	method	is	already	defined	on
generated	event	classes,	so	we	only	need	to	fill	in	its	details.	We	only	want	the	creator	of	the	order	to	be	able	to
view	status	updates,	so	we	will	broadcast	the	event	on	a	private	channel	that	is	tied	to	the	order:

/**

	*	Get	the	channels	the	event	should	broadcast	on.

	*

	*	@return	\Illuminate\Broadcasting\PrivateChannel

	*/

public	function	broadcastOn()

{

				return	new	PrivateChannel('order.'.$this->update->order_id);

}

Authorizing	Channels

Remember,	users	must	be	authorized	to	listen	on	private	channels.	We	may	define	our	channel	authorization
rules	in	the	routes/channels.php	file.	In	this	example,	we	need	to	verify	that	any	user	attempting	to	listen	on	the
private	order.1	channel	is	actually	the	creator	of	the	order:

Broadcast::channel('order.{orderId}',	function	($user,	$orderId)	{

				return	$user->id	===	Order::findOrNew($orderId)->user_id;

});

The	channel	method	accepts	two	arguments:	the	name	of	the	channel	and	a	callback	which	returns	true	or	false
indicating	whether	the	user	is	authorized	to	listen	on	the	channel.

All	authorization	callbacks	receive	the	currently	authenticated	user	as	their	first	argument	and	any	additional
wildcard	parameters	as	their	subsequent	arguments.	In	this	example,	we	are	using	the	{orderId}	placeholder	to
indicate	that	the	"ID"	portion	of	the	channel	name	is	a	wildcard.

Listening	For	Event	Broadcasts

Next,	all	that	remains	is	to	listen	for	the	event	in	our	JavaScript	application.	We	can	do	this	using	Laravel	Echo.
First,	we'll	use	the	private	method	to	subscribe	to	the	private	channel.	Then,	we	may	use	the	listen	method	to
listen	for	the	ShippingStatusUpdated	event.	By	default,	all	of	the	event's	public	properties	will	be	included	on
the	broadcast	event:

Echo.private(`order.${orderId}`)

				.listen('ShippingStatusUpdated',	(e)	=>	{

								console.log(e.update);

				});

Defining	Broadcast	Events

Laravel	Documentation	-	7.x	/	Broadcasting 228

To	inform	Laravel	that	a	given	event	should	be	broadcast,	implement	the	
Illuminate\Contracts\Broadcasting\ShouldBroadcast	interface	on	the	event	class.	This	interface	is	already
imported	into	all	event	classes	generated	by	the	framework	so	you	may	easily	add	it	to	any	of	your	events.

The	ShouldBroadcast	interface	requires	you	to	implement	a	single	method:	broadcastOn.	The	broadcastOn
method	should	return	a	channel	or	array	of	channels	that	the	event	should	broadcast	on.	The	channels	should	be
instances	of	Channel,	PrivateChannel,	or	PresenceChannel.	Instances	of	Channel	represent	public	channels	that
any	user	may	subscribe	to,	while	PrivateChannels	and	PresenceChannels	represent	private	channels	that	require
channel	authorization:

<?php

namespace	App\Events;

use	App\User;

use	Illuminate\Broadcasting\Channel;

use	Illuminate\Broadcasting\InteractsWithSockets;

use	Illuminate\Broadcasting\PresenceChannel;

use	Illuminate\Broadcasting\PrivateChannel;

use	Illuminate\Contracts\Broadcasting\ShouldBroadcast;

use	Illuminate\Queue\SerializesModels;

class	ServerCreated	implements	ShouldBroadcast

{

				use	SerializesModels;

				public	$user;

				/**

					*	Create	a	new	event	instance.

					*

					*	@return	void

					*/

				public	function	__construct(User	$user)

				{

								$this->user	=	$user;

				}

				/**

					*	Get	the	channels	the	event	should	broadcast	on.

					*

					*	@return	Channel|array

					*/

				public	function	broadcastOn()

				{

								return	new	PrivateChannel('user.'.$this->user->id);

				}

}

Then,	you	only	need	to	fire	the	event	as	you	normally	would.	Once	the	event	has	been	fired,	a	queued	job	will
automatically	broadcast	the	event	over	your	specified	broadcast	driver.

Broadcast	Name

By	default,	Laravel	will	broadcast	the	event	using	the	event's	class	name.	However,	you	may	customize	the
broadcast	name	by	defining	a	broadcastAs	method	on	the	event:

/**

	*	The	event's	broadcast	name.

	*

	*	@return	string

	*/

public	function	broadcastAs()

{

				return	'server.created';

}

If	you	customize	the	broadcast	name	using	the	broadcastAs	method,	you	should	make	sure	to	register	your
listener	with	a	leading	.	character.	This	will	instruct	Echo	to	not	prepend	the	application's	namespace	to	the
event:

.listen('.server.created',	function	(e)	{

			

Laravel	Documentation	-	7.x	/	Broadcasting 229

});

Broadcast	Data

When	an	event	is	broadcast,	all	of	its	public	properties	are	automatically	serialized	and	broadcast	as	the	event's
payload,	allowing	you	to	access	any	of	its	public	data	from	your	JavaScript	application.	So,	for	example,	if	your
event	has	a	single	public	$user	property	that	contains	an	Eloquent	model,	the	event's	broadcast	payload	would
be:

{

				"user":	{

								"id":	1,

								"name":	"Patrick	Stewart"

								...

				}

}

However,	if	you	wish	to	have	more	fine-grained	control	over	your	broadcast	payload,	you	may	add	a	
broadcastWith	method	to	your	event.	This	method	should	return	the	array	of	data	that	you	wish	to	broadcast	as
the	event	payload:

/**

	*	Get	the	data	to	broadcast.

	*

	*	@return	array

	*/

public	function	broadcastWith()

{

				return	['id'	=>	$this->user->id];

}

Broadcast	Queue

By	default,	each	broadcast	event	is	placed	on	the	default	queue	for	the	default	queue	connection	specified	in
your	queue.php	configuration	file.	You	may	customize	the	queue	used	by	the	broadcaster	by	defining	a	
broadcastQueue	property	on	your	event	class.	This	property	should	specify	the	name	of	the	queue	you	wish	to
use	when	broadcasting:

/**

	*	The	name	of	the	queue	on	which	to	place	the	event.

	*

	*	@var	string

	*/

public	$broadcastQueue	=	'your-queue-name';

If	you	want	to	broadcast	your	event	using	the	sync	queue	instead	of	the	default	queue	driver,	you	can	implement
the	ShouldBroadcastNow	interface	instead	of	ShouldBroadcast:

<?php

use	Illuminate\Contracts\Broadcasting\ShouldBroadcastNow;

class	ShippingStatusUpdated	implements	ShouldBroadcastNow

{

				//

}

Broadcast	Conditions

Sometimes	you	want	to	broadcast	your	event	only	if	a	given	condition	is	true.	You	may	define	these	conditions
by	adding	a	broadcastWhen	method	to	your	event	class:

/**

	*	Determine	if	this	event	should	broadcast.

	*

	*	@return	bool

	*/

public	function	broadcastWhen()

{

				return	$this->value	>	100;

Laravel	Documentation	-	7.x	/	Broadcasting 230

}

Authorizing	Channels

Private	channels	require	you	to	authorize	that	the	currently	authenticated	user	can	actually	listen	on	the	channel.
This	is	accomplished	by	making	an	HTTP	request	to	your	Laravel	application	with	the	channel	name	and
allowing	your	application	to	determine	if	the	user	can	listen	on	that	channel.	When	using	Laravel	Echo,	the
HTTP	request	to	authorize	subscriptions	to	private	channels	will	be	made	automatically;	however,	you	do	need
to	define	the	proper	routes	to	respond	to	these	requests.

Defining	Authorization	Routes

Thankfully,	Laravel	makes	it	easy	to	define	the	routes	to	respond	to	channel	authorization	requests.	In	the	
BroadcastServiceProvider	included	with	your	Laravel	application,	you	will	see	a	call	to	the	Broadcast::routes
method.	This	method	will	register	the	/broadcasting/auth	route	to	handle	authorization	requests:

Broadcast::routes();

The	Broadcast::routes	method	will	automatically	place	its	routes	within	the	web	middleware	group;	however,
you	may	pass	an	array	of	route	attributes	to	the	method	if	you	would	like	to	customize	the	assigned	attributes:

Broadcast::routes($attributes);

Customizing	The	Authorization	Endpoint

By	default,	Echo	will	use	the	/broadcasting/auth	endpoint	to	authorize	channel	access.	However,	you	may
specify	your	own	authorization	endpoint	by	passing	the	authEndpoint	configuration	option	to	your	Echo
instance:

window.Echo	=	new	Echo({

				broadcaster:	'pusher',

				key:	'your-pusher-channels-key',

				authEndpoint:	'/custom/endpoint/auth'

});

Defining	Authorization	Callbacks

Next,	we	need	to	define	the	logic	that	will	actually	perform	the	channel	authorization.	This	is	done	in	the	
routes/channels.php	file	that	is	included	with	your	application.	In	this	file,	you	may	use	the	Broadcast::channel
method	to	register	channel	authorization	callbacks:

Broadcast::channel('order.{orderId}',	function	($user,	$orderId)	{

				return	$user->id	===	Order::findOrNew($orderId)->user_id;

});

The	channel	method	accepts	two	arguments:	the	name	of	the	channel	and	a	callback	which	returns	true	or	false
indicating	whether	the	user	is	authorized	to	listen	on	the	channel.

All	authorization	callbacks	receive	the	currently	authenticated	user	as	their	first	argument	and	any	additional
wildcard	parameters	as	their	subsequent	arguments.	In	this	example,	we	are	using	the	{orderId}	placeholder	to
indicate	that	the	"ID"	portion	of	the	channel	name	is	a	wildcard.

Authorization	Callback	Model	Binding

Just	like	HTTP	routes,	channel	routes	may	also	take	advantage	of	implicit	and	explicit	route	model	binding.	For
example,	instead	of	receiving	the	string	or	numeric	order	ID,	you	may	request	an	actual	Order	model	instance:

use	App\Order;

Broadcast::channel('order.{order}',	function	($user,	Order	$order)	{

				return	$user->id	===	$order->user_id;

});

Authorization	Callback	Authentication

Laravel	Documentation	-	7.x	/	Broadcasting 231

Private	and	presence	broadcast	channels	authenticate	the	current	user	via	your	application's	default
authentication	guard.	If	the	user	is	not	authenticated,	channel	authorization	is	automatically	denied	and	the
authorization	callback	is	never	executed.	However,	you	may	assign	multiple,	custom	guards	that	should
authenticate	the	incoming	request	if	necessary:

Broadcast::channel('channel',	function	()	{

				//	...

},	['guards'	=>	['web',	'admin']]);

Defining	Channel	Classes

If	your	application	is	consuming	many	different	channels,	your	routes/channels.php	file	could	become	bulky.
So,	instead	of	using	Closures	to	authorize	channels,	you	may	use	channel	classes.	To	generate	a	channel	class,
use	the	make:channel	Artisan	command.	This	command	will	place	a	new	channel	class	in	the	App/Broadcasting
directory.

php	artisan	make:channel	OrderChannel

Next,	register	your	channel	in	your	routes/channels.php	file:

use	App\Broadcasting\OrderChannel;

Broadcast::channel('order.{order}',	OrderChannel::class);

Finally,	you	may	place	the	authorization	logic	for	your	channel	in	the	channel	class'	join	method.	This	join
method	will	house	the	same	logic	you	would	have	typically	placed	in	your	channel	authorization	Closure.	You
may	also	take	advantage	of	channel	model	binding:

<?php

namespace	App\Broadcasting;

use	App\Order;

use	App\User;

class	OrderChannel

{

				/**

					*	Create	a	new	channel	instance.

					*

					*	@return	void

					*/

				public	function	__construct()

				{

								//

				}

				/**

					*	Authenticate	the	user's	access	to	the	channel.

					*

					*	@param		\App\User		$user

					*	@param		\App\Order		$order

					*	@return	array|bool

					*/

				public	function	join(User	$user,	Order	$order)

				{

								return	$user->id	===	$order->user_id;

				}

}

TIP	Like	many	other	classes	in	Laravel,	channel	classes	will	automatically	be	resolved	by	the	service
container.	So,	you	may	type-hint	any	dependencies	required	by	your	channel	in	its	constructor.

Broadcasting	Events

Once	you	have	defined	an	event	and	marked	it	with	the	ShouldBroadcast	interface,	you	only	need	to	fire	the
event	using	the	event	function.	The	event	dispatcher	will	notice	that	the	event	is	marked	with	the	
ShouldBroadcast	interface	and	will	queue	the	event	for	broadcasting:

event(new	ShippingStatusUpdated($update));

Laravel	Documentation	-	7.x	/	Broadcasting 232

Only	To	Others

When	building	an	application	that	utilizes	event	broadcasting,	you	may	substitute	the	event	function	with	the	
broadcast	function.	Like	the	event	function,	the	broadcast	function	dispatches	the	event	to	your	server-side
listeners:

broadcast(new	ShippingStatusUpdated($update));

However,	the	broadcast	function	also	exposes	the	toOthers	method	which	allows	you	to	exclude	the	current
user	from	the	broadcast's	recipients:

broadcast(new	ShippingStatusUpdated($update))->toOthers();

To	better	understand	when	you	may	want	to	use	the	toOthers	method,	let's	imagine	a	task	list	application	where
a	user	may	create	a	new	task	by	entering	a	task	name.	To	create	a	task,	your	application	might	make	a	request	to
a	/task	end-point	which	broadcasts	the	task's	creation	and	returns	a	JSON	representation	of	the	new	task.	When
your	JavaScript	application	receives	the	response	from	the	end-point,	it	might	directly	insert	the	new	task	into
its	task	list	like	so:

axios.post('/task',	task)

				.then((response)	=>	{

								this.tasks.push(response.data);

				});

However,	remember	that	we	also	broadcast	the	task's	creation.	If	your	JavaScript	application	is	listening	for	this
event	in	order	to	add	tasks	to	the	task	list,	you	will	have	duplicate	tasks	in	your	list:	one	from	the	end-point	and
one	from	the	broadcast.	You	may	solve	this	by	using	the	toOthers	method	to	instruct	the	broadcaster	to	not
broadcast	the	event	to	the	current	user.

NOTE	Your	event	must	use	the	Illuminate\Broadcasting\InteractsWithSockets	trait	in	order	to	call	the	
toOthers	method.

Configuration

When	you	initialize	a	Laravel	Echo	instance,	a	socket	ID	is	assigned	to	the	connection.	If	you	are	using	Vue
and	Axios,	the	socket	ID	will	automatically	be	attached	to	every	outgoing	request	as	a	X-Socket-ID	header.
Then,	when	you	call	the	toOthers	method,	Laravel	will	extract	the	socket	ID	from	the	header	and	instruct	the
broadcaster	to	not	broadcast	to	any	connections	with	that	socket	ID.

If	you	are	not	using	Vue	and	Axios,	you	will	need	to	manually	configure	your	JavaScript	application	to	send	the
X-Socket-ID	header.	You	may	retrieve	the	socket	ID	using	the	Echo.socketId	method:

var	socketId	=	Echo.socketId();

Receiving	Broadcasts

Installing	Laravel	Echo

Laravel	Echo	is	a	JavaScript	library	that	makes	it	painless	to	subscribe	to	channels	and	listen	for	events
broadcast	by	Laravel.	You	may	install	Echo	via	the	NPM	package	manager.	In	this	example,	we	will	also	install
the	pusher-js	package	since	we	will	be	using	the	Pusher	Channels	broadcaster:

npm	install	--save	laravel-echo	pusher-js

Once	Echo	is	installed,	you	are	ready	to	create	a	fresh	Echo	instance	in	your	application's	JavaScript.	A	great
place	to	do	this	is	at	the	bottom	of	the	resources/js/bootstrap.js	file	that	is	included	with	the	Laravel
framework:

import	Echo	from	"laravel-echo"

window.Echo	=	new	Echo({

				broadcaster:	'pusher',

				key:	'your-pusher-channels-key'

});

Laravel	Documentation	-	7.x	/	Broadcasting 233

https://vuejs.org
https://github.com/mzabriskie/axios

When	creating	an	Echo	instance	that	uses	the	pusher	connector,	you	may	also	specify	a	cluster	as	well	as
whether	the	connection	must	be	made	over	TLS	(by	default,	when	forceTLS	is	false,	a	non-TLS	connection	will
be	made	if	the	page	was	loaded	over	HTTP,	or	as	a	fallback	if	a	TLS	connection	fails):

window.Echo	=	new	Echo({

				broadcaster:	'pusher',

				key:	'your-pusher-channels-key',

				cluster:	'eu',

				forceTLS:	true

});

Using	An	Existing	Client	Instance

If	you	already	have	a	Pusher	Channels	or	Socket.io	client	instance	that	you	would	like	Echo	to	utilize,	you	may
pass	it	to	Echo	via	the	client	configuration	option:

const	client	=	require('pusher-js');

window.Echo	=	new	Echo({

				broadcaster:	'pusher',

				key:	'your-pusher-channels-key',

				client:	client

});

Listening	For	Events

Once	you	have	installed	and	instantiated	Echo,	you	are	ready	to	start	listening	for	event	broadcasts.	First,	use
the	channel	method	to	retrieve	an	instance	of	a	channel,	then	call	the	listen	method	to	listen	for	a	specified
event:

Echo.channel('orders')

				.listen('OrderShipped',	(e)	=>	{

								console.log(e.order.name);

				});

If	you	would	like	to	listen	for	events	on	a	private	channel,	use	the	private	method	instead.	You	may	continue	to
chain	calls	to	the	listen	method	to	listen	for	multiple	events	on	a	single	channel:

Echo.private('orders')

				.listen(...)

				.listen(...)

				.listen(...);

Leaving	A	Channel

To	leave	a	channel,	you	may	call	the	leaveChannel	method	on	your	Echo	instance:

Echo.leaveChannel('orders');

If	you	would	like	to	leave	a	channel	and	also	its	associated	private	and	presence	channels,	you	may	call	the	
leave	method:

Echo.leave('orders');

Namespaces

You	may	have	noticed	in	the	examples	above	that	we	did	not	specify	the	full	namespace	for	the	event	classes.
This	is	because	Echo	will	automatically	assume	the	events	are	located	in	the	App\Events	namespace.	However,
you	may	configure	the	root	namespace	when	you	instantiate	Echo	by	passing	a	namespace	configuration	option:

window.Echo	=	new	Echo({

				broadcaster:	'pusher',

				key:	'your-pusher-channels-key',

				namespace:	'App.Other.Namespace'

});

Alternatively,	you	may	prefix	event	classes	with	a	.	when	subscribing	to	them	using	Echo.	This	will	allow	you

Laravel	Documentation	-	7.x	/	Broadcasting 234

to	always	specify	the	fully-qualified	class	name:

Echo.channel('orders')

				.listen('.Namespace\\Event\\Class',	(e)	=>	{

								//

				});

Presence	Channels

Presence	channels	build	on	the	security	of	private	channels	while	exposing	the	additional	feature	of	awareness
of	who	is	subscribed	to	the	channel.	This	makes	it	easy	to	build	powerful,	collaborative	application	features
such	as	notifying	users	when	another	user	is	viewing	the	same	page.

Authorizing	Presence	Channels

All	presence	channels	are	also	private	channels;	therefore,	users	must	be	authorized	to	access	them.	However,
when	defining	authorization	callbacks	for	presence	channels,	you	will	not	return	true	if	the	user	is	authorized	to
join	the	channel.	Instead,	you	should	return	an	array	of	data	about	the	user.

The	data	returned	by	the	authorization	callback	will	be	made	available	to	the	presence	channel	event	listeners	in
your	JavaScript	application.	If	the	user	is	not	authorized	to	join	the	presence	channel,	you	should	return	false
or	null:

Broadcast::channel('chat.{roomId}',	function	($user,	$roomId)	{

				if	($user->canJoinRoom($roomId))	{

								return	['id'	=>	$user->id,	'name'	=>	$user->name];

				}

});

Joining	Presence	Channels

To	join	a	presence	channel,	you	may	use	Echo's	join	method.	The	join	method	will	return	a	PresenceChannel
implementation	which,	along	with	exposing	the	listen	method,	allows	you	to	subscribe	to	the	here,	joining,
and	leaving	events.

Echo.join(`chat.${roomId}`)

				.here((users)	=>	{

								//

				})

				.joining((user)	=>	{

								console.log(user.name);

				})

				.leaving((user)	=>	{

								console.log(user.name);

				});

The	here	callback	will	be	executed	immediately	once	the	channel	is	joined	successfully,	and	will	receive	an
array	containing	the	user	information	for	all	of	the	other	users	currently	subscribed	to	the	channel.	The	joining
method	will	be	executed	when	a	new	user	joins	a	channel,	while	the	leaving	method	will	be	executed	when	a
user	leaves	the	channel.

Broadcasting	To	Presence	Channels

Presence	channels	may	receive	events	just	like	public	or	private	channels.	Using	the	example	of	a	chatroom,	we
may	want	to	broadcast	NewMessage	events	to	the	room's	presence	channel.	To	do	so,	we'll	return	an	instance	of	
PresenceChannel	from	the	event's	broadcastOn	method:

/**

	*	Get	the	channels	the	event	should	broadcast	on.

	*

	*	@return	Channel|array

	*/

public	function	broadcastOn()

{

				return	new	PresenceChannel('room.'.$this->message->room_id);

}

Laravel	Documentation	-	7.x	/	Broadcasting 235

Like	public	or	private	events,	presence	channel	events	may	be	broadcast	using	the	broadcast	function.	As	with
other	events,	you	may	use	the	toOthers	method	to	exclude	the	current	user	from	receiving	the	broadcast:

broadcast(new	NewMessage($message));

broadcast(new	NewMessage($message))->toOthers();

You	may	listen	for	the	join	event	via	Echo's	listen	method:

Echo.join(`chat.${roomId}`)

				.here(...)

				.joining(...)

				.leaving(...)

				.listen('NewMessage',	(e)	=>	{

								//

				});

Client	Events

TIP	When	using	Pusher	Channels,	you	must	enable	the	"Client	Events"	option	in	the	"App	Settings"
section	of	your	application	dashboard	in	order	to	send	client	events.

Sometimes	you	may	wish	to	broadcast	an	event	to	other	connected	clients	without	hitting	your	Laravel
application	at	all.	This	can	be	particularly	useful	for	things	like	"typing"	notifications,	where	you	want	to	alert
users	of	your	application	that	another	user	is	typing	a	message	on	a	given	screen.

To	broadcast	client	events,	you	may	use	Echo's	whisper	method:

Echo.private('chat')

				.whisper('typing',	{

								name:	this.user.name

				});

To	listen	for	client	events,	you	may	use	the	listenForWhisper	method:

Echo.private('chat')

				.listenForWhisper('typing',	(e)	=>	{

								console.log(e.name);

				});

Notifications

By	pairing	event	broadcasting	with	notifications,	your	JavaScript	application	may	receive	new	notifications	as
they	occur	without	needing	to	refresh	the	page.	First,	be	sure	to	read	over	the	documentation	on	using	the
broadcast	notification	channel.

Once	you	have	configured	a	notification	to	use	the	broadcast	channel,	you	may	listen	for	the	broadcast	events
using	Echo's	notification	method.	Remember,	the	channel	name	should	match	the	class	name	of	the	entity
receiving	the	notifications:

Echo.private(`App.User.${userId}`)

				.notification((notification)	=>	{

								console.log(notification.type);

				});

In	this	example,	all	notifications	sent	to	App\User	instances	via	the	broadcast	channel	would	be	received	by	the
callback.	A	channel	authorization	callback	for	the	App.User.{id}	channel	is	included	in	the	default	
BroadcastServiceProvider	that	ships	with	the	Laravel	framework.

Laravel	Documentation	-	7.x	/	Broadcasting 236

https://pusher.com/channels
https://dashboard.pusher.com/

Digging	Deeper

Cache
Configuration

Driver	Prerequisites
Cache	Usage

Obtaining	A	Cache	Instance
Retrieving	Items	From	The	Cache
Storing	Items	In	The	Cache
Removing	Items	From	The	Cache
The	Cache	Helper

Cache	Tags
Storing	Tagged	Cache	Items
Accessing	Tagged	Cache	Items
Removing	Tagged	Cache	Items

Atomic	Locks
Driver	Prerequisites
Managing	Locks
Managing	Locks	Across	Processes

Adding	Custom	Cache	Drivers
Writing	The	Driver
Registering	The	Driver

Events

Configuration

Laravel	provides	an	expressive,	unified	API	for	various	caching	backends.	The	cache	configuration	is	located	at
config/cache.php.	In	this	file	you	may	specify	which	cache	driver	you	would	like	to	be	used	by	default
throughout	your	application.	Laravel	supports	popular	caching	backends	like	Memcached	and	Redis	out	of	the
box.

The	cache	configuration	file	also	contains	various	other	options,	which	are	documented	within	the	file,	so	make
sure	to	read	over	these	options.	By	default,	Laravel	is	configured	to	use	the	file	cache	driver,	which	stores	the
serialized,	cached	objects	in	the	filesystem.	For	larger	applications,	it	is	recommended	that	you	use	a	more
robust	driver	such	as	Memcached	or	Redis.	You	may	even	configure	multiple	cache	configurations	for	the	same
driver.

Driver	Prerequisites

Database

When	using	the	database	cache	driver,	you	will	need	to	setup	a	table	to	contain	the	cache	items.	You'll	find	an
example	Schema	declaration	for	the	table	below:

Schema::create('cache',	function	($table)	{

				$table->string('key')->unique();

				$table->text('value');

				$table->integer('expiration');

});

TIP	You	may	also	use	the	php	artisan	cache:table	Artisan	command	to	generate	a	migration	with	the
proper	schema.

Memcached

Using	the	Memcached	driver	requires	the	Memcached	PECL	package	to	be	installed.	You	may	list	all	of	your
Memcached	servers	in	the	config/cache.php	configuration	file:

'memcached'	=>	[

Laravel	Documentation	-	7.x	/	Cache 237

https://memcached.org
https://redis.io
https://pecl.php.net/package/memcached

				[

								'host'	=>	'127.0.0.1',

								'port'	=>	11211,

								'weight'	=>	100

],

],

You	may	also	set	the	host	option	to	a	UNIX	socket	path.	If	you	do	this,	the	port	option	should	be	set	to	0:

'memcached'	=>	[

				[

								'host'	=>	'/var/run/memcached/memcached.sock',

								'port'	=>	0,

								'weight'	=>	100

],

],

Redis

Before	using	a	Redis	cache	with	Laravel,	you	will	need	to	either	install	the	PhpRedis	PHP	extension	via	PECL
or	install	the	predis/predis	package	(~1.0)	via	Composer.

For	more	information	on	configuring	Redis,	consult	its	Laravel	documentation	page.

Cache	Usage

Obtaining	A	Cache	Instance

The	Illuminate\Contracts\Cache\Factory	and	Illuminate\Contracts\Cache\Repository	contracts	provide	access
to	Laravel's	cache	services.	The	Factory	contract	provides	access	to	all	cache	drivers	defined	for	your
application.	The	Repository	contract	is	typically	an	implementation	of	the	default	cache	driver	for	your
application	as	specified	by	your	cache	configuration	file.

However,	you	may	also	use	the	Cache	facade,	which	is	what	we	will	use	throughout	this	documentation.	The	
Cache	facade	provides	convenient,	terse	access	to	the	underlying	implementations	of	the	Laravel	cache
contracts:

<?php

namespace	App\Http\Controllers;

use	Illuminate\Support\Facades\Cache;

class	UserController	extends	Controller

{

				/**

					*	Show	a	list	of	all	users	of	the	application.

					*

					*	@return	Response

					*/

				public	function	index()

				{

								$value	=	Cache::get('key');

								//

				}

}

Accessing	Multiple	Cache	Stores

Using	the	Cache	facade,	you	may	access	various	cache	stores	via	the	store	method.	The	key	passed	to	the	store
method	should	correspond	to	one	of	the	stores	listed	in	the	stores	configuration	array	in	your	cache
configuration	file:

$value	=	Cache::store('file')->get('foo');

Cache::store('redis')->put('bar',	'baz',	600);	//	10	Minutes

Laravel	Documentation	-	7.x	/	Cache 238

Retrieving	Items	From	The	Cache

The	get	method	on	the	Cache	facade	is	used	to	retrieve	items	from	the	cache.	If	the	item	does	not	exist	in	the
cache,	null	will	be	returned.	If	you	wish,	you	may	pass	a	second	argument	to	the	get	method	specifying	the
default	value	you	wish	to	be	returned	if	the	item	doesn't	exist:

$value	=	Cache::get('key');

$value	=	Cache::get('key',	'default');

You	may	even	pass	a	Closure	as	the	default	value.	The	result	of	the	Closure	will	be	returned	if	the	specified	item
does	not	exist	in	the	cache.	Passing	a	Closure	allows	you	to	defer	the	retrieval	of	default	values	from	a	database
or	other	external	service:

$value	=	Cache::get('key',	function	()	{

				return	DB::table(...)->get();

});

Checking	For	Item	Existence

The	has	method	may	be	used	to	determine	if	an	item	exists	in	the	cache.	This	method	will	return	false	if	the
value	is	null:

if	(Cache::has('key'))	{

				//

}

Incrementing	/	Decrementing	Values

The	increment	and	decrement	methods	may	be	used	to	adjust	the	value	of	integer	items	in	the	cache.	Both	of
these	methods	accept	an	optional	second	argument	indicating	the	amount	by	which	to	increment	or	decrement
the	item's	value:

Cache::increment('key');

Cache::increment('key',	$amount);

Cache::decrement('key');

Cache::decrement('key',	$amount);

Retrieve	&	Store

Sometimes	you	may	wish	to	retrieve	an	item	from	the	cache,	but	also	store	a	default	value	if	the	requested	item
doesn't	exist.	For	example,	you	may	wish	to	retrieve	all	users	from	the	cache	or,	if	they	don't	exist,	retrieve
them	from	the	database	and	add	them	to	the	cache.	You	may	do	this	using	the	Cache::remember	method:

$value	=	Cache::remember('users',	$seconds,	function	()	{

				return	DB::table('users')->get();

});

If	the	item	does	not	exist	in	the	cache,	the	Closure	passed	to	the	remember	method	will	be	executed	and	its	result
will	be	placed	in	the	cache.

You	may	use	the	rememberForever	method	to	retrieve	an	item	from	the	cache	or	store	it	forever:

$value	=	Cache::rememberForever('users',	function	()	{

				return	DB::table('users')->get();

});

Retrieve	&	Delete

If	you	need	to	retrieve	an	item	from	the	cache	and	then	delete	the	item,	you	may	use	the	pull	method.	Like	the	
get	method,	null	will	be	returned	if	the	item	does	not	exist	in	the	cache:

$value	=	Cache::pull('key');

Storing	Items	In	The	Cache

Laravel	Documentation	-	7.x	/	Cache 239

You	may	use	the	put	method	on	the	Cache	facade	to	store	items	in	the	cache:

Cache::put('key',	'value',	$seconds);

If	the	storage	time	is	not	passed	to	the	put	method,	the	item	will	be	stored	indefinitely:

Cache::put('key',	'value');

Instead	of	passing	the	number	of	seconds	as	an	integer,	you	may	also	pass	a	DateTime	instance	representing	the
expiration	time	of	the	cached	item:

Cache::put('key',	'value',	now()->addMinutes(10));

Store	If	Not	Present

The	add	method	will	only	add	the	item	to	the	cache	if	it	does	not	already	exist	in	the	cache	store.	The	method
will	return	true	if	the	item	is	actually	added	to	the	cache.	Otherwise,	the	method	will	return	false:

Cache::add('key',	'value',	$seconds);

Storing	Items	Forever

The	forever	method	may	be	used	to	store	an	item	in	the	cache	permanently.	Since	these	items	will	not	expire,
they	must	be	manually	removed	from	the	cache	using	the	forget	method:

Cache::forever('key',	'value');

TIP	If	you	are	using	the	Memcached	driver,	items	that	are	stored	"forever"	may	be	removed	when	the
cache	reaches	its	size	limit.

Removing	Items	From	The	Cache

You	may	remove	items	from	the	cache	using	the	forget	method:

Cache::forget('key');

You	may	also	remove	items	by	providing	a	zero	or	negative	TTL:

Cache::put('key',	'value',	0);

Cache::put('key',	'value',	-5);

You	may	clear	the	entire	cache	using	the	flush	method:

Cache::flush();

NOTE	Flushing	the	cache	does	not	respect	the	cache	prefix	and	will	remove	all	entries	from	the	cache.
Consider	this	carefully	when	clearing	a	cache	which	is	shared	by	other	applications.

The	Cache	Helper

In	addition	to	using	the	Cache	facade	or	cache	contract,	you	may	also	use	the	global	cache	function	to	retrieve
and	store	data	via	the	cache.	When	the	cache	function	is	called	with	a	single,	string	argument,	it	will	return	the
value	of	the	given	key:

$value	=	cache('key');

If	you	provide	an	array	of	key	/	value	pairs	and	an	expiration	time	to	the	function,	it	will	store	values	in	the
cache	for	the	specified	duration:

cache(['key'	=>	'value'],	$seconds);

cache(['key'	=>	'value'],	now()->addMinutes(10));

When	the	cache	function	is	called	without	any	arguments,	it	returns	an	instance	of	the	

Laravel	Documentation	-	7.x	/	Cache 240

Illuminate\Contracts\Cache\Factory	implementation,	allowing	you	to	call	other	caching	methods:

cache()->remember('users',	$seconds,	function	()	{

				return	DB::table('users')->get();

});

TIP	When	testing	call	to	the	global	cache	function,	you	may	use	the	Cache::shouldReceive	method	just	as	if
you	were	testing	a	facade.

Cache	Tags

NOTE	Cache	tags	are	not	supported	when	using	the	file,	dynamodb,	or	database	cache	drivers.
Furthermore,	when	using	multiple	tags	with	caches	that	are	stored	"forever",	performance	will	be	best	with
a	driver	such	as	memcached,	which	automatically	purges	stale	records.

Storing	Tagged	Cache	Items

Cache	tags	allow	you	to	tag	related	items	in	the	cache	and	then	flush	all	cached	values	that	have	been	assigned
a	given	tag.	You	may	access	a	tagged	cache	by	passing	in	an	ordered	array	of	tag	names.	For	example,	let's
access	a	tagged	cache	and	put	value	in	the	cache:

Cache::tags(['people',	'artists'])->put('John',	$john,	$seconds);

Cache::tags(['people',	'authors'])->put('Anne',	$anne,	$seconds);

Accessing	Tagged	Cache	Items

To	retrieve	a	tagged	cache	item,	pass	the	same	ordered	list	of	tags	to	the	tags	method	and	then	call	the	get
method	with	the	key	you	wish	to	retrieve:

$john	=	Cache::tags(['people',	'artists'])->get('John');

$anne	=	Cache::tags(['people',	'authors'])->get('Anne');

Removing	Tagged	Cache	Items

You	may	flush	all	items	that	are	assigned	a	tag	or	list	of	tags.	For	example,	this	statement	would	remove	all
caches	tagged	with	either	people,	authors,	or	both.	So,	both	Anne	and	John	would	be	removed	from	the	cache:

Cache::tags(['people',	'authors'])->flush();

In	contrast,	this	statement	would	remove	only	caches	tagged	with	authors,	so	Anne	would	be	removed,	but	not	
John:

Cache::tags('authors')->flush();

Atomic	Locks

NOTE	To	utilize	this	feature,	your	application	must	be	using	the	memcached,	dynamodb,	redis,	database,	or	
array	cache	driver	as	your	application's	default	cache	driver.	In	addition,	all	servers	must	be
communicating	with	the	same	central	cache	server.

Driver	Prerequisites

Database

When	using	the	database	cache	driver,	you	will	need	to	setup	a	table	to	contain	the	cache	locks.	You'll	find	an
example	Schema	declaration	for	the	table	below:

Schema::create('cache_locks',	function	($table)	{

				$table->string('key')->primary();

				$table->string('owner');

Laravel	Documentation	-	7.x	/	Cache 241

				$table->integer('expiration');

});

Managing	Locks

Atomic	locks	allow	for	the	manipulation	of	distributed	locks	without	worrying	about	race	conditions.	For
example,	Laravel	Forge	uses	atomic	locks	to	ensure	that	only	one	remote	task	is	being	executed	on	a	server	at	a
time.	You	may	create	and	manage	locks	using	the	Cache::lock	method:

use	Illuminate\Support\Facades\Cache;

$lock	=	Cache::lock('foo',	10);

if	($lock->get())	{

				//	Lock	acquired	for	10	seconds...

				$lock->release();

}

The	get	method	also	accepts	a	Closure.	After	the	Closure	is	executed,	Laravel	will	automatically	release	the
lock:

Cache::lock('foo')->get(function	()	{

				//	Lock	acquired	indefinitely	and	automatically	released...

});

If	the	lock	is	not	available	at	the	moment	you	request	it,	you	may	instruct	Laravel	to	wait	for	a	specified
number	of	seconds.	If	the	lock	can	not	be	acquired	within	the	specified	time	limit,	an	
Illuminate\Contracts\Cache\LockTimeoutException	will	be	thrown:

use	Illuminate\Contracts\Cache\LockTimeoutException;

$lock	=	Cache::lock('foo',	10);

try	{

				$lock->block(5);

				//	Lock	acquired	after	waiting	maximum	of	5	seconds...

}	catch	(LockTimeoutException	$e)	{

				//	Unable	to	acquire	lock...

}	finally	{

				optional($lock)->release();

}

Cache::lock('foo',	10)->block(5,	function	()	{

				//	Lock	acquired	after	waiting	maximum	of	5	seconds...

});

Managing	Locks	Across	Processes

Sometimes,	you	may	wish	to	acquire	a	lock	in	one	process	and	release	it	in	another	process.	For	example,	you
may	acquire	a	lock	during	a	web	request	and	wish	to	release	the	lock	at	the	end	of	a	queued	job	that	is	triggered
by	that	request.	In	this	scenario,	you	should	pass	the	lock's	scoped	"owner	token"	to	the	queued	job	so	that	the
job	can	re-instantiate	the	lock	using	the	given	token:

//	Within	Controller...

$podcast	=	Podcast::find($id);

$lock	=	Cache::lock('foo',	120);

if	($result	=	$lock->get())	{

				ProcessPodcast::dispatch($podcast,	$lock->owner());

}

//	Within	ProcessPodcast	Job...

Cache::restoreLock('foo',	$this->owner)->release();

If	you	would	like	to	release	a	lock	without	respecting	its	current	owner,	you	may	use	the	forceRelease	method:

Cache::lock('foo')->forceRelease();

Laravel	Documentation	-	7.x	/	Cache 242

https://forge.laravel.com

Adding	Custom	Cache	Drivers

Writing	The	Driver

To	create	our	custom	cache	driver,	we	first	need	to	implement	the	Illuminate\Contracts\Cache\Store	contract.
So,	a	MongoDB	cache	implementation	would	look	something	like	this:

<?php

namespace	App\Extensions;

use	Illuminate\Contracts\Cache\Store;

class	MongoStore	implements	Store

{

				public	function	get($key)	{}

				public	function	many(array	$keys)	{}

				public	function	put($key,	$value,	$seconds)	{}

				public	function	putMany(array	$values,	$seconds)	{}

				public	function	increment($key,	$value	=	1)	{}

				public	function	decrement($key,	$value	=	1)	{}

				public	function	forever($key,	$value)	{}

				public	function	forget($key)	{}

				public	function	flush()	{}

				public	function	getPrefix()	{}

}

We	just	need	to	implement	each	of	these	methods	using	a	MongoDB	connection.	For	an	example	of	how	to
implement	each	of	these	methods,	take	a	look	at	the	Illuminate\Cache\MemcachedStore	in	the	framework	source
code.	Once	our	implementation	is	complete,	we	can	finish	our	custom	driver	registration.

Cache::extend('mongo',	function	($app)	{

				return	Cache::repository(new	MongoStore);

});

TIP	If	you're	wondering	where	to	put	your	custom	cache	driver	code,	you	could	create	an	Extensions
namespace	within	your	app	directory.	However,	keep	in	mind	that	Laravel	does	not	have	a	rigid	application
structure	and	you	are	free	to	organize	your	application	according	to	your	preferences.

Registering	The	Driver

To	register	the	custom	cache	driver	with	Laravel,	we	will	use	the	extend	method	on	the	Cache	facade.	The	call	to
Cache::extend	could	be	done	in	the	boot	method	of	the	default	App\Providers\AppServiceProvider	that	ships	with
fresh	Laravel	applications,	or	you	may	create	your	own	service	provider	to	house	the	extension	-	just	don't
forget	to	register	the	provider	in	the	config/app.php	provider	array:

<?php

namespace	App\Providers;

use	App\Extensions\MongoStore;

use	Illuminate\Support\Facades\Cache;

use	Illuminate\Support\ServiceProvider;

class	CacheServiceProvider	extends	ServiceProvider

{

				/**

					*	Register	any	application	services.

					*

					*	@return	void

					*/

				public	function	register()

				{

								//

				}

				/**

					*	Bootstrap	any	application	services.

					*

					*	@return	void

					*/

				public	function	boot()

Laravel	Documentation	-	7.x	/	Cache 243

				{

								Cache::extend('mongo',	function	($app)	{

												return	Cache::repository(new	MongoStore);

								});

				}

}

The	first	argument	passed	to	the	extend	method	is	the	name	of	the	driver.	This	will	correspond	to	your	driver
option	in	the	config/cache.php	configuration	file.	The	second	argument	is	a	Closure	that	should	return	an	
Illuminate\Cache\Repository	instance.	The	Closure	will	be	passed	an	$app	instance,	which	is	an	instance	of	the
service	container.

Once	your	extension	is	registered,	update	your	config/cache.php	configuration	file's	driver	option	to	the	name
of	your	extension.

Events

To	execute	code	on	every	cache	operation,	you	may	listen	for	the	events	fired	by	the	cache.	Typically,	you
should	place	these	event	listeners	within	your	EventServiceProvider:

/**

	*	The	event	listener	mappings	for	the	application.

	*

	*	@var	array

	*/

protected	$listen	=	[

				'Illuminate\Cache\Events\CacheHit'	=>	[

								'App\Listeners\LogCacheHit',

],

				'Illuminate\Cache\Events\CacheMissed'	=>	[

								'App\Listeners\LogCacheMissed',

],

				'Illuminate\Cache\Events\KeyForgotten'	=>	[

								'App\Listeners\LogKeyForgotten',

],

				'Illuminate\Cache\Events\KeyWritten'	=>	[

								'App\Listeners\LogKeyWritten',

],

];

Laravel	Documentation	-	7.x	/	Cache 244

Digging	Deeper

Collections
Introduction

Creating	Collections
Extending	Collections

Available	Methods
Higher	Order	Messages
Lazy	Collections

Introduction
Creating	Lazy	Collections
The	Enumerable	Contract
Lazy	Collection	Methods

Introduction

The	Illuminate\Support\Collection	class	provides	a	fluent,	convenient	wrapper	for	working	with	arrays	of	data.
For	example,	check	out	the	following	code.	We'll	use	the	collect	helper	to	create	a	new	collection	instance
from	the	array,	run	the	strtoupper	function	on	each	element,	and	then	remove	all	empty	elements:

$collection	=	collect(['taylor',	'abigail',	null])->map(function	($name)	{

				return	strtoupper($name);

})

->reject(function	($name)	{

				return	empty($name);

});

As	you	can	see,	the	Collection	class	allows	you	to	chain	its	methods	to	perform	fluent	mapping	and	reducing	of
the	underlying	array.	In	general,	collections	are	immutable,	meaning	every	Collection	method	returns	an
entirely	new	Collection	instance.

Creating	Collections

As	mentioned	above,	the	collect	helper	returns	a	new	Illuminate\Support\Collection	instance	for	the	given
array.	So,	creating	a	collection	is	as	simple	as:

$collection	=	collect([1,	2,	3]);

TIP	The	results	of	Eloquent	queries	are	always	returned	as	Collection	instances.

Extending	Collections

Collections	are	"macroable",	which	allows	you	to	add	additional	methods	to	the	Collection	class	at	run	time.
For	example,	the	following	code	adds	a	toUpper	method	to	the	Collection	class:

use	Illuminate\Support\Collection;

use	Illuminate\Support\Str;

Collection::macro('toUpper',	function	()	{

				return	$this->map(function	($value)	{

								return	Str::upper($value);

				});

});

$collection	=	collect(['first',	'second']);

$upper	=	$collection->toUpper();

//	['FIRST',	'SECOND']

Typically,	you	should	declare	collection	macros	in	a	service	provider.

Available	Methods

Laravel	Documentation	-	7.x	/	Collections 245

For	the	remainder	of	this	documentation,	we'll	discuss	each	method	available	on	the	Collection	class.
Remember,	all	of	these	methods	may	be	chained	to	fluently	manipulate	the	underlying	array.	Furthermore,
almost	every	method	returns	a	new	Collection	instance,	allowing	you	to	preserve	the	original	copy	of	the
collection	when	necessary:

all	average	avg	chunk	collapse	collect	combine	concat	contains	containsStrict	count	countBy	crossJoin	dd	diff
diffAssoc	diffKeys	dump	duplicates	duplicatesStrict	each	eachSpread	every	except	filter	first	firstWhere
flatMap	flatten	flip	forget	forPage	get	groupBy	has	implode	intersect	intersectByKeys	isEmpty	isNotEmpty
join	keyBy	keys	last	macro	make	map	mapInto	mapSpread	mapToGroups	mapWithKeys	max	median	merge
mergeRecursive	min	mode	nth	only	pad	partition	pipe	pluck	pop	prepend	pull	push	put	random	reduce	reject
replace	replaceRecursive	reverse	search	shift	shuffle	skip	skipUntil	skipWhile	slice	some	sort	sortBy
sortByDesc	sortDesc	sortKeys	sortKeysDesc	splice	split	sum	take	takeUntil	takeWhile	tap	times	toArray	toJson
transform	union	unique	uniqueStrict	unless	unlessEmpty	unlessNotEmpty	unwrap	values	when	whenEmpty
whenNotEmpty	where	whereStrict	whereBetween	whereIn	whereInStrict	whereInstanceOf	whereNotBetween
whereNotIn	whereNotInStrict	whereNotNull	whereNull	wrap	zip

Method	Listing
all()

The	all	method	returns	the	underlying	array	represented	by	the	collection:

collect([1,	2,	3])->all();

//	[1,	2,	3]

average()

Alias	for	the	avg	method.

avg()

The	avg	method	returns	the	average	value	of	a	given	key:

$average	=	collect([['foo'	=>	10],	['foo'	=>	10],	['foo'	=>	20],	['foo'	=>	40]])->avg('foo');

//	20

$average	=	collect([1,	1,	2,	4])->avg();

//	2

chunk()

The	chunk	method	breaks	the	collection	into	multiple,	smaller	collections	of	a	given	size:

$collection	=	collect([1,	2,	3,	4,	5,	6,	7]);

$chunks	=	$collection->chunk(4);

$chunks->toArray();

//	[[1,	2,	3,	4],	[5,	6,	7]]

This	method	is	especially	useful	in	views	when	working	with	a	grid	system	such	as	Bootstrap.	Imagine	you
have	a	collection	of	Eloquent	models	you	want	to	display	in	a	grid:

@foreach	($products->chunk(3)	as	$chunk)

				

Laravel	Documentation	-	7.x	/	Collections 246

https://en.wikipedia.org/wiki/Average
https://getbootstrap.com/docs/4.1/layout/grid/

all	average	avg	chunk	collapse	collect	combine	concat	contains	containsStrict	count	countBy	crossJoin	dd	diff
diffAssoc	diffKeys	dump	duplicates	duplicatesStrict	each	eachSpread	every	except	filter	first	firstWhere
flatMap	flatten	flip	forPage	get	groupBy	has	implode	intersect	intersectByKeys	isEmpty	isNotEmpty	join
keyBy	keys	last	macro	make	map	mapInto	mapSpread	mapToGroups	mapWithKeys	max	median	merge
mergeRecursive	min	mode	nth	only	pad	partition	pipe	pluck	random	reduce	reject	replace	replaceRecursive
reverse	search	shuffle	skip	slice	some	sort	sortBy	sortByDesc	sortKeys	sortKeysDesc	split	sum	take	tap	times
toArray	toJson	union	unique	uniqueStrict	unless	unlessEmpty	unlessNotEmpty	unwrap	values	when
whenEmpty	whenNotEmpty	where	whereStrict	whereBetween	whereIn	whereInStrict	whereInstanceOf
whereNotBetween	whereNotIn	whereNotInStrict	wrap	zip

NOTE	Methods	that	mutate	the	collection	(such	as	shift,	pop,	prepend	etc.)	are	not	available	on	the	
LazyCollection	class.

Lazy	Collection	Methods

In	addition	to	the	methods	defined	in	the	Enumerable	contract,	the	LazyCollection	class	contains	the	following
methods:

tapEach()

While	the	each	method	calls	the	given	callback	for	each	item	in	the	collection	right	away,	the	tapEach	method
only	calls	the	given	callback	as	the	items	are	being	pulled	out	of	the	list	one	by	one:

$lazyCollection	=	LazyCollection::times(INF)->tapEach(function	($value)	{

				dump($value);

});

//	Nothing	has	been	dumped	so	far...

$array	=	$lazyCollection->take(3)->all();

//	1

//	2

//	3

remember()

The	remember	method	returns	a	new	lazy	collection	that	will	remember	any	values	that	have	already	been
enumerated	and	will	not	retrieve	them	again	when	the	collection	is	enumerated	again:

$users	=	User::cursor()->remember();

//	No	query	has	been	executed	yet...

$users->take(5)->all();

//	The	query	has	been	executed	and	the	first	5	users	have	been	hydrated	from	the	database...

$users->take(20)->all();

//	First	5	users	come	from	the	collection's	cache...	The	rest	are	hydrated	from	the	database...

Laravel	Documentation	-	7.x	/	Collections 247

Digging	Deeper

Events
Introduction
Registering	Events	&	Listeners

Generating	Events	&	Listeners
Manually	Registering	Events
Event	Discovery

Defining	Events
Defining	Listeners
Queued	Event	Listeners

Manually	Accessing	The	Queue
Handling	Failed	Jobs

Dispatching	Events
Event	Subscribers

Writing	Event	Subscribers
Registering	Event	Subscribers

Introduction

Laravel's	events	provide	a	simple	observer	implementation,	allowing	you	to	subscribe	and	listen	for	various
events	that	occur	in	your	application.	Event	classes	are	typically	stored	in	the	app/Events	directory,	while	their
listeners	are	stored	in	app/Listeners.	Don't	worry	if	you	don't	see	these	directories	in	your	application,	since
they	will	be	created	for	you	as	you	generate	events	and	listeners	using	Artisan	console	commands.

Events	serve	as	a	great	way	to	decouple	various	aspects	of	your	application,	since	a	single	event	can	have
multiple	listeners	that	do	not	depend	on	each	other.	For	example,	you	may	wish	to	send	a	Slack	notification	to
your	user	each	time	an	order	has	shipped.	Instead	of	coupling	your	order	processing	code	to	your	Slack
notification	code,	you	can	raise	an	OrderShipped	event,	which	a	listener	can	receive	and	transform	into	a	Slack
notification.

Registering	Events	&	Listeners

The	EventServiceProvider	included	with	your	Laravel	application	provides	a	convenient	place	to	register	all	of
your	application's	event	listeners.	The	listen	property	contains	an	array	of	all	events	(keys)	and	their	listeners
(values).	You	may	add	as	many	events	to	this	array	as	your	application	requires.	For	example,	let's	add	a	
OrderShipped	event:

/**

	*	The	event	listener	mappings	for	the	application.

	*

	*	@var	array

	*/

protected	$listen	=	[

				'App\Events\OrderShipped'	=>	[

								'App\Listeners\SendShipmentNotification',

],

];

Generating	Events	&	Listeners

Of	course,	manually	creating	the	files	for	each	event	and	listener	is	cumbersome.	Instead,	add	listeners	and
events	to	your	EventServiceProvider	and	use	the	event:generate	command.	This	command	will	generate	any
events	or	listeners	that	are	listed	in	your	EventServiceProvider.	Events	and	listeners	that	already	exist	will	be
left	untouched:

php	artisan	event:generate

Manually	Registering	Events

Laravel	Documentation	-	7.x	/	Events 248

Typically,	events	should	be	registered	via	the	EventServiceProvider	$listen	array;	however,	you	may	also
register	Closure	based	events	manually	in	the	boot	method	of	your	EventServiceProvider:

/**

	*	Register	any	other	events	for	your	application.

	*

	*	@return	void

	*/

public	function	boot()

{

				parent::boot();

				Event::listen('event.name',	function	($foo,	$bar)	{

								//

				});

}

Wildcard	Event	Listeners

You	may	even	register	listeners	using	the	*	as	a	wildcard	parameter,	allowing	you	to	catch	multiple	events	on
the	same	listener.	Wildcard	listeners	receive	the	event	name	as	their	first	argument,	and	the	entire	event	data
array	as	their	second	argument:

Event::listen('event.*',	function	($eventName,	array	$data)	{

				//

});

Event	Discovery

Instead	of	registering	events	and	listeners	manually	in	the	$listen	array	of	the	EventServiceProvider,	you	can
enable	automatic	event	discovery.	When	event	discovery	is	enabled,	Laravel	will	automatically	find	and
register	your	events	and	listeners	by	scanning	your	application's	Listeners	directory.	In	addition,	any	explicitly
defined	events	listed	in	the	EventServiceProvider	will	still	be	registered.

Laravel	finds	event	listeners	by	scanning	the	listener	classes	using	reflection.	When	Laravel	finds	any	listener
class	method	that	begins	with	handle,	Laravel	will	register	those	methods	as	event	listeners	for	the	event	that	is
type-hinted	in	the	method's	signature:

use	App\Events\PodcastProcessed;

class	SendPodcastProcessedNotification

{

				/**

					*	Handle	the	given	event.

					*

					*	@param		\App\Events\PodcastProcessed

					*	@return	void

					*/

				public	function	handle(PodcastProcessed	$event)

				{

								//

				}

}

Event	discovery	is	disabled	by	default,	but	you	can	enable	it	by	overriding	the	shouldDiscoverEvents	method	of
your	application's	EventServiceProvider:

/**

	*	Determine	if	events	and	listeners	should	be	automatically	discovered.

	*

	*	@return	bool

	*/

public	function	shouldDiscoverEvents()

{

				return	true;

}

By	default,	all	listeners	within	your	application's	Listeners	directory	will	be	scanned.	If	you	would	like	to
define	additional	directories	to	scan,	you	may	override	the	discoverEventsWithin	method	in	your	
EventServiceProvider:

Laravel	Documentation	-	7.x	/	Events 249

/**

	*	Get	the	listener	directories	that	should	be	used	to	discover	events.

	*

	*	@return	array

	*/

protected	function	discoverEventsWithin()

{

				return	[

								$this->app->path('Listeners'),

];

}

In	production,	you	likely	do	not	want	the	framework	to	scan	all	of	your	listeners	on	every	request.	Therefore,
during	your	deployment	process,	you	should	run	the	event:cache	Artisan	command	to	cache	a	manifest	of	all	of
your	application's	events	and	listeners.	This	manifest	will	be	used	by	the	framework	to	speed	up	the	event
registration	process.	The	event:clear	command	may	be	used	to	destroy	the	cache.

TIP	The	event:list	command	may	be	used	to	display	a	list	of	all	events	and	listeners	registered	by	your
application.

Defining	Events

An	event	class	is	a	data	container	which	holds	the	information	related	to	the	event.	For	example,	let's	assume
our	generated	OrderShipped	event	receives	an	Eloquent	ORM	object:

<?php

namespace	App\Events;

use	App\Order;

use	Illuminate\Broadcasting\InteractsWithSockets;

use	Illuminate\Foundation\Events\Dispatchable;

use	Illuminate\Queue\SerializesModels;

class	OrderShipped

{

				use	Dispatchable,	InteractsWithSockets,	SerializesModels;

				public	$order;

				/**

					*	Create	a	new	event	instance.

					*

					*	@param		\App\Order		$order

					*	@return	void

					*/

				public	function	__construct(Order	$order)

				{

								$this->order	=	$order;

				}

}

As	you	can	see,	this	event	class	contains	no	logic.	It	is	a	container	for	the	Order	instance	that	was	purchased.
The	SerializesModels	trait	used	by	the	event	will	gracefully	serialize	any	Eloquent	models	if	the	event	object	is
serialized	using	PHP's	serialize	function.

Defining	Listeners

Next,	let's	take	a	look	at	the	listener	for	our	example	event.	Event	listeners	receive	the	event	instance	in	their	
handle	method.	The	event:generate	command	will	automatically	import	the	proper	event	class	and	type-hint	the
event	on	the	handle	method.	Within	the	handle	method,	you	may	perform	any	actions	necessary	to	respond	to
the	event:

<?php

namespace	App\Listeners;

use	App\Events\OrderShipped;

class	SendShipmentNotification

{

Laravel	Documentation	-	7.x	/	Events 250

				/**

					*	Create	the	event	listener.

					*

					*	@return	void

					*/

				public	function	__construct()

				{

								//

				}

				/**

					*	Handle	the	event.

					*

					*	@param		\App\Events\OrderShipped		$event

					*	@return	void

					*/

				public	function	handle(OrderShipped	$event)

				{

								//	Access	the	order	using	$event->order...

				}

}

TIP	Your	event	listeners	may	also	type-hint	any	dependencies	they	need	on	their	constructors.	All	event
listeners	are	resolved	via	the	Laravel	service	container,	so	dependencies	will	be	injected	automatically.

Stopping	The	Propagation	Of	An	Event

Sometimes,	you	may	wish	to	stop	the	propagation	of	an	event	to	other	listeners.	You	may	do	so	by	returning	
false	from	your	listener's	handle	method.

Queued	Event	Listeners

Queueing	listeners	can	be	beneficial	if	your	listener	is	going	to	perform	a	slow	task	such	as	sending	an	e-mail
or	making	an	HTTP	request.	Before	getting	started	with	queued	listeners,	make	sure	to	configure	your	queue
and	start	a	queue	listener	on	your	server	or	local	development	environment.

To	specify	that	a	listener	should	be	queued,	add	the	ShouldQueue	interface	to	the	listener	class.	Listeners
generated	by	the	event:generate	Artisan	command	already	have	this	interface	imported	into	the	current
namespace,	so	you	can	use	it	immediately:

<?php

namespace	App\Listeners;

use	App\Events\OrderShipped;

use	Illuminate\Contracts\Queue\ShouldQueue;

class	SendShipmentNotification	implements	ShouldQueue

{

				//

}

That's	it!	Now,	when	this	listener	is	called	for	an	event,	it	will	be	automatically	queued	by	the	event	dispatcher
using	Laravel's	queue	system.	If	no	exceptions	are	thrown	when	the	listener	is	executed	by	the	queue,	the
queued	job	will	automatically	be	deleted	after	it	has	finished	processing.

Customizing	The	Queue	Connection	&	Queue	Name

If	you	would	like	to	customize	the	queue	connection,	queue	name,	or	queue	delay	time	of	an	event	listener,	you
may	define	the	$connection,	$queue,	or	$delay	properties	on	your	listener	class:

<?php

namespace	App\Listeners;

use	App\Events\OrderShipped;

use	Illuminate\Contracts\Queue\ShouldQueue;

class	SendShipmentNotification	implements	ShouldQueue

{

Laravel	Documentation	-	7.x	/	Events 251

				/**

					*	The	name	of	the	connection	the	job	should	be	sent	to.

					*

					*	@var	string|null

					*/

				public	$connection	=	'sqs';

				/**

					*	The	name	of	the	queue	the	job	should	be	sent	to.

					*

					*	@var	string|null

					*/

				public	$queue	=	'listeners';

				/**

					*	The	time	(seconds)	before	the	job	should	be	processed.

					*

					*	@var	int

					*/

				public	$delay	=	60;

}

If	you	would	like	to	define	the	listener's	queue	at	runtime,	you	may	define	a	viaQueue	method	on	the	listener:

/**

	*	Get	the	name	of	the	listener's	queue.

	*

	*	@return	string

	*/

public	function	viaQueue()

{

				return	'listeners';

}

Conditionally	Queueing	Listeners

Sometimes,	you	may	need	to	determine	whether	a	listener	should	be	queued	based	on	some	data	that's	only
available	at	runtime.	To	accomplish	this,	a	shouldQueue	method	may	be	added	to	a	listener	to	determine	whether
the	listener	should	be	queued.	If	the	shouldQueue	method	returns	false,	the	listener	will	not	be	executed:

<?php

namespace	App\Listeners;

use	App\Events\OrderPlaced;

use	Illuminate\Contracts\Queue\ShouldQueue;

class	RewardGiftCard	implements	ShouldQueue

{

				/**

					*	Reward	a	gift	card	to	the	customer.

					*

					*	@param		\App\Events\OrderPlaced		$event

					*	@return	void

					*/

				public	function	handle(OrderPlaced	$event)

				{

								//

				}

				/**

					*	Determine	whether	the	listener	should	be	queued.

					*

					*	@param		\App\Events\OrderPlaced		$event

					*	@return	bool

					*/

				public	function	shouldQueue(OrderPlaced	$event)

				{

								return	$event->order->subtotal	>=	5000;

				}

}

Manually	Accessing	The	Queue

If	you	need	to	manually	access	the	listener's	underlying	queue	job's	delete	and	release	methods,	you	may	do	so

Laravel	Documentation	-	7.x	/	Events 252

using	the	Illuminate\Queue\InteractsWithQueue	trait.	This	trait	is	imported	by	default	on	generated	listeners	and
provides	access	to	these	methods:

<?php

namespace	App\Listeners;

use	App\Events\OrderShipped;

use	Illuminate\Contracts\Queue\ShouldQueue;

use	Illuminate\Queue\InteractsWithQueue;

class	SendShipmentNotification	implements	ShouldQueue

{

				use	InteractsWithQueue;

				/**

					*	Handle	the	event.

					*

					*	@param		\App\Events\OrderShipped		$event

					*	@return	void

					*/

				public	function	handle(OrderShipped	$event)

				{

								if	(true)	{

												$this->release(30);

								}

				}

}

Handling	Failed	Jobs

Sometimes	your	queued	event	listeners	may	fail.	If	queued	listener	exceeds	the	maximum	number	of	attempts
as	defined	by	your	queue	worker,	the	failed	method	will	be	called	on	your	listener.	The	failed	method	receives
the	event	instance	and	the	exception	that	caused	the	failure:

<?php

namespace	App\Listeners;

use	App\Events\OrderShipped;

use	Illuminate\Contracts\Queue\ShouldQueue;

use	Illuminate\Queue\InteractsWithQueue;

class	SendShipmentNotification	implements	ShouldQueue

{

				use	InteractsWithQueue;

				/**

					*	Handle	the	event.

					*

					*	@param		\App\Events\OrderShipped		$event

					*	@return	void

					*/

				public	function	handle(OrderShipped	$event)

				{

								//

				}

				/**

					*	Handle	a	job	failure.

					*

					*	@param		\App\Events\OrderShipped		$event

					*	@param		\Throwable		$exception

					*	@return	void

					*/

				public	function	failed(OrderShipped	$event,	$exception)

				{

								//

				}

}

Dispatching	Events

To	dispatch	an	event,	you	may	pass	an	instance	of	the	event	to	the	event	helper.	The	helper	will	dispatch	the
event	to	all	of	its	registered	listeners.	Since	the	event	helper	is	globally	available,	you	may	call	it	from

Laravel	Documentation	-	7.x	/	Events 253

anywhere	in	your	application:

<?php

namespace	App\Http\Controllers;

use	App\Events\OrderShipped;

use	App\Http\Controllers\Controller;

use	App\Order;

class	OrderController	extends	Controller

{

				/**

					*	Ship	the	given	order.

					*

					*	@param		int		$orderId

					*	@return	Response

					*/

				public	function	ship($orderId)

				{

								$order	=	Order::findOrFail($orderId);

								//	Order	shipment	logic...

								event(new	OrderShipped($order));

				}

}

Alternatively,	if	your	event	uses	the	Illuminate\Foundation\Events\Dispatchable	trait,	you	may	call	the	static	
dispatch	method	on	the	event.	Any	arguments	passed	to	the	dispatch	method	will	be	passed	to	the	event's
constructor:

OrderShipped::dispatch($order);

TIP	When	testing,	it	can	be	helpful	to	assert	that	certain	events	were	dispatched	without	actually	triggering
their	listeners.	Laravel's	built-in	testing	helpers	makes	it	a	cinch.

Event	Subscribers

Writing	Event	Subscribers

Event	subscribers	are	classes	that	may	subscribe	to	multiple	events	from	within	the	class	itself,	allowing	you	to
define	several	event	handlers	within	a	single	class.	Subscribers	should	define	a	subscribe	method,	which	will	be
passed	an	event	dispatcher	instance.	You	may	call	the	listen	method	on	the	given	dispatcher	to	register	event
listeners:

<?php

namespace	App\Listeners;

class	UserEventSubscriber

{

				/**

					*	Handle	user	login	events.

					*/

				public	function	handleUserLogin($event)	{}

				/**

					*	Handle	user	logout	events.

					*/

				public	function	handleUserLogout($event)	{}

				/**

					*	Register	the	listeners	for	the	subscriber.

					*

					*	@param		\Illuminate\Events\Dispatcher		$events

					*/

				public	function	subscribe($events)

				{

								$events->listen(

												'Illuminate\Auth\Events\Login',

												'App\Listeners\UserEventSubscriber@handleUserLogin'

);

Laravel	Documentation	-	7.x	/	Events 254

								$events->listen(

												'Illuminate\Auth\Events\Logout',

												'App\Listeners\UserEventSubscriber@handleUserLogout'

);

				}

}

Registering	Event	Subscribers

After	writing	the	subscriber,	you	are	ready	to	register	it	with	the	event	dispatcher.	You	may	register	subscribers
using	the	$subscribe	property	on	the	EventServiceProvider.	For	example,	let's	add	the	UserEventSubscriber	to
the	list:

<?php

namespace	App\Providers;

use	Illuminate\Foundation\Support\Providers\EventServiceProvider	as	ServiceProvider;

class	EventServiceProvider	extends	ServiceProvider

{

				/**

					*	The	event	listener	mappings	for	the	application.

					*

					*	@var	array

					*/

				protected	$listen	=	[

								//

];

				/**

					*	The	subscriber	classes	to	register.

					*

					*	@var	array

					*/

				protected	$subscribe	=	[

								'App\Listeners\UserEventSubscriber',

];

}

Laravel	Documentation	-	7.x	/	Events 255

Digging	Deeper

File	Storage
Introduction
Configuration

The	Public	Disk
The	Local	Driver
Driver	Prerequisites
Caching

Obtaining	Disk	Instances
Retrieving	Files

Downloading	Files
File	URLs
File	Metadata

Storing	Files
File	Uploads
File	Visibility

Deleting	Files
Directories
Custom	Filesystems

Introduction

Laravel	provides	a	powerful	filesystem	abstraction	thanks	to	the	wonderful	Flysystem	PHP	package	by	Frank
de	Jonge.	The	Laravel	Flysystem	integration	provides	simple	to	use	drivers	for	working	with	local	filesystems
and	Amazon	S3.	Even	better,	it's	amazingly	simple	to	switch	between	these	storage	options	as	the	API	remains
the	same	for	each	system.

Configuration

The	filesystem	configuration	file	is	located	at	config/filesystems.php.	Within	this	file	you	may	configure	all	of
your	"disks".	Each	disk	represents	a	particular	storage	driver	and	storage	location.	Example	configurations	for
each	supported	driver	are	included	in	the	configuration	file.	So,	modify	the	configuration	to	reflect	your	storage
preferences	and	credentials.

You	may	configure	as	many	disks	as	you	like,	and	may	even	have	multiple	disks	that	use	the	same	driver.

The	Public	Disk

The	public	disk	is	intended	for	files	that	are	going	to	be	publicly	accessible.	By	default,	the	public	disk	uses	the
local	driver	and	stores	these	files	in	storage/app/public.	To	make	them	accessible	from	the	web,	you	should
create	a	symbolic	link	from	public/storage	to	storage/app/public.	This	convention	will	keep	your	publicly
accessible	files	in	one	directory	that	can	be	easily	shared	across	deployments	when	using	zero	down-time
deployment	systems	like	Envoyer.

To	create	the	symbolic	link,	you	may	use	the	storage:link	Artisan	command:

php	artisan	storage:link

Once	a	file	has	been	stored	and	the	symbolic	link	has	been	created,	you	can	create	a	URL	to	the	files	using	the	
asset	helper:

echo	asset('storage/file.txt');

You	may	configure	additional	symbolic	links	in	your	filesystems	configuration	file.	Each	of	the	configured
links	will	be	created	when	you	run	the	storage:link	command:

'links'	=>	[

				public_path('storage')	=>	storage_path('app/public'),

Laravel	Documentation	-	7.x	/	File	Storage 256

https://github.com/thephpleague/flysystem
https://envoyer.io

				public_path('images')	=>	storage_path('app/images'),

],

The	Local	Driver

When	using	the	local	driver,	all	file	operations	are	relative	to	the	root	directory	defined	in	your	filesystems
configuration	file.	By	default,	this	value	is	set	to	the	storage/app	directory.	Therefore,	the	following	method
would	store	a	file	in	storage/app/file.txt:

Storage::disk('local')->put('file.txt',	'Contents');

Permissions

The	public	visibility	translates	to	0755	for	directories	and	0644	for	files.	You	can	modify	the	permissions
mappings	in	your	filesystems	configuration	file:

'local'	=>	[

				'driver'	=>	'local',

				'root'	=>	storage_path('app'),

				'permissions'	=>	[

								'file'	=>	[

												'public'	=>	0664,

												'private'	=>	0600,

],

								'dir'	=>	[

												'public'	=>	0775,

												'private'	=>	0700,

],

],

],

Driver	Prerequisites

Composer	Packages

Before	using	the	SFTP	or	S3	drivers,	you	will	need	to	install	the	appropriate	package	via	Composer:

SFTP:	league/flysystem-sftp	~1.0
Amazon	S3:	league/flysystem-aws-s3-v3	~1.0

An	absolute	must	for	performance	is	to	use	a	cached	adapter.	You	will	need	an	additional	package	for	this:

CachedAdapter:	league/flysystem-cached-adapter	~1.0

S3	Driver	Configuration

The	S3	driver	configuration	information	is	located	in	your	config/filesystems.php	configuration	file.	This	file
contains	an	example	configuration	array	for	an	S3	driver.	You	are	free	to	modify	this	array	with	your	own	S3
configuration	and	credentials.	For	convenience,	these	environment	variables	match	the	naming	convention	used
by	the	AWS	CLI.

FTP	Driver	Configuration

Laravel's	Flysystem	integrations	works	great	with	FTP;	however,	a	sample	configuration	is	not	included	with
the	framework's	default	filesystems.php	configuration	file.	If	you	need	to	configure	a	FTP	filesystem,	you	may
use	the	example	configuration	below:

'ftp'	=>	[

				'driver'	=>	'ftp',

				'host'	=>	'ftp.example.com',

				'username'	=>	'your-username',

				'password'	=>	'your-password',

				//	Optional	FTP	Settings...

				//	'port'	=>	21,

				//	'root'	=>	'',

Laravel	Documentation	-	7.x	/	File	Storage 257

				//	'passive'	=>	true,

				//	'ssl'	=>	true,

				//	'timeout'	=>	30,

],

SFTP	Driver	Configuration

Laravel's	Flysystem	integrations	works	great	with	SFTP;	however,	a	sample	configuration	is	not	included	with
the	framework's	default	filesystems.php	configuration	file.	If	you	need	to	configure	a	SFTP	filesystem,	you
may	use	the	example	configuration	below:

'sftp'	=>	[

				'driver'	=>	'sftp',

				'host'	=>	'example.com',

				'username'	=>	'your-username',

				'password'	=>	'your-password',

				//	Settings	for	SSH	key	based	authentication...

				//	'privateKey'	=>	'/path/to/privateKey',

				//	'password'	=>	'encryption-password',

				//	Optional	SFTP	Settings...

				//	'port'	=>	22,

				//	'root'	=>	'',

				//	'timeout'	=>	30,

],

Caching

To	enable	caching	for	a	given	disk,	you	may	add	a	cache	directive	to	the	disk's	configuration	options.	The	cache
option	should	be	an	array	of	caching	options	containing	the	disk	name,	the	expire	time	in	seconds,	and	the
cache	prefix:

's3'	=>	[

				'driver'	=>	's3',

				//	Other	Disk	Options...

				'cache'	=>	[

								'store'	=>	'memcached',

								'expire'	=>	600,

								'prefix'	=>	'cache-prefix',

],

],

Obtaining	Disk	Instances

The	Storage	facade	may	be	used	to	interact	with	any	of	your	configured	disks.	For	example,	you	may	use	the	
put	method	on	the	facade	to	store	an	avatar	on	the	default	disk.	If	you	call	methods	on	the	Storage	facade
without	first	calling	the	disk	method,	the	method	call	will	automatically	be	passed	to	the	default	disk:

use	Illuminate\Support\Facades\Storage;

Storage::put('avatars/1',	$fileContents);

If	your	application	interacts	with	multiple	disks,	you	may	use	the	disk	method	on	the	Storage	facade	to	work
with	files	on	a	particular	disk:

Storage::disk('s3')->put('avatars/1',	$fileContents);

Retrieving	Files

The	get	method	may	be	used	to	retrieve	the	contents	of	a	file.	The	raw	string	contents	of	the	file	will	be
returned	by	the	method.	Remember,	all	file	paths	should	be	specified	relative	to	the	"root"	location	configured
for	the	disk:

$contents	=	Storage::get('file.jpg');

Laravel	Documentation	-	7.x	/	File	Storage 258

The	exists	method	may	be	used	to	determine	if	a	file	exists	on	the	disk:

$exists	=	Storage::disk('s3')->exists('file.jpg');

The	missing	method	may	be	used	to	determine	if	a	file	is	missing	from	the	disk:

$missing	=	Storage::disk('s3')->missing('file.jpg');

Downloading	Files

The	download	method	may	be	used	to	generate	a	response	that	forces	the	user's	browser	to	download	the	file	at
the	given	path.	The	download	method	accepts	a	file	name	as	the	second	argument	to	the	method,	which	will
determine	the	file	name	that	is	seen	by	the	user	downloading	the	file.	Finally,	you	may	pass	an	array	of	HTTP
headers	as	the	third	argument	to	the	method:

return	Storage::download('file.jpg');

return	Storage::download('file.jpg',	$name,	$headers);

File	URLs

You	may	use	the	url	method	to	get	the	URL	for	the	given	file.	If	you	are	using	the	local	driver,	this	will
typically	just	prepend	/storage	to	the	given	path	and	return	a	relative	URL	to	the	file.	If	you	are	using	the	s3
driver,	the	fully	qualified	remote	URL	will	be	returned:

use	Illuminate\Support\Facades\Storage;

$url	=	Storage::url('file.jpg');

NOTE	Remember,	if	you	are	using	the	local	driver,	all	files	that	should	be	publicly	accessible	should	be
placed	in	the	storage/app/public	directory.	Furthermore,	you	should	create	a	symbolic	link	at	
public/storage	which	points	to	the	storage/app/public	directory.

Temporary	URLs

For	files	stored	using	the	s3	you	may	create	a	temporary	URL	to	a	given	file	using	the	temporaryUrl	method.
This	method	accepts	a	path	and	a	DateTime	instance	specifying	when	the	URL	should	expire:

$url	=	Storage::temporaryUrl(

				'file.jpg',	now()->addMinutes(5)

);

If	you	need	to	specify	additional	S3	request	parameters,	you	may	pass	the	array	of	request	parameters	as	the
third	argument	to	the	temporaryUrl	method:

$url	=	Storage::temporaryUrl(

				'file.jpg',

				now()->addMinutes(5),

				['ResponseContentType'	=>	'application/octet-stream']

);

URL	Host	Customization

If	you	would	like	to	pre-define	the	host	for	file	URLs	generated	using	the	Storage	facade,	you	may	add	a	url
option	to	the	disk's	configuration	array:

'public'	=>	[

				'driver'	=>	'local',

				'root'	=>	storage_path('app/public'),

				'url'	=>	env('APP_URL').'/storage',

				'visibility'	=>	'public',

],

File	Metadata

In	addition	to	reading	and	writing	files,	Laravel	can	also	provide	information	about	the	files	themselves.	For

Laravel	Documentation	-	7.x	/	File	Storage 259

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html#RESTObjectGET-requests

example,	the	size	method	may	be	used	to	get	the	size	of	the	file	in	bytes:

use	Illuminate\Support\Facades\Storage;

$size	=	Storage::size('file.jpg');

The	lastModified	method	returns	the	UNIX	timestamp	of	the	last	time	the	file	was	modified:

$time	=	Storage::lastModified('file.jpg');

Storing	Files

The	put	method	may	be	used	to	store	raw	file	contents	on	a	disk.	You	may	also	pass	a	PHP	resource	to	the	put
method,	which	will	use	Flysystem's	underlying	stream	support.	Remember,	all	file	paths	should	be	specified
relative	to	the	"root"	location	configured	for	the	disk:

use	Illuminate\Support\Facades\Storage;

Storage::put('file.jpg',	$contents);

Storage::put('file.jpg',	$resource);

Automatic	Streaming

If	you	would	like	Laravel	to	automatically	manage	streaming	a	given	file	to	your	storage	location,	you	may	use
the	putFile	or	putFileAs	method.	This	method	accepts	either	a	Illuminate\Http\File	or	
Illuminate\Http\UploadedFile	instance	and	will	automatically	stream	the	file	to	your	desired	location:

use	Illuminate\Http\File;

use	Illuminate\Support\Facades\Storage;

//	Automatically	generate	a	unique	ID	for	file	name...

Storage::putFile('photos',	new	File('/path/to/photo'));

//	Manually	specify	a	file	name...

Storage::putFileAs('photos',	new	File('/path/to/photo'),	'photo.jpg');

There	are	a	few	important	things	to	note	about	the	putFile	method.	Note	that	we	only	specified	a	directory
name,	not	a	file	name.	By	default,	the	putFile	method	will	generate	a	unique	ID	to	serve	as	the	file	name.	The
file's	extension	will	be	determined	by	examining	the	file's	MIME	type.	The	path	to	the	file	will	be	returned	by
the	putFile	method	so	you	can	store	the	path,	including	the	generated	file	name,	in	your	database.

The	putFile	and	putFileAs	methods	also	accept	an	argument	to	specify	the	"visibility"	of	the	stored	file.	This	is
particularly	useful	if	you	are	storing	the	file	on	a	cloud	disk	such	as	S3	and	would	like	the	file	to	be	publicly
accessible:

Storage::putFile('photos',	new	File('/path/to/photo'),	'public');

Prepending	&	Appending	To	Files

The	prepend	and	append	methods	allow	you	to	write	to	the	beginning	or	end	of	a	file:

Storage::prepend('file.log',	'Prepended	Text');

Storage::append('file.log',	'Appended	Text');

Copying	&	Moving	Files

The	copy	method	may	be	used	to	copy	an	existing	file	to	a	new	location	on	the	disk,	while	the	move	method	may
be	used	to	rename	or	move	an	existing	file	to	a	new	location:

Storage::copy('old/file.jpg',	'new/file.jpg');

Storage::move('old/file.jpg',	'new/file.jpg');

File	Uploads

Laravel	Documentation	-	7.x	/	File	Storage 260

In	web	applications,	one	of	the	most	common	use-cases	for	storing	files	is	storing	user	uploaded	files	such	as
profile	pictures,	photos,	and	documents.	Laravel	makes	it	very	easy	to	store	uploaded	files	using	the	store
method	on	an	uploaded	file	instance.	Call	the	store	method	with	the	path	at	which	you	wish	to	store	the
uploaded	file:

<?php

namespace	App\Http\Controllers;

use	App\Http\Controllers\Controller;

use	Illuminate\Http\Request;

class	UserAvatarController	extends	Controller

{

				/**

					*	Update	the	avatar	for	the	user.

					*

					*	@param		Request		$request

					*	@return	Response

					*/

				public	function	update(Request	$request)

				{

								$path	=	$request->file('avatar')->store('avatars');

								return	$path;

				}

}

There	are	a	few	important	things	to	note	about	this	example.	Note	that	we	only	specified	a	directory	name,	not	a
file	name.	By	default,	the	store	method	will	generate	a	unique	ID	to	serve	as	the	file	name.	The	file's	extension
will	be	determined	by	examining	the	file's	MIME	type.	The	path	to	the	file	will	be	returned	by	the	store
method	so	you	can	store	the	path,	including	the	generated	file	name,	in	your	database.

You	may	also	call	the	putFile	method	on	the	Storage	facade	to	perform	the	same	file	manipulation	as	the
example	above:

$path	=	Storage::putFile('avatars',	$request->file('avatar'));

Specifying	A	File	Name

If	you	would	not	like	a	file	name	to	be	automatically	assigned	to	your	stored	file,	you	may	use	the	storeAs
method,	which	receives	the	path,	the	file	name,	and	the	(optional)	disk	as	its	arguments:

$path	=	$request->file('avatar')->storeAs(

				'avatars',	$request->user()->id

);

You	may	also	use	the	putFileAs	method	on	the	Storage	facade,	which	will	perform	the	same	file	manipulation
as	the	example	above:

$path	=	Storage::putFileAs(

				'avatars',	$request->file('avatar'),	$request->user()->id

);

NOTE	Unprintable	and	invalid	unicode	characters	will	automatically	be	removed	from	file	paths.
Therefore,	you	may	wish	to	sanitize	your	file	paths	before	passing	them	to	Laravel's	file	storage	methods.
File	paths	are	normalized	using	the	League\Flysystem\Util::normalizePath	method.

Specifying	A	Disk

By	default,	this	method	will	use	your	default	disk.	If	you	would	like	to	specify	another	disk,	pass	the	disk	name
as	the	second	argument	to	the	store	method:

$path	=	$request->file('avatar')->store(

				'avatars/'.$request->user()->id,	's3'

);

If	you	are	using	the	storeAs	method,	you	may	pass	the	disk	name	as	the	third	argument	to	the	method:

$path	=	$request->file('avatar')->storeAs(

Laravel	Documentation	-	7.x	/	File	Storage 261

				'avatars',

				$request->user()->id,

				's3'

);

Other	File	Information

If	you	would	like	to	get	original	name	of	the	uploaded	file,	you	may	do	so	using	the	getClientOriginalName
method:

$name	=	$request->file('avatar')->getClientOriginalName();

The	extension	method	may	be	used	to	get	the	file	extension	of	the	uploaded	file:

$extension	=	$request->file('avatar')->extension();

File	Visibility

In	Laravel's	Flysystem	integration,	"visibility"	is	an	abstraction	of	file	permissions	across	multiple	platforms.
Files	may	either	be	declared	public	or	private.	When	a	file	is	declared	public,	you	are	indicating	that	the	file
should	generally	be	accessible	to	others.	For	example,	when	using	the	S3	driver,	you	may	retrieve	URLs	for	
public	files.

You	can	set	the	visibility	when	setting	the	file	via	the	put	method:

use	Illuminate\Support\Facades\Storage;

Storage::put('file.jpg',	$contents,	'public');

If	the	file	has	already	been	stored,	its	visibility	can	be	retrieved	and	set	via	the	getVisibility	and	setVisibility
methods:

$visibility	=	Storage::getVisibility('file.jpg');

Storage::setVisibility('file.jpg',	'public');

When	interacting	with	uploaded	files,	you	may	use	the	storePublicly	and	storePubliclyAs	methods	to	store	the
uploaded	file	with	public	visibility:

$path	=	$request->file('avatar')->storePublicly('avatars',	's3');

$path	=	$request->file('avatar')->storePubliclyAs(

				'avatars',

				$request->user()->id,

				's3'

);

Deleting	Files

The	delete	method	accepts	a	single	filename	or	an	array	of	files	to	remove	from	the	disk:

use	Illuminate\Support\Facades\Storage;

Storage::delete('file.jpg');

Storage::delete(['file.jpg',	'file2.jpg']);

If	necessary,	you	may	specify	the	disk	that	the	file	should	be	deleted	from:

use	Illuminate\Support\Facades\Storage;

Storage::disk('s3')->delete('folder_path/file_name.jpg');

Directories

Get	All	Files	Within	A	Directory

Laravel	Documentation	-	7.x	/	File	Storage 262

The	files	method	returns	an	array	of	all	of	the	files	in	a	given	directory.	If	you	would	like	to	retrieve	a	list	of	all
files	within	a	given	directory	including	all	subdirectories,	you	may	use	the	allFiles	method:

use	Illuminate\Support\Facades\Storage;

$files	=	Storage::files($directory);

$files	=	Storage::allFiles($directory);

Get	All	Directories	Within	A	Directory

The	directories	method	returns	an	array	of	all	the	directories	within	a	given	directory.	Additionally,	you	may
use	the	allDirectories	method	to	get	a	list	of	all	directories	within	a	given	directory	and	all	of	its
subdirectories:

$directories	=	Storage::directories($directory);

//	Recursive...

$directories	=	Storage::allDirectories($directory);

Create	A	Directory

The	makeDirectory	method	will	create	the	given	directory,	including	any	needed	subdirectories:

Storage::makeDirectory($directory);

Delete	A	Directory

Finally,	the	deleteDirectory	method	may	be	used	to	remove	a	directory	and	all	of	its	files:

Storage::deleteDirectory($directory);

Custom	Filesystems

Laravel's	Flysystem	integration	provides	drivers	for	several	"drivers"	out	of	the	box;	however,	Flysystem	is	not
limited	to	these	and	has	adapters	for	many	other	storage	systems.	You	can	create	a	custom	driver	if	you	want	to
use	one	of	these	additional	adapters	in	your	Laravel	application.

In	order	to	set	up	the	custom	filesystem	you	will	need	a	Flysystem	adapter.	Let's	add	a	community	maintained
Dropbox	adapter	to	our	project:

composer	require	spatie/flysystem-dropbox

Next,	you	should	create	a	service	provider	such	as	DropboxServiceProvider.	In	the	provider's	boot	method,	you
may	use	the	Storage	facade's	extend	method	to	define	the	custom	driver:

<?php

namespace	App\Providers;

use	Illuminate\Support\Facades\Storage;

use	Illuminate\Support\ServiceProvider;

use	League\Flysystem\Filesystem;

use	Spatie\Dropbox\Client	as	DropboxClient;

use	Spatie\FlysystemDropbox\DropboxAdapter;

class	DropboxServiceProvider	extends	ServiceProvider

{

				/**

					*	Register	any	application	services.

					*

					*	@return	void

					*/

				public	function	register()

				{

								//

				}

				/**

Laravel	Documentation	-	7.x	/	File	Storage 263

					*	Bootstrap	any	application	services.

					*

					*	@return	void

					*/

				public	function	boot()

				{

								Storage::extend('dropbox',	function	($app,	$config)	{

												$client	=	new	DropboxClient(

																$config['authorization_token']

);

												return	new	Filesystem(new	DropboxAdapter($client));

								});

				}

}

The	first	argument	of	the	extend	method	is	the	name	of	the	driver	and	the	second	is	a	Closure	that	receives	the	
$app	and	$config	variables.	The	resolver	Closure	must	return	an	instance	of	League\Flysystem\Filesystem.	The	
$config	variable	contains	the	values	defined	in	config/filesystems.php	for	the	specified	disk.

Next,	register	the	service	provider	in	your	config/app.php	configuration	file:

'providers'	=>	[

				//	...

				App\Providers\DropboxServiceProvider::class,

];

Once	you	have	created	and	registered	the	extension's	service	provider,	you	may	use	the	dropbox	driver	in	your	
config/filesystems.php	configuration	file.

Laravel	Documentation	-	7.x	/	File	Storage 264

Digging	Deeper

Helpers
Introduction
Available	Methods

Introduction

Laravel	includes	a	variety	of	global	"helper"	PHP	functions.	Many	of	these	functions	are	used	by	the
framework	itself;	however,	you	are	free	to	use	them	in	your	own	applications	if	you	find	them	convenient.

Available	Methods

Arrays	&	Objects

Arr::accessible	Arr::add	Arr::collapse	Arr::crossJoin	Arr::divide	Arr::dot	Arr::except	Arr::exists	Arr::first
Arr::flatten	Arr::forget	Arr::get	Arr::has	Arr::hasAny	Arr::isAssoc	Arr::last	Arr::only	Arr::pluck	Arr::prepend
Arr::pull	Arr::query	Arr::random	Arr::set	Arr::shuffle	Arr::sort	Arr::sortRecursive	Arr::where	Arr::wrap
data_fill	data_get	data_set	head	last

Paths

app_path	base_path	config_path	database_path	mix	public_path	resource_path	storage_path

Strings

__	class_basename	e	preg_replace_array	Str::after	Str::afterLast	Str::ascii	Str::before	Str::beforeLast
Str::between	Str::camel	Str::contains	Str::containsAll	Str::endsWith	Str::finish	Str::is	Str::isAscii	Str::isUuid
Str::kebab	Str::length	Str::limit	Str::lower	Str::orderedUuid	Str::padBoth	Str::padLeft	Str::padRight	Str::plural
Str::random	Str::replaceArray	Str::replaceFirst	Str::replaceLast	Str::singular	Str::slug	Str::snake	Str::start
Str::startsWith	Str::studly	Str::substr	Str::title	Str::ucfirst	Str::upper	Str::uuid	Str::words	trans	trans_choice

Fluent	Strings

after	afterLast	append	ascii	basename	before	beforeLast	camel	contains	containsAll	dirname	endsWith	exactly
explode	finish	is	isAscii	isEmpty	isNotEmpty	kebab	length	limit	lower	ltrim	match	matchAll	padBoth	padLeft
padRight	plural	prepend	replace	replaceArray	replaceFirst	replaceLast	replaceMatches	rtrim	singular	slug	snake
split	start	startsWith	studly	substr	title	trim	ucfirst	upper	when	whenEmpty	words

URLs

action	asset	route	secure_asset	secure_url	url

Miscellaneous

abort	abort_if	abort_unless	app	auth	back	bcrypt	blank	broadcast	cache	class_uses_recursive	collect	config
cookie	csrf_field	csrf_token	dd	dispatch	dispatch_now	dump	env	event	factory	filled	info	logger	method_field
now	old	optional	policy	redirect	report	request	rescue	resolve	response	retry	session	tap	throw_if	throw_unless
today	trait_uses_recursive	transform	validator	value	view	with

Method	Listing

Arrays	&	Objects

Laravel	Documentation	-	7.x	/	Helpers 265

Arr::accessible()

The	Arr::accessible	method	checks	that	the	given	value	is	array	accessible:

use	Illuminate\Support\Arr;

use	Illuminate\Support\Collection;

$isAccessible	=	Arr::accessible(['a'	=>	1,	'b'	=>	2]);

//	true

$isAccessible	=	Arr::accessible(new	Collection);

//	true

$isAccessible	=	Arr::accessible('abc');

//	false

$isAccessible	=	Arr::accessible(new	stdClass);

//	false

Arr::add()

The	Arr::add	method	adds	a	given	key	/	value	pair	to	an	array	if	the	given	key	doesn't	already	exist	in	the	array
or	is	set	to	null:

use	Illuminate\Support\Arr;

$array	=	Arr::add(['name'	=>	'Desk'],	'price',	100);

//	['name'	=>	'Desk',	'price'	=>	100]

$array	=	Arr::add(['name'	=>	'Desk',	'price'	=>	null],	'price',	100);

//	['name'	=>	'Desk',	'price'	=>	100]

Arr::collapse()

The	Arr::collapse	method	collapses	an	array	of	arrays	into	a	single	array:

use	Illuminate\Support\Arr;

$array	=	Arr::collapse([[1,	2,	3],	[4,	5,	6],	[7,	8,	9]]);

//	[1,	2,	3,	4,	5,	6,	7,	8,	9]

Arr::crossJoin()

The	Arr::crossJoin	method	cross	joins	the	given	arrays,	returning	a	Cartesian	product	with	all	possible
permutations:

use	Illuminate\Support\Arr;

$matrix	=	Arr::crossJoin([1,	2],	['a',	'b']);

/*

				[

								[1,	'a'],

								[1,	'b'],

								[2,	'a'],

								[2,	'b'],

]

*/

$matrix	=	Arr::crossJoin([1,	2],	['a',	'b'],	['I',	'II']);

Laravel	Documentation	-	7.x	/	Helpers 266

/*

				[

								[1,	'a',	'I'],

								[1,	'a',	'II'],

								[1,	'b',	'I'],

								[1,	'b',	'II'],

								[2,	'a',	'I'],

								[2,	'a',	'II'],

								[2,	'b',	'I'],

								[2,	'b',	'II'],

]

*/

Arr::divide()

The	Arr::divide	method	returns	two	arrays,	one	containing	the	keys,	and	the	other	containing	the	values	of	the
given	array:

use	Illuminate\Support\Arr;

[$keys,	$values]	=	Arr::divide(['name'	=>	'Desk']);

//	$keys:	['name']

//	$values:	['Desk']

Arr::dot()

The	Arr::dot	method	flattens	a	multi-dimensional	array	into	a	single	level	array	that	uses	"dot"	notation	to
indicate	depth:

use	Illuminate\Support\Arr;

$array	=	['products'	=>	['desk'	=>	['price'	=>	100]]];

$flattened	=	Arr::dot($array);

//	['products.desk.price'	=>	100]

Arr::except()

The	Arr::except	method	removes	the	given	key	/	value	pairs	from	an	array:

use	Illuminate\Support\Arr;

$array	=	['name'	=>	'Desk',	'price'	=>	100];

$filtered	=	Arr::except($array,	['price']);

//	['name'	=>	'Desk']

Arr::exists()

The	Arr::exists	method	checks	that	the	given	key	exists	in	the	provided	array:

use	Illuminate\Support\Arr;

$array	=	['name'	=>	'John	Doe',	'age'	=>	17];

$exists	=	Arr::exists($array,	'name');

//	true

Laravel	Documentation	-	7.x	/	Helpers 267

$exists	=	Arr::exists($array,	'salary');

//	false

Arr::first()

The	Arr::first	method	returns	the	first	element	of	an	array	passing	a	given	truth	test:

use	Illuminate\Support\Arr;

$array	=	[100,	200,	300];

$first	=	Arr::first($array,	function	($value,	$key)	{

				return	$value	>=	150;

});

//	200

A	default	value	may	also	be	passed	as	the	third	parameter	to	the	method.	This	value	will	be	returned	if	no	value
passes	the	truth	test:

use	Illuminate\Support\Arr;

$first	=	Arr::first($array,	$callback,	$default);

Arr::flatten()

The	Arr::flatten	method	flattens	a	multi-dimensional	array	into	a	single	level	array:

use	Illuminate\Support\Arr;

$array	=	['name'	=>	'Joe',	'languages'	=>	['PHP',	'Ruby']];

$flattened	=	Arr::flatten($array);

//	['Joe',	'PHP',	'Ruby']

Arr::forget()

The	Arr::forget	method	removes	a	given	key	/	value	pair	from	a	deeply	nested	array	using	"dot"	notation:

use	Illuminate\Support\Arr;

$array	=	['products'	=>	['desk'	=>	['price'	=>	100]]];

Arr::forget($array,	'products.desk');

//	['products'	=>	[]]

Arr::get()

The	Arr::get	method	retrieves	a	value	from	a	deeply	nested	array	using	"dot"	notation:

use	Illuminate\Support\Arr;

$array	=	['products'	=>	['desk'	=>	['price'	=>	100]]];

$price	=	Arr::get($array,	'products.desk.price');

//	100

The	Arr::get	method	also	accepts	a	default	value,	which	will	be	returned	if	the	specific	key	is	not	found:

Laravel	Documentation	-	7.x	/	Helpers 268

use	Illuminate\Support\Arr;

$discount	=	Arr::get($array,	'products.desk.discount',	0);

//	0

Arr::has()

The	Arr::has	method	checks	whether	a	given	item	or	items	exists	in	an	array	using	"dot"	notation:

use	Illuminate\Support\Arr;

$array	=	['product'	=>	['name'	=>	'Desk',	'price'	=>	100]];

$contains	=	Arr::has($array,	'product.name');

//	true

$contains	=	Arr::has($array,	['product.price',	'product.discount']);

//	false

Arr::hasAny()

The	Arr::hasAny	method	checks	whether	any	item	in	a	given	set	exists	in	an	array	using	"dot"	notation:

use	Illuminate\Support\Arr;

$array	=	['product'	=>	['name'	=>	'Desk',	'price'	=>	100]];

$contains	=	Arr::hasAny($array,	'product.name');

//	true

$contains	=	Arr::hasAny($array,	['product.name',	'product.discount']);

//	true

$contains	=	Arr::hasAny($array,	['category',	'product.discount']);

//	false

Arr::isAssoc()

The	Arr::isAssoc	returns	true	if	the	given	array	is	an	associative	array.	An	array	is	considered	"associative"	if	it
doesn't	have	sequential	numerical	keys	beginning	with	zero:

use	Illuminate\Support\Arr;

$isAssoc	=	Arr::isAssoc(['product'	=>	['name'	=>	'Desk',	'price'	=>	100]]);

//	true

$isAssoc	=	Arr::isAssoc([1,	2,	3]);

//	false

Arr::last()

The	Arr::last	method	returns	the	last	element	of	an	array	passing	a	given	truth	test:

use	Illuminate\Support\Arr;

$array	=	[100,	200,	300,	110];

Laravel	Documentation	-	7.x	/	Helpers 269

$last	=	Arr::last($array,	function	($value,	$key)	{

				return	$value	>=	150;

});

//	300

A	default	value	may	be	passed	as	the	third	argument	to	the	method.	This	value	will	be	returned	if	no	value
passes	the	truth	test:

use	Illuminate\Support\Arr;

$last	=	Arr::last($array,	$callback,	$default);

Arr::only()

The	Arr::only	method	returns	only	the	specified	key	/	value	pairs	from	the	given	array:

use	Illuminate\Support\Arr;

$array	=	['name'	=>	'Desk',	'price'	=>	100,	'orders'	=>	10];

$slice	=	Arr::only($array,	['name',	'price']);

//	['name'	=>	'Desk',	'price'	=>	100]

Arr::pluck()

The	Arr::pluck	method	retrieves	all	of	the	values	for	a	given	key	from	an	array:

use	Illuminate\Support\Arr;

$array	=	[

				['developer'	=>	['id'	=>	1,	'name'	=>	'Taylor']],

				['developer'	=>	['id'	=>	2,	'name'	=>	'Abigail']],

];

$names	=	Arr::pluck($array,	'developer.name');

//	['Taylor',	'Abigail']

You	may	also	specify	how	you	wish	the	resulting	list	to	be	keyed:

use	Illuminate\Support\Arr;

$names	=	Arr::pluck($array,	'developer.name',	'developer.id');

//	[1	=>	'Taylor',	2	=>	'Abigail']

Arr::prepend()

The	Arr::prepend	method	will	push	an	item	onto	the	beginning	of	an	array:

use	Illuminate\Support\Arr;

$array	=	['one',	'two',	'three',	'four'];

$array	=	Arr::prepend($array,	'zero');

//	['zero',	'one',	'two',	'three',	'four']

If	needed,	you	may	specify	the	key	that	should	be	used	for	the	value:

use	Illuminate\Support\Arr;

$array	=	['price'	=>	100];

Laravel	Documentation	-	7.x	/	Helpers 270

$array	=	Arr::prepend($array,	'Desk',	'name');

//	['name'	=>	'Desk',	'price'	=>	100]

Arr::pull()

The	Arr::pull	method	returns	and	removes	a	key	/	value	pair	from	an	array:

use	Illuminate\Support\Arr;

$array	=	['name'	=>	'Desk',	'price'	=>	100];

$name	=	Arr::pull($array,	'name');

//	$name:	Desk

//	$array:	['price'	=>	100]

A	default	value	may	be	passed	as	the	third	argument	to	the	method.	This	value	will	be	returned	if	the	key
doesn't	exist:

use	Illuminate\Support\Arr;

$value	=	Arr::pull($array,	$key,	$default);

Arr::query()

The	Arr::query	method	converts	the	array	into	a	query	string:

use	Illuminate\Support\Arr;

$array	=	['name'	=>	'Taylor',	'order'	=>	['column'	=>	'created_at',	'direction'	=>	'desc']];

Arr::query($array);

//	name=Taylor&order[column]=created_at&order[direction]=desc

Arr::random()

The	Arr::random	method	returns	a	random	value	from	an	array:

use	Illuminate\Support\Arr;

$array	=	[1,	2,	3,	4,	5];

$random	=	Arr::random($array);

//	4	-	(retrieved	randomly)

You	may	also	specify	the	number	of	items	to	return	as	an	optional	second	argument.	Note	that	providing	this
argument	will	return	an	array,	even	if	only	one	item	is	desired:

use	Illuminate\Support\Arr;

$items	=	Arr::random($array,	2);

//	[2,	5]	-	(retrieved	randomly)

Arr::set()

The	Arr::set	method	sets	a	value	within	a	deeply	nested	array	using	"dot"	notation:

Laravel	Documentation	-	7.x	/	Helpers 271

use	Illuminate\Support\Arr;

$array	=	['products'	=>	['desk'	=>	['price'	=>	100]]];

Arr::set($array,	'products.desk.price',	200);

//	['products'	=>	['desk'	=>	['price'	=>	200]]]

Arr::shuffle()

The	Arr::shuffle	method	randomly	shuffles	the	items	in	the	array:

use	Illuminate\Support\Arr;

$array	=	Arr::shuffle([1,	2,	3,	4,	5]);

//	[3,	2,	5,	1,	4]	-	(generated	randomly)

Arr::sort()

The	Arr::sort	method	sorts	an	array	by	its	values:

use	Illuminate\Support\Arr;

$array	=	['Desk',	'Table',	'Chair'];

$sorted	=	Arr::sort($array);

//	['Chair',	'Desk',	'Table']

You	may	also	sort	the	array	by	the	results	of	the	given	Closure:

use	Illuminate\Support\Arr;

$array	=	[

				['name'	=>	'Desk'],

				['name'	=>	'Table'],

				['name'	=>	'Chair'],

];

$sorted	=	array_values(Arr::sort($array,	function	($value)	{

				return	$value['name'];

}));

/*

				[

								['name'	=>	'Chair'],

								['name'	=>	'Desk'],

								['name'	=>	'Table'],

]

*/

Arr::sortRecursive()

The	Arr::sortRecursive	method	recursively	sorts	an	array	using	the	sort	function	for	numeric	sub=arrays	and	
ksort	for	associative	subarrays:

use	Illuminate\Support\Arr;

$array	=	[

				['Roman',	'Taylor',	'Li'],

				['PHP',	'Ruby',	'JavaScript'],

				['one'	=>	1,	'two'	=>	2,	'three'	=>	3],

];

$sorted	=	Arr::sortRecursive($array);

/*

Laravel	Documentation	-	7.x	/	Helpers 272

				[

								['JavaScript',	'PHP',	'Ruby'],

								['one'	=>	1,	'three'	=>	3,	'two'	=>	2],

								['Li',	'Roman',	'Taylor'],

]

*/

Arr::where()

The	Arr::where	method	filters	an	array	using	the	given	Closure:

use	Illuminate\Support\Arr;

$array	=	[100,	'200',	300,	'400',	500];

$filtered	=	Arr::where($array,	function	($value,	$key)	{

				return	is_string($value);

});

//	[1	=>	'200',	3	=>	'400']

Arr::wrap()

The	Arr::wrap	method	wraps	the	given	value	in	an	array.	If	the	given	value	is	already	an	array	it	will	not	be
changed:

use	Illuminate\Support\Arr;

$string	=	'Laravel';

$array	=	Arr::wrap($string);

//	['Laravel']

If	the	given	value	is	null,	an	empty	array	will	be	returned:

use	Illuminate\Support\Arr;

$nothing	=	null;

$array	=	Arr::wrap($nothing);

//	[]

data_fill()

The	data_fill	function	sets	a	missing	value	within	a	nested	array	or	object	using	"dot"	notation:

$data	=	['products'	=>	['desk'	=>	['price'	=>	100]]];

data_fill($data,	'products.desk.price',	200);

//	['products'	=>	['desk'	=>	['price'	=>	100]]]

data_fill($data,	'products.desk.discount',	10);

//	['products'	=>	['desk'	=>	['price'	=>	100,	'discount'	=>	10]]]

This	function	also	accepts	asterisks	as	wildcards	and	will	fill	the	target	accordingly:

$data	=	[

				'products'	=>	[

								['name'	=>	'Desk	1',	'price'	=>	100],

								['name'	=>	'Desk	2'],

],

];

Laravel	Documentation	-	7.x	/	Helpers 273

data_fill($data,	'products.*.price',	200);

/*

				[

								'products'	=>	[

												['name'	=>	'Desk	1',	'price'	=>	100],

												['name'	=>	'Desk	2',	'price'	=>	200],

],

]

*/

data_get()

The	data_get	function	retrieves	a	value	from	a	nested	array	or	object	using	"dot"	notation:

$data	=	['products'	=>	['desk'	=>	['price'	=>	100]]];

$price	=	data_get($data,	'products.desk.price');

//	100

The	data_get	function	also	accepts	a	default	value,	which	will	be	returned	if	the	specified	key	is	not	found:

$discount	=	data_get($data,	'products.desk.discount',	0);

//	0

The	function	also	accepts	wildcards	using	asterisks,	which	may	target	any	key	of	the	array	or	object:

$data	=	[

				'product-one'	=>	['name'	=>	'Desk	1',	'price'	=>	100],

				'product-two'	=>	['name'	=>	'Desk	2',	'price'	=>	150],

];

data_get($data,	'*.name');

//	['Desk	1',	'Desk	2'];

data_set()

The	data_set	function	sets	a	value	within	a	nested	array	or	object	using	"dot"	notation:

$data	=	['products'	=>	['desk'	=>	['price'	=>	100]]];

data_set($data,	'products.desk.price',	200);

//	['products'	=>	['desk'	=>	['price'	=>	200]]]

This	function	also	accepts	wildcards	and	will	set	values	on	the	target	accordingly:

$data	=	[

				'products'	=>	[

								['name'	=>	'Desk	1',	'price'	=>	100],

								['name'	=>	'Desk	2',	'price'	=>	150],

],

];

data_set($data,	'products.*.price',	200);

/*

				[

								'products'	=>	[

												['name'	=>	'Desk	1',	'price'	=>	200],

												['name'	=>	'Desk	2',	'price'	=>	200],

],

]

*/

By	default,	any	existing	values	are	overwritten.	If	you	wish	to	only	set	a	value	if	it	doesn't	exist,	you	may	pass	
false	as	the	fourth	argument:

Laravel	Documentation	-	7.x	/	Helpers 274

$data	=	['products'	=>	['desk'	=>	['price'	=>	100]]];

data_set($data,	'products.desk.price',	200,	false);

//	['products'	=>	['desk'	=>	['price'	=>	100]]]

head()

The	head	function	returns	the	first	element	in	the	given	array:

$array	=	[100,	200,	300];

$first	=	head($array);

//	100

last()

The	last	function	returns	the	last	element	in	the	given	array:

$array	=	[100,	200,	300];

$last	=	last($array);

//	300

Paths

app_path()

The	app_path	function	returns	the	fully	qualified	path	to	the	app	directory.	You	may	also	use	the	app_path
function	to	generate	a	fully	qualified	path	to	a	file	relative	to	the	application	directory:

$path	=	app_path();

$path	=	app_path('Http/Controllers/Controller.php');

base_path()

The	base_path	function	returns	the	fully	qualified	path	to	the	project	root.	You	may	also	use	the	base_path
function	to	generate	a	fully	qualified	path	to	a	given	file	relative	to	the	project	root	directory:

$path	=	base_path();

$path	=	base_path('vendor/bin');

config_path()

The	config_path	function	returns	the	fully	qualified	path	to	the	config	directory.	You	may	also	use	the	
config_path	function	to	generate	a	fully	qualified	path	to	a	given	file	within	the	application's	configuration
directory:

$path	=	config_path();

$path	=	config_path('app.php');

Laravel	Documentation	-	7.x	/	Helpers 275

database_path()

The	database_path	function	returns	the	fully	qualified	path	to	the	database	directory.	You	may	also	use	the	
database_path	function	to	generate	a	fully	qualified	path	to	a	given	file	within	the	database	directory:

$path	=	database_path();

$path	=	database_path('factories/UserFactory.php');

mix()

The	mix	function	returns	the	path	to	a	versioned	Mix	file:

$path	=	mix('css/app.css');

public_path()

The	public_path	function	returns	the	fully	qualified	path	to	the	public	directory.	You	may	also	use	the	
public_path	function	to	generate	a	fully	qualified	path	to	a	given	file	within	the	public	directory:

$path	=	public_path();

$path	=	public_path('css/app.css');

resource_path()

The	resource_path	function	returns	the	fully	qualified	path	to	the	resources	directory.	You	may	also	use	the	
resource_path	function	to	generate	a	fully	qualified	path	to	a	given	file	within	the	resources	directory:

$path	=	resource_path();

$path	=	resource_path('sass/app.scss');

storage_path()

The	storage_path	function	returns	the	fully	qualified	path	to	the	storage	directory.	You	may	also	use	the	
storage_path	function	to	generate	a	fully	qualified	path	to	a	given	file	within	the	storage	directory:

$path	=	storage_path();

$path	=	storage_path('app/file.txt');

Strings

__()

The	__	function	translates	the	given	translation	string	or	translation	key	using	your	localization	files:

echo	__('Welcome	to	our	application');

echo	__('messages.welcome');

If	the	specified	translation	string	or	key	does	not	exist,	the	__	function	will	return	the	given	value.	So,	using	the
example	above,	the	__	function	would	return	messages.welcome	if	that	translation	key	does	not	exist.

Laravel	Documentation	-	7.x	/	Helpers 276

class_basename()

The	class_basename	function	returns	the	class	name	of	the	given	class	with	the	class's	namespace	removed:

$class	=	class_basename('Foo\Bar\Baz');

//	Baz

e()

The	e	function	runs	PHP's	htmlspecialchars	function	with	the	double_encode	option	set	to	true	by	default:

echo	e('<html>foo</html>');

//	<html>foo</html>

preg_replace_array()

The	preg_replace_array	function	replaces	a	given	pattern	in	the	string	sequentially	using	an	array:

$string	=	'The	event	will	take	place	between	:start	and	:end';

$replaced	=	preg_replace_array('/:[a-z_]+/',	['8:30',	'9:00'],	$string);

//	The	event	will	take	place	between	8:30	and	9:00

Str::after()

The	Str::after	method	returns	everything	after	the	given	value	in	a	string.	The	entire	string	will	be	returned	if
the	value	does	not	exist	within	the	string:

use	Illuminate\Support\Str;

$slice	=	Str::after('This	is	my	name',	'This	is');

//	'	my	name'

Str::afterLast()

The	Str::afterLast	method	returns	everything	after	the	last	occurrence	of	the	given	value	in	a	string.	The	entire
string	will	be	returned	if	the	value	does	not	exist	within	the	string:

use	Illuminate\Support\Str;

$slice	=	Str::afterLast('App\Http\Controllers\Controller',	'\\');

//	'Controller'

Str::ascii()

The	Str::ascii	method	will	attempt	to	transliterate	the	string	into	an	ASCII	value:

use	Illuminate\Support\Str;

$slice	=	Str::ascii('û');

//	'u'

Laravel	Documentation	-	7.x	/	Helpers 277

Str::before()

The	Str::before	method	returns	everything	before	the	given	value	in	a	string:

use	Illuminate\Support\Str;

$slice	=	Str::before('This	is	my	name',	'my	name');

//	'This	is	'

Str::beforeLast()

The	Str::beforeLast	method	returns	everything	before	the	last	occurrence	of	the	given	value	in	a	string:

use	Illuminate\Support\Str;

$slice	=	Str::beforeLast('This	is	my	name',	'is');

//	'This	'

Str::between()

The	Str::between	method	returns	the	portion	of	a	string	between	two	values:

use	Illuminate\Support\Str;

$slice	=	Str::between('This	is	my	name',	'This',	'name');

//	'	is	my	'

Str::camel()

The	Str::camel	method	converts	the	given	string	to	camelCase:

use	Illuminate\Support\Str;

$converted	=	Str::camel('foo_bar');

//	fooBar

Str::contains()

The	Str::contains	method	determines	if	the	given	string	contains	the	given	value	(case	sensitive):

use	Illuminate\Support\Str;

$contains	=	Str::contains('This	is	my	name',	'my');

//	true

You	may	also	pass	an	array	of	values	to	determine	if	the	given	string	contains	any	of	the	values:

use	Illuminate\Support\Str;

$contains	=	Str::contains('This	is	my	name',	['my',	'foo']);

//	true

Str::containsAll()

Laravel	Documentation	-	7.x	/	Helpers 278

The	Str::containsAll	method	determines	if	the	given	string	contains	all	array	values:

use	Illuminate\Support\Str;

$containsAll	=	Str::containsAll('This	is	my	name',	['my',	'name']);

//	true

Str::endsWith()

The	Str::endsWith	method	determines	if	the	given	string	ends	with	the	given	value:

use	Illuminate\Support\Str;

$result	=	Str::endsWith('This	is	my	name',	'name');

//	true

You	may	also	pass	an	array	of	values	to	determine	if	the	given	string	ends	with	any	of	the	given	values:

use	Illuminate\Support\Str;

$result	=	Str::endsWith('This	is	my	name',	['name',	'foo']);

//	true

$result	=	Str::endsWith('This	is	my	name',	['this',	'foo']);

//	false

Str::finish()

The	Str::finish	method	adds	a	single	instance	of	the	given	value	to	a	string	if	it	does	not	already	end	with	the
value:

use	Illuminate\Support\Str;

$adjusted	=	Str::finish('this/string',	'/');

//	this/string/

$adjusted	=	Str::finish('this/string/',	'/');

//	this/string/

Str::is()

The	Str::is	method	determines	if	a	given	string	matches	a	given	pattern.	Asterisks	may	be	used	to	indicate
wildcards:

use	Illuminate\Support\Str;

$matches	=	Str::is('foo*',	'foobar');

//	true

$matches	=	Str::is('baz*',	'foobar');

//	false

Str::isAscii()

The	Str::isAscii	method	determines	if	a	given	string	is	7	bit	ASCII:

Laravel	Documentation	-	7.x	/	Helpers 279

use	Illuminate\Support\Str;

$isAscii	=	Str::isAscii('Taylor');

//	true

$isAscii	=	Str::isAscii('ü');

//	false

Str::isUuid()

The	Str::isUuid	method	determines	if	the	given	string	is	a	valid	UUID:

use	Illuminate\Support\Str;

$isUuid	=	Str::isUuid('a0a2a2d2-0b87-4a18-83f2-2529882be2de');

//	true

$isUuid	=	Str::isUuid('laravel');

//	false

Str::kebab()

The	Str::kebab	method	converts	the	given	string	to	kebab-case:

use	Illuminate\Support\Str;

$converted	=	Str::kebab('fooBar');

//	foo-bar

Str::length()

The	Str::length	method	returns	the	length	of	the	given	string:

use	Illuminate\Support\Str;

$length	=	Str::length('Laravel');

//	7

Str::limit()

The	Str::limit	method	truncates	the	given	string	at	the	specified	length:

use	Illuminate\Support\Str;

$truncated	=	Str::limit('The	quick	brown	fox	jumps	over	the	lazy	dog',	20);

//	The	quick	brown	fox...

You	may	also	pass	a	third	argument	to	change	the	string	that	will	be	appended	to	the	end:

use	Illuminate\Support\Str;

$truncated	=	Str::limit('The	quick	brown	fox	jumps	over	the	lazy	dog',	20,	'	(...)');

//	The	quick	brown	fox	(...)

Laravel	Documentation	-	7.x	/	Helpers 280

Str::lower()

The	Str::lower	method	converts	the	given	string	to	lowercase:

use	Illuminate\Support\Str;

$converted	=	Str::lower('LARAVEL');

//	laravel

Str::orderedUuid()

The	Str::orderedUuid	method	generates	a	"timestamp	first"	UUID	that	may	be	efficiently	stored	in	an	indexed
database	column:

use	Illuminate\Support\Str;

return	(string)	Str::orderedUuid();

Str::padBoth()

The	Str::padBoth	method	wraps	PHP's	str_pad	function,	padding	both	sides	of	a	string	with	another:

use	Illuminate\Support\Str;

$padded	=	Str::padBoth('James',	10,	'_');

//	'__James___'

$padded	=	Str::padBoth('James',	10);

//	'		James			'

Str::padLeft()

The	Str::padLeft	method	wraps	PHP's	str_pad	function,	padding	the	left	side	of	a	string	with	another:

use	Illuminate\Support\Str;

$padded	=	Str::padLeft('James',	10,	'-=');

//	'-=-=-James'

$padded	=	Str::padLeft('James',	10);

//	'					James'

Str::padRight()

The	Str::padRight	method	wraps	PHP's	str_pad	function,	padding	the	right	side	of	a	string	with	another:

use	Illuminate\Support\Str;

$padded	=	Str::padRight('James',	10,	'-');

//	'James-----'

$padded	=	Str::padRight('James',	10);

//	'James					'

Laravel	Documentation	-	7.x	/	Helpers 281

Str::plural()

The	Str::plural	method	converts	a	single	word	string	to	its	plural	form.	This	function	currently	only	supports
the	English	language:

use	Illuminate\Support\Str;

$plural	=	Str::plural('car');

//	cars

$plural	=	Str::plural('child');

//	children

You	may	provide	an	integer	as	a	second	argument	to	the	function	to	retrieve	the	singular	or	plural	form	of	the
string:

use	Illuminate\Support\Str;

$plural	=	Str::plural('child',	2);

//	children

$plural	=	Str::plural('child',	1);

//	child

Str::random()

The	Str::random	method	generates	a	random	string	of	the	specified	length.	This	function	uses	PHP's	
random_bytes	function:

use	Illuminate\Support\Str;

$random	=	Str::random(40);

Str::replaceArray()

The	Str::replaceArray	method	replaces	a	given	value	in	the	string	sequentially	using	an	array:

use	Illuminate\Support\Str;

$string	=	'The	event	will	take	place	between	?	and	?';

$replaced	=	Str::replaceArray('?',	['8:30',	'9:00'],	$string);

//	The	event	will	take	place	between	8:30	and	9:00

Str::replaceFirst()

The	Str::replaceFirst	method	replaces	the	first	occurrence	of	a	given	value	in	a	string:

use	Illuminate\Support\Str;

$replaced	=	Str::replaceFirst('the',	'a',	'the	quick	brown	fox	jumps	over	the	lazy	dog');

//	a	quick	brown	fox	jumps	over	the	lazy	dog

Str::replaceLast()

The	Str::replaceLast	method	replaces	the	last	occurrence	of	a	given	value	in	a	string:

Laravel	Documentation	-	7.x	/	Helpers 282

use	Illuminate\Support\Str;

$replaced	=	Str::replaceLast('the',	'a',	'the	quick	brown	fox	jumps	over	the	lazy	dog');

//	the	quick	brown	fox	jumps	over	a	lazy	dog

Str::singular()

The	Str::singular	method	converts	a	string	to	its	singular	form.	This	function	currently	only	supports	the
English	language:

use	Illuminate\Support\Str;

$singular	=	Str::singular('cars');

//	car

$singular	=	Str::singular('children');

//	child

Str::slug()

The	Str::slug	method	generates	a	URL	friendly	"slug"	from	the	given	string:

use	Illuminate\Support\Str;

$slug	=	Str::slug('Laravel	5	Framework',	'-');

//	laravel-5-framework

Str::snake()

The	Str::snake	method	converts	the	given	string	to	snake_case:

use	Illuminate\Support\Str;

$converted	=	Str::snake('fooBar');

//	foo_bar

Str::start()

The	Str::start	method	adds	a	single	instance	of	the	given	value	to	a	string	if	it	does	not	already	start	with	the
value:

use	Illuminate\Support\Str;

$adjusted	=	Str::start('this/string',	'/');

//	/this/string

$adjusted	=	Str::start('/this/string',	'/');

//	/this/string

Str::startsWith()

The	Str::startsWith	method	determines	if	the	given	string	begins	with	the	given	value:

Laravel	Documentation	-	7.x	/	Helpers 283

use	Illuminate\Support\Str;

$result	=	Str::startsWith('This	is	my	name',	'This');

//	true

Str::studly()

The	Str::studly	method	converts	the	given	string	to	StudlyCase:

use	Illuminate\Support\Str;

$converted	=	Str::studly('foo_bar');

//	FooBar

Str::substr()

The	Str::substr	method	returns	the	portion	of	string	specified	by	the	start	and	length	parameters:

use	Illuminate\Support\Str;

$converted	=	Str::substr('The	Laravel	Framework',	4,	7);

//	Laravel

Str::title()

The	Str::title	method	converts	the	given	string	to	Title	Case:

use	Illuminate\Support\Str;

$converted	=	Str::title('a	nice	title	uses	the	correct	case');

//	A	Nice	Title	Uses	The	Correct	Case

Str::ucfirst()

The	Str::ucfirst	method	returns	the	given	string	with	the	first	character	capitalized:

use	Illuminate\Support\Str;

$string	=	Str::ucfirst('foo	bar');

//	Foo	bar

Str::upper()

The	Str::upper	method	converts	the	given	string	to	uppercase:

use	Illuminate\Support\Str;

$string	=	Str::upper('laravel');

//	LARAVEL

Str::uuid()

Laravel	Documentation	-	7.x	/	Helpers 284

The	Str::uuid	method	generates	a	UUID	(version	4):

use	Illuminate\Support\Str;

return	(string)	Str::uuid();

Str::words()

The	Str::words	method	limits	the	number	of	words	in	a	string:

use	Illuminate\Support\Str;

return	Str::words('Perfectly	balanced,	as	all	things	should	be.',	3,	'	>>>');

//	Perfectly	balanced,	as	>>>

trans()

The	trans	function	translates	the	given	translation	key	using	your	localization	files:

echo	trans('messages.welcome');

If	the	specified	translation	key	does	not	exist,	the	trans	function	will	return	the	given	key.	So,	using	the
example	above,	the	trans	function	would	return	messages.welcome	if	the	translation	key	does	not	exist.

trans_choice()

The	trans_choice	function	translates	the	given	translation	key	with	inflection:

echo	trans_choice('messages.notifications',	$unreadCount);

If	the	specified	translation	key	does	not	exist,	the	trans_choice	function	will	return	the	given	key.	So,	using	the
example	above,	the	trans_choice	function	would	return	messages.notifications	if	the	translation	key	does	not
exist.

Fluent	Strings

Fluent	strings	provide	a	more	fluent,	object-oriented	interface	for	working	with	string	values,	allowing	you	to
chain	multiple	string	operations	together	using	a	more	readable	syntax	compared	to	traditional	string
operations.

after

The	after	method	returns	everything	after	the	given	value	in	a	string.	The	entire	string	will	be	returned	if	the
value	does	not	exist	within	the	string:

use	Illuminate\Support\Str;

$slice	=	Str::of('This	is	my	name')->after('This	is');

//	'	my	name'

afterLast

The	afterLast	method	returns	everything	after	the	last	occurrence	of	the	given	value	in	a	string.	The	entire

Laravel	Documentation	-	7.x	/	Helpers 285

string	will	be	returned	if	the	value	does	not	exist	within	the	string:

use	Illuminate\Support\Str;

$slice	=	Str::of('App\Http\Controllers\Controller')->afterLast('\\');

//	'Controller'

append

The	append	method	appends	the	given	values	to	the	string:

use	Illuminate\Support\Str;

$string	=	Str::of('Taylor')->append('	Otwell');

//	'Taylor	Otwell'

ascii

The	ascii	method	will	attempt	to	transliterate	the	string	into	an	ASCII	value:

use	Illuminate\Support\Str;

$string	=	Str::of('ü')->ascii();

//	'u'

basename

The	basename	method	will	return	the	trailing	name	component	of	the	given	string:

use	Illuminate\Support\Str;

$string	=	Str::of('/foo/bar/baz')->basename();

//	'baz'

If	needed,	you	may	provide	an	"extension"	that	will	be	removed	from	the	trailing	component:

use	Illuminate\Support\Str;

$string	=	Str::of('/foo/bar/baz.jpg')->basename('.jpg');

//	'baz'

before

The	before	method	returns	everything	before	the	given	value	in	a	string:

use	Illuminate\Support\Str;

$slice	=	Str::of('This	is	my	name')->before('my	name');

//	'This	is	'

beforeLast

The	beforeLast	method	returns	everything	before	the	last	occurrence	of	the	given	value	in	a	string:

Laravel	Documentation	-	7.x	/	Helpers 286

use	Illuminate\Support\Str;

$slice	=	Str::of('This	is	my	name')->beforeLast('is');

//	'This	'

camel

The	camel	method	converts	the	given	string	to	camelCase:

use	Illuminate\Support\Str;

$converted	=	Str::of('foo_bar')->camel();

//	fooBar

contains

The	contains	method	determines	if	the	given	string	contains	the	given	value	(case	sensitive):

use	Illuminate\Support\Str;

$contains	=	Str::of('This	is	my	name')->contains('my');

//	true

You	may	also	pass	an	array	of	values	to	determine	if	the	given	string	contains	any	of	the	values:

use	Illuminate\Support\Str;

$contains	=	Str::of('This	is	my	name')->contains(['my',	'foo']);

//	true

containsAll

The	containsAll	method	determines	if	the	given	string	contains	all	array	values:

use	Illuminate\Support\Str;

$containsAll	=	Str::of('This	is	my	name')->containsAll(['my',	'name']);

//	true

dirname

The	dirname	method	returns	the	parent	directory	portion	of	the	given	string:

use	Illuminate\Support\Str;

$string	=	Str::of('/foo/bar/baz')->dirname();

//	'/foo/bar'

Optionally,	You	may	specify	how	many	directory	levels	you	wish	to	trim	from	the	string:

use	Illuminate\Support\Str;

$string	=	Str::of('/foo/bar/baz')->dirname(2);

//	'/foo'

Laravel	Documentation	-	7.x	/	Helpers 287

endsWith

The	endsWith	method	determines	if	the	given	string	ends	with	the	given	value:

use	Illuminate\Support\Str;

$result	=	Str::of('This	is	my	name')->endsWith('name');

//	true

You	may	also	pass	an	array	of	values	to	determine	if	the	given	string	ends	with	any	of	the	given	values:

use	Illuminate\Support\Str;

$result	=	Str::of('This	is	my	name')->endsWith(['name',	'foo']);

//	true

$result	=	Str::of('This	is	my	name')->endsWith(['this',	'foo']);

//	false

exactly

The	exactly	method	determines	if	the	given	string	is	an	exact	match	with	another	string:

use	Illuminate\Support\Str;

$result	=	Str::of('Laravel')->exactly('Laravel');

//	true

explode

The	explode	method	splits	the	string	by	the	given	delimiter	and	returns	a	collection	containing	each	section	of
the	split	string:

use	Illuminate\Support\Str;

$collection	=	Str::of('foo	bar	baz')->explode('	');

//	collect(['foo',	'bar',	'baz'])

finish

The	finish	method	adds	a	single	instance	of	the	given	value	to	a	string	if	it	does	not	already	end	with	the	value:

use	Illuminate\Support\Str;

$adjusted	=	Str::of('this/string')->finish('/');

//	this/string/

$adjusted	=	Str::of('this/string/')->finish('/');

//	this/string/

is

The	is	method	determines	if	a	given	string	matches	a	given	pattern.	Asterisks	may	be	used	to	indicate
wildcards:

Laravel	Documentation	-	7.x	/	Helpers 288

use	Illuminate\Support\Str;

$matches	=	Str::of('foobar')->is('foo*');

//	true

$matches	=	Str::of('foobar')->is('baz*');

//	false

isAscii

The	isAscii	method	determines	if	a	given	string	is	an	ASCII	string:

use	Illuminate\Support\Str;

$result	=	Str::of('Taylor')->isAscii();

//	true

$result	=	Str::of('ü')->isAscii();

//	false

isEmpty

The	isEmpty	method	determines	if	the	given	string	is	empty:

use	Illuminate\Support\Str;

$result	=	Str::of('		')->trim()->isEmpty();

//	true

$result	=	Str::of('Laravel')->trim()->isEmpty();

//	false

isNotEmpty

The	isNotEmpty	method	determines	if	the	given	string	is	not	empty:

use	Illuminate\Support\Str;

$result	=	Str::of('		')->trim()->isNotEmpty();

//	false

$result	=	Str::of('Laravel')->trim()->isNotEmpty();

//	true

kebab

The	kebab	method	converts	the	given	string	to	kebab-case:

use	Illuminate\Support\Str;

$converted	=	Str::of('fooBar')->kebab();

//	foo-bar

Laravel	Documentation	-	7.x	/	Helpers 289

length

The	length	method	returns	the	length	of	the	given	string:

use	Illuminate\Support\Str;

$length	=	Str::of('Laravel')->length();

//	7

limit

The	limit	method	truncates	the	given	string	at	the	specified	length:

use	Illuminate\Support\Str;

$truncated	=	Str::of('The	quick	brown	fox	jumps	over	the	lazy	dog')->limit(20);

//	The	quick	brown	fox...

You	may	also	pass	a	second	argument	to	change	the	string	that	will	be	appended	to	the	end:

use	Illuminate\Support\Str;

$truncated	=	Str::of('The	quick	brown	fox	jumps	over	the	lazy	dog')->limit(20,	'	(...)');

//	The	quick	brown	fox	(...)

lower

The	lower	method	converts	the	given	string	to	lowercase:

use	Illuminate\Support\Str;

$result	=	Str::of('LARAVEL')->lower();

//	'laravel'

ltrim

The	ltrim	method	left	trims	the	given	string:

use	Illuminate\Support\Str;

$string	=	Str::of('		Laravel		')->ltrim();

//	'Laravel		'

$string	=	Str::of('/Laravel/')->ltrim('/');

//	'Laravel/'

match

The	match	method	will	return	the	portion	of	a	string	that	matches	a	given	regular	expression	pattern:

use	Illuminate\Support\Str;

$result	=	Str::of('foo	bar')->match('/bar/');

//	'bar'

$result	=	Str::of('foo	bar')->match('/foo	(.*)/');

Laravel	Documentation	-	7.x	/	Helpers 290

//	'bar'

matchAll

The	matchAll	method	will	return	a	collection	containing	the	portions	of	a	string	that	match	a	given	regular
expression	pattern:

use	Illuminate\Support\Str;

$result	=	Str::of('bar	foo	bar')->matchAll('/bar/');

//	collect(['bar',	'bar'])

If	you	specify	a	matching	group	within	the	expression,	Laravel	will	return	a	collection	of	that	group's	matches:

use	Illuminate\Support\Str;

$result	=	Str::of('bar	fun	bar	fly')->matchAll('/f(\w*)/');

//	collect(['un',	'ly']);

If	no	matches	are	found,	an	empty	collection	will	be	returned.

padBoth

The	padBoth	method	wraps	PHP's	str_pad	function,	padding	both	sides	of	a	string	with	another:

use	Illuminate\Support\Str;

$padded	=	Str::of('James')->padBoth(10,	'_');

//	'__James___'

$padded	=	Str::of('James')->padBoth(10);

//	'		James			'

padLeft

The	padLeft	method	wraps	PHP's	str_pad	function,	padding	the	left	side	of	a	string	with	another:

use	Illuminate\Support\Str;

$padded	=	Str::of('James')->padLeft(10,	'-=');

//	'-=-=-James'

$padded	=	Str::of('James')->padLeft(10);

//	'					James'

padRight

The	padRight	method	wraps	PHP's	str_pad	function,	padding	the	right	side	of	a	string	with	another:

use	Illuminate\Support\Str;

$padded	=	Str::of('James')->padRight(10,	'-');

//	'James-----'

$padded	=	Str::of('James')->padRight(10);

Laravel	Documentation	-	7.x	/	Helpers 291

//	'James					'

plural

The	plural	method	converts	a	single	word	string	to	its	plural	form.	This	function	currently	only	supports	the
English	language:

use	Illuminate\Support\Str;

$plural	=	Str::of('car')->plural();

//	cars

$plural	=	Str::of('child')->plural();

//	children

You	may	provide	an	integer	as	a	second	argument	to	the	function	to	retrieve	the	singular	or	plural	form	of	the
string:

use	Illuminate\Support\Str;

$plural	=	Str::of('child')->plural(2);

//	children

$plural	=	Str::of('child')->plural(1);

//	child

prepend

The	prepend	method	prepends	the	given	values	onto	the	string:

use	Illuminate\Support\Str;

$string	=	Str::of('Framework')->prepend('Laravel	');

//	Laravel	Framework

replace

The	replace	method	replaces	a	given	string	within	the	string:

use	Illuminate\Support\Str;

$replaced	=	Str::of('Laravel	6.x')->replace('6.x',	'7.x');

//	Laravel	7.x

replaceArray

The	replaceArray	method	replaces	a	given	value	in	the	string	sequentially	using	an	array:

use	Illuminate\Support\Str;

$string	=	'The	event	will	take	place	between	?	and	?';

$replaced	=	Str::of($string)->replaceArray('?',	['8:30',	'9:00']);

//	The	event	will	take	place	between	8:30	and	9:00

Laravel	Documentation	-	7.x	/	Helpers 292

replaceFirst

The	replaceFirst	method	replaces	the	first	occurrence	of	a	given	value	in	a	string:

use	Illuminate\Support\Str;

$replaced	=	Str::of('the	quick	brown	fox	jumps	over	the	lazy	dog')->replaceFirst('the',	'a');

//	a	quick	brown	fox	jumps	over	the	lazy	dog

replaceLast

The	replaceLast	method	replaces	the	last	occurrence	of	a	given	value	in	a	string:

use	Illuminate\Support\Str;

$replaced	=	Str::of('the	quick	brown	fox	jumps	over	the	lazy	dog')->replaceLast('the',	'a');

//	the	quick	brown	fox	jumps	over	a	lazy	dog

replaceMatches

The	replaceMatches	method	replaces	all	portions	of	a	string	matching	a	given	pattern	with	the	given
replacement	string:

use	Illuminate\Support\Str;

$replaced	=	Str::of('(+1)	501-555-1000')->replaceMatches('/[^A-Za-z0-9]++/',	'')

//	'15015551000'

The	replaceMatches	method	also	accepts	a	Closure	that	will	be	invoked	with	each	portion	of	the	string	matching
the	given	party,	allowing	you	to	perform	the	replacement	logic	within	the	Closure	and	return	the	replaced	value:

use	Illuminate\Support\Str;

$replaced	=	Str::of('123')->replaceMatches('/\d/',	function	($match)	{

				return	'['.$match[0].']';

});

//	'[1][2][3]'

rtrim

The	rtrim	method	right	trims	the	given	string:

use	Illuminate\Support\Str;

$string	=	Str::of('		Laravel		')->rtrim();

//	'		Laravel'

$string	=	Str::of('/Laravel/')->rtrim('/');

//	'/Laravel'

singular

The	singular	method	converts	a	string	to	its	singular	form.	This	function	currently	only	supports	the	English
language:

use	Illuminate\Support\Str;

Laravel	Documentation	-	7.x	/	Helpers 293

$singular	=	Str::of('cars')->singular();

//	car

$singular	=	Str::of('children')->singular();

//	child

slug

The	slug	method	generates	a	URL	friendly	"slug"	from	the	given	string:

use	Illuminate\Support\Str;

$slug	=	Str::of('Laravel	Framework')->slug('-');

//	laravel-framework

snake

The	snake	method	converts	the	given	string	to	snake_case:

use	Illuminate\Support\Str;

$converted	=	Str::of('fooBar')->snake();

//	foo_bar

split

The	split	method	splits	a	string	into	a	collection	using	a	regular	expression:

use	Illuminate\Support\Str;

$segments	=	Str::of('one,	two,	three')->split('/[\s,]+/');

//	collect(["one",	"two",	"three"])

start

The	start	method	adds	a	single	instance	of	the	given	value	to	a	string	if	it	does	not	already	start	with	the	value:

use	Illuminate\Support\Str;

$adjusted	=	Str::of('this/string')->start('/');

//	/this/string

$adjusted	=	Str::of('/this/string')->start('/');

//	/this/string

startsWith

The	startsWith	method	determines	if	the	given	string	begins	with	the	given	value:

use	Illuminate\Support\Str;

$result	=	Str::of('This	is	my	name')->startsWith('This');

Laravel	Documentation	-	7.x	/	Helpers 294

//	true

studly

The	studly	method	converts	the	given	string	to	StudlyCase:

use	Illuminate\Support\Str;

$converted	=	Str::of('foo_bar')->studly();

//	FooBar

substr

The	substr	method	returns	the	portion	of	the	string	specified	by	the	given	start	and	length	parameters:

use	Illuminate\Support\Str;

$string	=	Str::of('Laravel	Framework')->substr(8);

//	Framework

$string	=	Str::of('Laravel	Framework')->substr(8,	5);

//	Frame

title

The	title	method	converts	the	given	string	to	Title	Case:

use	Illuminate\Support\Str;

$converted	=	Str::of('a	nice	title	uses	the	correct	case')->title();

//	A	Nice	Title	Uses	The	Correct	Case

trim

The	trim	method	trims	the	given	string:

use	Illuminate\Support\Str;

$string	=	Str::of('		Laravel		')->trim();

//	'Laravel'

$string	=	Str::of('/Laravel/')->trim('/');

//	'Laravel'

ucfirst

The	ucfirst	method	returns	the	given	string	with	the	first	character	capitalized:

use	Illuminate\Support\Str;

$string	=	Str::of('foo	bar')->ucfirst();

//	Foo	bar

Laravel	Documentation	-	7.x	/	Helpers 295

upper

The	upper	method	converts	the	given	string	to	uppercase:

use	Illuminate\Support\Str;

$adjusted	=	Str::of('laravel')->upper();

//	LARAVEL

when

The	when	method	invokes	the	given	Closure	if	a	given	condition	is	true.	The	Closure	will	receive	the	fluent
string	instance:

use	Illuminate\Support\Str;

$string	=	Str::of('Taylor')

																->when(true,	function	($string)	{

																				return	$string->append('	Otwell');

																});

//	'Taylor	Otwell'

If	necessary,	you	may	pass	another	Closure	as	the	third	parameter	to	the	when	method.	This	Closure	will	execute
if	the	condition	parameter	evaluates	to	false.

whenEmpty

The	whenEmpty	method	invokes	the	given	Closure	if	the	string	is	empty.	If	the	Closure	returns	a	value,	that	value
will	also	be	returned	by	the	whenEmpty	method.	If	the	Closure	does	not	return	a	value,	the	fluent	string	instance
will	be	returned:

use	Illuminate\Support\Str;

$string	=	Str::of('		')->whenEmpty(function	($string)	{

				return	$string->trim()->prepend('Laravel');

});

//	'Laravel'

words

The	words	method	limits	the	number	of	words	in	a	string:

use	Illuminate\Support\Str;

$string	=	Str::of('Perfectly	balanced,	as	all	things	should	be.')->words(3,	'	>>>');

//	Perfectly	balanced,	as	>>>

URLs

action()

The	action	function	generates	a	URL	for	the	given	controller	action.	You	do	not	need	to	pass	the	full
namespace	of	the	controller.	Instead,	pass	the	controller	class	name	relative	to	the	App\Http\Controllers
namespace:

$url	=	action('HomeController@index');

Laravel	Documentation	-	7.x	/	Helpers 296

$url	=	action([HomeController::class,	'index']);

If	the	method	accepts	route	parameters,	you	may	pass	them	as	the	second	argument	to	the	method:

$url	=	action('UserController@profile',	['id'	=>	1]);

asset()

The	asset	function	generates	a	URL	for	an	asset	using	the	current	scheme	of	the	request	(HTTP	or	HTTPS):

$url	=	asset('img/photo.jpg');

You	can	configure	the	asset	URL	host	by	setting	the	ASSET_URL	variable	in	your	.env	file.	This	can	be	useful	if
you	host	your	assets	on	an	external	service	like	Amazon	S3:

//	ASSET_URL=http://example.com/assets

$url	=	asset('img/photo.jpg');	//	http://example.com/assets/img/photo.jpg

route()

The	route	function	generates	a	URL	for	the	given	named	route:

$url	=	route('routeName');

If	the	route	accepts	parameters,	you	may	pass	them	as	the	second	argument	to	the	method:

$url	=	route('routeName',	['id'	=>	1]);

By	default,	the	route	function	generates	an	absolute	URL.	If	you	wish	to	generate	a	relative	URL,	you	may	pass
false	as	the	third	argument:

$url	=	route('routeName',	['id'	=>	1],	false);

secure_asset()

The	secure_asset	function	generates	a	URL	for	an	asset	using	HTTPS:

$url	=	secure_asset('img/photo.jpg');

secure_url()

The	secure_url	function	generates	a	fully	qualified	HTTPS	URL	to	the	given	path:

$url	=	secure_url('user/profile');

$url	=	secure_url('user/profile',	[1]);

url()

The	url	function	generates	a	fully	qualified	URL	to	the	given	path:

$url	=	url('user/profile');

$url	=	url('user/profile',	[1]);

Laravel	Documentation	-	7.x	/	Helpers 297

If	no	path	is	provided,	a	Illuminate\Routing\UrlGenerator	instance	is	returned:

$current	=	url()->current();

$full	=	url()->full();

$previous	=	url()->previous();

Miscellaneous

abort()

The	abort	function	throws	an	HTTP	exception	which	will	be	rendered	by	the	exception	handler:

abort(403);

You	may	also	provide	the	exception's	response	text	and	custom	response	headers:

abort(403,	'Unauthorized.',	$headers);

abort_if()

The	abort_if	function	throws	an	HTTP	exception	if	a	given	boolean	expression	evaluates	to	true:

abort_if(!	Auth::user()->isAdmin(),	403);

Like	the	abort	method,	you	may	also	provide	the	exception's	response	text	as	the	third	argument	and	an	array	of
custom	response	headers	as	the	fourth	argument.

abort_unless()

The	abort_unless	function	throws	an	HTTP	exception	if	a	given	boolean	expression	evaluates	to	false:

abort_unless(Auth::user()->isAdmin(),	403);

Like	the	abort	method,	you	may	also	provide	the	exception's	response	text	as	the	third	argument	and	an	array	of
custom	response	headers	as	the	fourth	argument.

app()

The	app	function	returns	the	service	container	instance:

$container	=	app();

You	may	pass	a	class	or	interface	name	to	resolve	it	from	the	container:

$api	=	app('HelpSpot\API');

auth()

The	auth	function	returns	an	authenticator	instance.	You	may	use	it	instead	of	the	Auth	facade	for	convenience:

$user	=	auth()->user();

If	needed,	you	may	specify	which	guard	instance	you	would	like	to	access:

Laravel	Documentation	-	7.x	/	Helpers 298

$user	=	auth('admin')->user();

back()

The	back	function	generates	a	redirect	HTTP	response	to	the	user's	previous	location:

return	back($status	=	302,	$headers	=	[],	$fallback	=	false);

return	back();

bcrypt()

The	bcrypt	function	hashes	the	given	value	using	Bcrypt.	You	may	use	it	as	an	alternative	to	the	Hash	facade:

$password	=	bcrypt('my-secret-password');

blank()

The	blank	function	returns	whether	the	given	value	is	"blank":

blank('');

blank('			');

blank(null);

blank(collect());

//	true

blank(0);

blank(true);

blank(false);

//	false

For	the	inverse	of	blank,	see	the	filled	method.

broadcast()

The	broadcast	function	broadcasts	the	given	event	to	its	listeners:

broadcast(new	UserRegistered($user));

cache()

The	cache	function	may	be	used	to	get	values	from	the	cache.	If	the	given	key	does	not	exist	in	the	cache,	an
optional	default	value	will	be	returned:

$value	=	cache('key');

$value	=	cache('key',	'default');

You	may	add	items	to	the	cache	by	passing	an	array	of	key	/	value	pairs	to	the	function.	You	should	also	pass
the	number	of	seconds	or	duration	the	cached	value	should	be	considered	valid:

cache(['key'	=>	'value'],	300);

cache(['key'	=>	'value'],	now()->addSeconds(10));

Laravel	Documentation	-	7.x	/	Helpers 299

class_uses_recursive()

The	class_uses_recursive	function	returns	all	traits	used	by	a	class,	including	traits	used	by	all	of	its	parent
classes:

$traits	=	class_uses_recursive(App\User::class);

collect()

The	collect	function	creates	a	collection	instance	from	the	given	value:

$collection	=	collect(['taylor',	'abigail']);

config()

The	config	function	gets	the	value	of	a	configuration	variable.	The	configuration	values	may	be	accessed	using
"dot"	syntax,	which	includes	the	name	of	the	file	and	the	option	you	wish	to	access.	A	default	value	may	be
specified	and	is	returned	if	the	configuration	option	does	not	exist:

$value	=	config('app.timezone');

$value	=	config('app.timezone',	$default);

You	may	set	configuration	variables	at	runtime	by	passing	an	array	of	key	/	value	pairs:

config(['app.debug'	=>	true]);

cookie()

The	cookie	function	creates	a	new	cookie	instance:

$cookie	=	cookie('name',	'value',	$minutes);

csrf_field()

The	csrf_field	function	generates	an	HTML	hidden	input	field	containing	the	value	of	the	CSRF	token.	For
example,	using	Blade	syntax:

{{	csrf_field()	}}

csrf_token()

The	csrf_token	function	retrieves	the	value	of	the	current	CSRF	token:

$token	=	csrf_token();

dd()

The	dd	function	dumps	the	given	variables	and	ends	execution	of	the	script:

dd($value);

dd($value1,	$value2,	$value3,	...);

Laravel	Documentation	-	7.x	/	Helpers 300

If	you	do	not	want	to	halt	the	execution	of	your	script,	use	the	dump	function	instead.

dispatch()

The	dispatch	function	pushes	the	given	job	onto	the	Laravel	job	queue:

dispatch(new	App\Jobs\SendEmails);

dispatch_now()

The	dispatch_now	function	runs	the	given	job	immediately	and	returns	the	value	from	its	handle	method:

$result	=	dispatch_now(new	App\Jobs\SendEmails);

dump()

The	dump	function	dumps	the	given	variables:

dump($value);

dump($value1,	$value2,	$value3,	...);

If	you	want	to	stop	executing	the	script	after	dumping	the	variables,	use	the	dd	function	instead.

env()

The	env	function	retrieves	the	value	of	an	environment	variable	or	returns	a	default	value:

$env	=	env('APP_ENV');

//	Returns	'production'	if	APP_ENV	is	not	set...

$env	=	env('APP_ENV',	'production');

NOTE	If	you	execute	the	config:cache	command	during	your	deployment	process,	you	should	be	sure	that
you	are	only	calling	the	env	function	from	within	your	configuration	files.	Once	the	configuration	has	been
cached,	the	.env	file	will	not	be	loaded	and	all	calls	to	the	env	function	will	return	null.

event()

The	event	function	dispatches	the	given	event	to	its	listeners:

event(new	UserRegistered($user));

factory()

The	factory	function	creates	a	model	factory	builder	for	a	given	class,	name,	and	amount.	It	can	be	used	while
testing	or	seeding:

$user	=	factory(App\User::class)->make();

filled()

Laravel	Documentation	-	7.x	/	Helpers 301

The	filled	function	returns	whether	the	given	value	is	not	"blank":

filled(0);

filled(true);

filled(false);

//	true

filled('');

filled('			');

filled(null);

filled(collect());

//	false

For	the	inverse	of	filled,	see	the	blank	method.

info()

The	info	function	will	write	information	to	the	log:

info('Some	helpful	information!');

An	array	of	contextual	data	may	also	be	passed	to	the	function:

info('User	login	attempt	failed.',	['id'	=>	$user->id]);

logger()

The	logger	function	can	be	used	to	write	a	debug	level	message	to	the	log:

logger('Debug	message');

An	array	of	contextual	data	may	also	be	passed	to	the	function:

logger('User	has	logged	in.',	['id'	=>	$user->id]);

A	logger	instance	will	be	returned	if	no	value	is	passed	to	the	function:

logger()->error('You	are	not	allowed	here.');

method_field()

The	method_field	function	generates	an	HTML	hidden	input	field	containing	the	spoofed	value	of	the	form's
HTTP	verb.	For	example,	using	Blade	syntax:

<form	method="POST">

				{{	method_field('DELETE')	}}

</form>

now()

The	now	function	creates	a	new	Illuminate\Support\Carbon	instance	for	the	current	time:

$now	=	now();

old()

Laravel	Documentation	-	7.x	/	Helpers 302

The	old	function	retrieves	an	old	input	value	flashed	into	the	session:

$value	=	old('value');

$value	=	old('value',	'default');

optional()

The	optional	function	accepts	any	argument	and	allows	you	to	access	properties	or	call	methods	on	that	object.
If	the	given	object	is	null,	properties	and	methods	will	return	null	instead	of	causing	an	error:

return	optional($user->address)->street;

{!!	old('name',	optional($user)->name)	!!}

The	optional	function	also	accepts	a	Closure	as	its	second	argument.	The	Closure	will	be	invoked	if	the	value
provided	as	the	first	argument	is	not	null:

return	optional(User::find($id),	function	($user)	{

				return	new	DummyUser;

});

policy()

The	policy	method	retrieves	a	policy	instance	for	a	given	class:

$policy	=	policy(App\User::class);

redirect()

The	redirect	function	returns	a	redirect	HTTP	response,	or	returns	the	redirector	instance	if	called	with	no
arguments:

return	redirect($to	=	null,	$status	=	302,	$headers	=	[],	$secure	=	null);

return	redirect('/home');

return	redirect()->route('route.name');

report()

The	report	function	will	report	an	exception	using	your	exception	handler's	report	method:

report($e);

request()

The	request	function	returns	the	current	request	instance	or	obtains	an	input	item:

$request	=	request();

$value	=	request('key',	$default);

rescue()

Laravel	Documentation	-	7.x	/	Helpers 303

The	rescue	function	executes	the	given	Closure	and	catches	any	exceptions	that	occur	during	its	execution.	All
exceptions	that	are	caught	will	be	sent	to	your	exception	handler's	report	method;	however,	the	request	will
continue	processing:

return	rescue(function	()	{

				return	$this->method();

});

You	may	also	pass	a	second	argument	to	the	rescue	function.	This	argument	will	be	the	"default"	value	that
should	be	returned	if	an	exception	occurs	while	executing	the	Closure:

return	rescue(function	()	{

				return	$this->method();

},	false);

return	rescue(function	()	{

				return	$this->method();

},	function	()	{

				return	$this->failure();

});

resolve()

The	resolve	function	resolves	a	given	class	or	interface	name	to	its	instance	using	the	service	container:

$api	=	resolve('HelpSpot\API');

response()

The	response	function	creates	a	response	instance	or	obtains	an	instance	of	the	response	factory:

return	response('Hello	World',	200,	$headers);

return	response()->json(['foo'	=>	'bar'],	200,	$headers);

retry()

The	retry	function	attempts	to	execute	the	given	callback	until	the	given	maximum	attempt	threshold	is	met.	If
the	callback	does	not	throw	an	exception,	its	return	value	will	be	returned.	If	the	callback	throws	an	exception,
it	will	automatically	be	retried.	If	the	maximum	attempt	count	is	exceeded,	the	exception	will	be	thrown:

return	retry(5,	function	()	{

				//	Attempt	5	times	while	resting	100ms	in	between	attempts...

},	100);

session()

The	session	function	may	be	used	to	get	or	set	session	values:

$value	=	session('key');

You	may	set	values	by	passing	an	array	of	key	/	value	pairs	to	the	function:

session(['chairs'	=>	7,	'instruments'	=>	3]);

The	session	store	will	be	returned	if	no	value	is	passed	to	the	function:

$value	=	session()->get('key');

session()->put('key',	$value);

Laravel	Documentation	-	7.x	/	Helpers 304

tap()

The	tap	function	accepts	two	arguments:	an	arbitrary	$value	and	a	Closure.	The	$value	will	be	passed	to	the
Closure	and	then	be	returned	by	the	tap	function.	The	return	value	of	the	Closure	is	irrelevant:

$user	=	tap(User::first(),	function	($user)	{

				$user->name	=	'taylor';

				$user->save();

});

If	no	Closure	is	passed	to	the	tap	function,	you	may	call	any	method	on	the	given	$value.	The	return	value	of
the	method	you	call	will	always	be	$value,	regardless	of	what	the	method	actually	returns	in	its	definition.	For
example,	the	Eloquent	update	method	typically	returns	an	integer.	However,	we	can	force	the	method	to	return
the	model	itself	by	chaining	the	update	method	call	through	the	tap	function:

$user	=	tap($user)->update([

				'name'	=>	$name,

				'email'	=>	$email,

]);

To	add	a	tap	method	to	a	class,	you	may	add	the	Illuminate\Support\Traits\Tappable	trait	to	the	class.	The	tap
method	of	this	trait	accepts	a	Closure	as	its	only	argument.	The	object	instance	itself	will	be	passed	to	the
Closure	and	then	be	returned	by	the	tap	method:

return	$user->tap(function	($user)	{

				//

});

throw_if()

The	throw_if	function	throws	the	given	exception	if	a	given	boolean	expression	evaluates	to	true:

throw_if(!	Auth::user()->isAdmin(),	AuthorizationException::class);

throw_if(

				!	Auth::user()->isAdmin(),

				AuthorizationException::class,

				'You	are	not	allowed	to	access	this	page'

);

throw_unless()

The	throw_unless	function	throws	the	given	exception	if	a	given	boolean	expression	evaluates	to	false:

throw_unless(Auth::user()->isAdmin(),	AuthorizationException::class);

throw_unless(

				Auth::user()->isAdmin(),

				AuthorizationException::class,

				'You	are	not	allowed	to	access	this	page'

);

today()

The	today	function	creates	a	new	Illuminate\Support\Carbon	instance	for	the	current	date:

$today	=	today();

trait_uses_recursive()

Laravel	Documentation	-	7.x	/	Helpers 305

The	trait_uses_recursive	function	returns	all	traits	used	by	a	trait:

$traits	=	trait_uses_recursive(\Illuminate\Notifications\Notifiable::class);

transform()

The	transform	function	executes	a	Closure	on	a	given	value	if	the	value	is	not	blank	and	returns	the	result	of	the
Closure:

$callback	=	function	($value)	{

				return	$value	*	2;

};

$result	=	transform(5,	$callback);

//	10

A	default	value	or	Closure	may	also	be	passed	as	the	third	parameter	to	the	method.	This	value	will	be	returned
if	the	given	value	is	blank:

$result	=	transform(null,	$callback,	'The	value	is	blank');

//	The	value	is	blank

validator()

The	validator	function	creates	a	new	validator	instance	with	the	given	arguments.	You	may	use	it	instead	of	the
Validator	facade	for	convenience:

$validator	=	validator($data,	$rules,	$messages);

value()

The	value	function	returns	the	value	it	is	given.	However,	if	you	pass	a	Closure	to	the	function,	the	Closure	will
be	executed	then	its	result	will	be	returned:

$result	=	value(true);

//	true

$result	=	value(function	()	{

				return	false;

});

//	false

view()

The	view	function	retrieves	a	view	instance:

return	view('auth.login');

with()

The	with	function	returns	the	value	it	is	given.	If	a	Closure	is	passed	as	the	second	argument	to	the	function,	the	
Closure	will	be	executed	and	its	result	will	be	returned:

$callback	=	function	($value)	{

Laravel	Documentation	-	7.x	/	Helpers 306

				return	(is_numeric($value))	?	$value	*	2	:	0;

};

$result	=	with(5,	$callback);

//	10

$result	=	with(null,	$callback);

//	0

$result	=	with(5,	null);

//	5

Laravel	Documentation	-	7.x	/	Helpers 307

Digging	Deeper

HTTP	Client
Introduction
Making	Requests

Request	Data
Headers
Authentication
Timeout
Retries
Error	Handling
Guzzle	Options

Testing
Faking	Responses
Inspecting	Requests

Introduction

Laravel	provides	an	expressive,	minimal	API	around	the	Guzzle	HTTP	client,	allowing	you	to	quickly	make
outgoing	HTTP	requests	to	communicate	with	other	web	applications.	Laravel's	wrapper	around	Guzzle	is
focused	on	its	most	common	use	cases	and	a	wonderful	developer	experience.

Before	getting	started,	you	should	ensure	that	you	have	installed	the	Guzzle	package	as	a	dependency	of	your
application.	By	default,	Laravel	automatically	includes	this	dependency:

composer	require	guzzlehttp/guzzle

Making	Requests

To	make	requests,	you	may	use	the	get,	post,	put,	patch,	and	delete	methods.	First,	let's	examine	how	to	make	a
basic	GET	request:

use	Illuminate\Support\Facades\Http;

$response	=	Http::get('http://test.com');

The	get	method	returns	an	instance	of	Illuminate\Http\Client\Response,	which	provides	a	variety	of	methods
that	may	be	used	to	inspect	the	response:

$response->body()	:	string;

$response->json()	:	array|mixed;

$response->status()	:	int;

$response->ok()	:	bool;

$response->successful()	:	bool;

$response->failed()	:	bool;

$response->serverError()	:	bool;

$response->clientError()	:	bool;

$response->header($header)	:	string;

$response->headers()	:	array;

The	Illuminate\Http\Client\Response	object	also	implements	the	PHP	ArrayAccess	interface,	allowing	you	to
access	JSON	response	data	directly	on	the	response:

return	Http::get('http://test.com/users/1')['name'];

Request	Data

Of	course,	it	is	common	when	using	POST,	PUT,	and	PATCH	to	send	additional	data	with	your	request.	So,	these
methods	accept	an	array	of	data	as	their	second	argument.	By	default,	data	will	be	sent	using	the	
application/json	content	type:

$response	=	Http::post('http://test.com/users',	[

Laravel	Documentation	-	7.x	/	HTTP	Client 308

http://docs.guzzlephp.org/en/stable/

				'name'	=>	'Steve',

				'role'	=>	'Network	Administrator',

]);

GET	Request	Query	Parameters

When	making	GET	requests,	you	may	either	append	a	query	string	to	the	URL	directly	or	pass	an	array	of	key	/
value	pairs	as	the	second	argument	to	the	get	method:

$response	=	Http::get('http://test.com/users',	[

				'name'	=>	'Taylor',

				'page'	=>	1,

]);

Sending	Form	URL	Encoded	Requests

If	you	would	like	to	send	data	using	the	application/x-www-form-urlencoded	content	type,	you	should	call	the	
asForm	method	before	making	your	request:

$response	=	Http::asForm()->post('http://test.com/users',	[

				'name'	=>	'Sara',

				'role'	=>	'Privacy	Consultant',

]);

Sending	A	Raw	Request	Body

You	may	use	the	withBody	method	if	you	would	like	to	provide	a	raw	request	body	when	making	a	request:

$response	=	Http::withBody(

				base64_encode($photo),	'image/jpeg'

)->post('http://test.com/photo');

Multi-Part	Requests

If	you	would	like	to	send	files	as	multi-part	requests,	you	should	call	the	attach	method	before	making	your
request.	This	method	accepts	the	name	of	the	file	and	its	contents.	Optionally,	you	may	provide	a	third
argument	which	will	be	considered	the	file's	filename:

$response	=	Http::attach(

				'attachment',	file_get_contents('photo.jpg'),	'photo.jpg'

)->post('http://test.com/attachments');

Instead	of	passing	the	raw	contents	of	a	file,	you	may	also	pass	a	stream	resource:

$photo	=	fopen('photo.jpg',	'r');

$response	=	Http::attach(

				'attachment',	$photo,	'photo.jpg'

)->post('http://test.com/attachments');

Headers

Headers	may	be	added	to	requests	using	the	withHeaders	method.	This	withHeaders	method	accepts	an	array	of
key	/	value	pairs:

$response	=	Http::withHeaders([

				'X-First'	=>	'foo',

				'X-Second'	=>	'bar'

])->post('http://test.com/users',	[

				'name'	=>	'Taylor',

]);

Authentication

You	may	specify	basic	and	digest	authentication	credentials	using	the	withBasicAuth	and	withDigestAuth
methods,	respectively:

Laravel	Documentation	-	7.x	/	HTTP	Client 309

//	Basic	authentication...

$response	=	Http::withBasicAuth('taylor@laravel.com',	'secret')->post(...);

//	Digest	authentication...

$response	=	Http::withDigestAuth('taylor@laravel.com',	'secret')->post(...);

Bearer	Tokens

If	you	would	like	to	quickly	add	an	Authorization	bearer	token	header	to	the	request,	you	may	use	the	withToken
method:

$response	=	Http::withToken('token')->post(...);

Timeout

The	timeout	method	may	be	used	to	specify	the	maximum	number	of	seconds	to	wait	for	a	response:

$response	=	Http::timeout(3)->get(...);

If	the	given	timeout	is	exceeded,	an	instance	of	Illuminate\Http\Client\ConnectionException	will	be	thrown.

Retries

If	you	would	like	HTTP	client	to	automatically	retry	the	request	if	a	client	or	server	error	occurs,	you	may	use
the	retry	method.	The	retry	method	accepts	two	arguments:	the	number	of	times	the	request	should	be
attempted	and	the	number	of	milliseconds	that	Laravel	should	wait	in	between	attempts:

$response	=	Http::retry(3,	100)->post(...);

If	all	of	the	requests	fail,	an	instance	of	Illuminate\Http\Client\RequestException	will	be	thrown.

Error	Handling

Unlike	Guzzle's	default	behavior,	Laravel's	HTTP	client	wrapper	does	not	throw	exceptions	on	client	or	server
errors	(400	and	500	level	responses	from	servers).	You	may	determine	if	one	of	these	errors	was	returned	using
the	successful,	clientError,	or	serverError	methods:

//	Determine	if	the	status	code	was	>=	200	and	<	300...

$response->successful();

//	Determine	if	the	status	code	was	>=	400...

$response->failed();

//	Determine	if	the	response	has	a	400	level	status	code...

$response->clientError();

//	Determine	if	the	response	has	a	500	level	status	code...

$response->serverError();

Throwing	Exceptions

If	you	have	a	response	instance	and	would	like	to	throw	an	instance	of	
Illuminate\Http\Client\RequestException	if	the	response	is	a	client	or	server	error,	you	may	use	the	throw
method:

$response	=	Http::post(...);

//	Throw	an	exception	if	a	client	or	server	error	occurred...

$response->throw();

return	$response['user']['id'];

The	Illuminate\Http\Client\RequestException	instance	has	a	public	$response	property	which	will	allow	you	to
inspect	the	returned	response.

The	throw	method	returns	the	response	instance	if	no	error	occurred,	allowing	you	to	chain	other	operations

Laravel	Documentation	-	7.x	/	HTTP	Client 310

onto	the	throw	method:

return	Http::post(...)->throw()->json();

Guzzle	Options

You	may	specify	additional	Guzzle	request	options	using	the	withOptions	method.	The	withOptions	method
accepts	an	array	of	key	/	value	pairs:

$response	=	Http::withOptions([

				'debug'	=>	true,

])->get('http://test.com/users');

Testing

Many	Laravel	services	provide	functionality	to	help	you	easily	and	expressively	write	tests,	and	Laravel's
HTTP	wrapper	is	no	exception.	The	Http	facade's	fake	method	allows	you	to	instruct	the	HTTP	client	to	return
stubbed	/	dummy	responses	when	requests	are	made.

Faking	Responses

For	example,	to	instruct	the	HTTP	client	to	return	empty,	200	status	code	responses	for	every	request,	you	may
call	the	fake	method	with	no	arguments:

use	Illuminate\Support\Facades\Http;

Http::fake();

$response	=	Http::post(...);

Faking	Specific	URLs

Alternatively,	you	may	pass	an	array	to	the	fake	method.	The	array's	keys	should	represent	URL	patterns	that
you	wish	to	fake	and	their	associated	responses.	The	*	character	may	be	used	as	a	wildcard	character.	Any
requests	made	to	URLs	that	have	not	been	faked	will	actually	be	executed.	You	may	use	the	response	method	to
construct	stub	/	fake	responses	for	these	endpoints:

Http::fake([

				//	Stub	a	JSON	response	for	GitHub	endpoints...

				'github.com/*'	=>	Http::response(['foo'	=>	'bar'],	200,	['Headers']),

				//	Stub	a	string	response	for	Google	endpoints...

				'google.com/*'	=>	Http::response('Hello	World',	200,	['Headers']),

]);

If	you	would	like	to	specify	a	fallback	URL	pattern	that	will	stub	all	unmatched	URLs,	you	may	use	a	single	*
character:

Http::fake([

				//	Stub	a	JSON	response	for	GitHub	endpoints...

				'github.com/*'	=>	Http::response(['foo'	=>	'bar'],	200,	['Headers']),

				//	Stub	a	string	response	for	all	other	endpoints...

				'*'	=>	Http::response('Hello	World',	200,	['Headers']),

]);

Faking	Response	Sequences

Sometimes	you	may	need	to	specify	that	a	single	URL	should	return	a	series	of	fake	responses	in	a	specific
order.	You	may	accomplish	this	using	the	Http::sequence	method	to	build	the	responses:

Http::fake([

				//	Stub	a	series	of	responses	for	GitHub	endpoints...

				'github.com/*'	=>	Http::sequence()

																												->push('Hello	World',	200)

																												->push(['foo'	=>	'bar'],	200)

																												->pushStatus(404),

Laravel	Documentation	-	7.x	/	HTTP	Client 311

http://docs.guzzlephp.org/en/stable/request-options.html

]);

When	all	of	the	responses	in	a	response	sequence	have	been	consumed,	any	further	requests	will	cause	the
response	sequence	to	throw	an	exception.	If	you	would	like	to	specify	a	default	response	that	should	be
returned	when	a	sequence	is	empty,	you	may	use	the	whenEmpty	method:

Http::fake([

				//	Stub	a	series	of	responses	for	GitHub	endpoints...

				'github.com/*'	=>	Http::sequence()

																												->push('Hello	World',	200)

																												->push(['foo'	=>	'bar'],	200)

																												->whenEmpty(Http::response()),

]);

If	you	would	like	to	fake	a	sequence	of	responses	but	do	not	need	to	specify	a	specific	URL	pattern	that	should
be	faked,	you	may	use	the	Http::fakeSequence	method:

Http::fakeSequence()

								->push('Hello	World',	200)

								->whenEmpty(Http::response());

Fake	Callback

If	you	require	more	complicated	logic	to	determine	what	responses	to	return	for	certain	endpoints,	you	may
pass	a	callback	to	the	fake	method.	This	callback	will	receive	an	instance	of	Illuminate\Http\Client\Request
and	should	return	a	response	instance:

Http::fake(function	($request)	{

				return	Http::response('Hello	World',	200);

});

Inspecting	Requests

When	faking	responses,	you	may	occasionally	wish	to	inspect	the	requests	the	client	receives	in	order	to	make
sure	your	application	is	sending	the	correct	data	or	headers.	You	may	accomplish	this	by	calling	the	
Http::assertSent	method	after	calling	Http::fake.

The	assertSent	method	accepts	a	callback	which	will	be	given	an	Illuminate\Http\Client\Request	instance	and
should	return	a	boolean	value	indicating	if	the	request	matches	your	expectations.	In	order	for	the	test	to	pass,
at	least	one	request	must	have	been	issued	matching	the	given	expectations:

Http::fake();

Http::withHeaders([

				'X-First'	=>	'foo',

])->post('http://test.com/users',	[

				'name'	=>	'Taylor',

				'role'	=>	'Developer',

]);

Http::assertSent(function	($request)	{

				return	$request->hasHeader('X-First',	'foo')	&&

											$request->url()	==	'http://test.com/users'	&&

											$request['name']	==	'Taylor'	&&

											$request['role']	==	'Developer';

});

If	needed,	you	may	assert	that	a	specific	request	was	not	sent	using	the	assertNotSent	method:

Http::fake();

Http::post('http://test.com/users',	[

				'name'	=>	'Taylor',

				'role'	=>	'Developer',

]);

Http::assertNotSent(function	(Request	$request)	{

				return	$request->url()	===	'http://test.com/posts';

});

Or,	if	you	would	like	to	assert	that	no	requests	were	sent,	you	may	use	the	assertNothingSent	method:

Laravel	Documentation	-	7.x	/	HTTP	Client 312

Http::fake();

Http::assertNothingSent();

Laravel	Documentation	-	7.x	/	HTTP	Client 313

Digging	Deeper

Mail
Introduction

Configuration
Driver	Prerequisites

Generating	Mailables
Writing	Mailables

Configuring	The	Sender
Configuring	The	View
View	Data
Attachments
Inline	Attachments
Customizing	The	SwiftMailer	Message

Markdown	Mailables
Generating	Markdown	Mailables
Writing	Markdown	Messages
Customizing	The	Components

Sending	Mail
Queueing	Mail

Rendering	Mailables
Previewing	Mailables	In	The	Browser

Localizing	Mailables
Mail	&	Local	Development
Events

Introduction

Laravel	provides	a	clean,	simple	API	over	the	popular	SwiftMailer	library	with	drivers	for	SMTP,	Mailgun,
Postmark,	Amazon	SES,	and	sendmail,	allowing	you	to	quickly	get	started	sending	mail	through	a	local	or
cloud	based	service	of	your	choice.

Configuration

Laravel's	email	services	may	be	configured	via	the	mail	configuration	file.	Each	mailer	configured	within	this
file	may	have	its	own	options	and	even	its	own	unique	"transport",	allowing	your	application	to	use	different
email	services	to	send	certain	email	messages.	For	example,	your	application	might	use	Postmark	to	send
transactional	mail	while	using	Amazon	SES	to	send	bulk	mail.

Driver	Prerequisites

The	API	based	drivers	such	as	Mailgun	and	Postmark	are	often	simpler	and	faster	than	SMTP	servers.	If
possible,	you	should	use	one	of	these	drivers.	All	of	the	API	drivers	require	the	Guzzle	HTTP	library,	which
may	be	installed	via	the	Composer	package	manager:

composer	require	guzzlehttp/guzzle

Mailgun	Driver

To	use	the	Mailgun	driver,	first	install	Guzzle,	then	set	the	default	option	in	your	config/mail.php	configuration
file	to	mailgun.	Next,	verify	that	your	config/services.php	configuration	file	contains	the	following	options:

'mailgun'	=>	[

				'domain'	=>	'your-mailgun-domain',

				'secret'	=>	'your-mailgun-key',

],

If	you	are	not	using	the	"US"	Mailgun	region,	you	may	define	your	region's	endpoint	in	the	services
configuration	file:

Laravel	Documentation	-	7.x	/	Mail 314

https://swiftmailer.symfony.com/
https://documentation.mailgun.com/en/latest/api-intro.html#mailgun-regions

'mailgun'	=>	[

				'domain'	=>	'your-mailgun-domain',

				'secret'	=>	'your-mailgun-key',

				'endpoint'	=>	'api.eu.mailgun.net',

],

Postmark	Driver

To	use	the	Postmark	driver,	install	Postmark's	SwiftMailer	transport	via	Composer:

composer	require	wildbit/swiftmailer-postmark

Next,	install	Guzzle	and	set	the	default	option	in	your	config/mail.php	configuration	file	to	postmark.	Finally,
verify	that	your	config/services.php	configuration	file	contains	the	following	options:

'postmark'	=>	[

				'token'	=>	'your-postmark-token',

],

SES	Driver

To	use	the	Amazon	SES	driver	you	must	first	install	the	Amazon	AWS	SDK	for	PHP.	You	may	install	this
library	by	adding	the	following	line	to	your	composer.json	file's	require	section	and	running	the	composer	
update	command:

"aws/aws-sdk-php":	"~3.0"

Next,	set	the	default	option	in	your	config/mail.php	configuration	file	to	ses	and	verify	that	your	
config/services.php	configuration	file	contains	the	following	options:

'ses'	=>	[

				'key'	=>	'your-ses-key',

				'secret'	=>	'your-ses-secret',

				'region'	=>	'ses-region',		//	e.g.	us-east-1

],

If	you	need	to	include	additional	options	when	executing	the	SES	SendRawEmail	request,	you	may	define	an	
options	array	within	your	ses	configuration:

'ses'	=>	[

				'key'	=>	'your-ses-key',

				'secret'	=>	'your-ses-secret',

				'region'	=>	'ses-region',		//	e.g.	us-east-1

				'options'	=>	[

								'ConfigurationSetName'	=>	'MyConfigurationSet',

								'Tags'	=>	[

												[

																'Name'	=>	'foo',

																'Value'	=>	'bar',

],

],

],

],

Generating	Mailables

In	Laravel,	each	type	of	email	sent	by	your	application	is	represented	as	a	"mailable"	class.	These	classes	are
stored	in	the	app/Mail	directory.	Don't	worry	if	you	don't	see	this	directory	in	your	application,	since	it	will	be
generated	for	you	when	you	create	your	first	mailable	class	using	the	make:mail	command:

php	artisan	make:mail	OrderShipped

Writing	Mailables

All	of	a	mailable	class'	configuration	is	done	in	the	build	method.	Within	this	method,	you	may	call	various
methods	such	as	from,	subject,	view,	and	attach	to	configure	the	email's	presentation	and	delivery.

Laravel	Documentation	-	7.x	/	Mail 315

https://docs.aws.amazon.com/aws-sdk-php/v3/api/api-email-2010-12-01.html#sendrawemail

Configuring	The	Sender

Using	The	from	Method

First,	let's	explore	configuring	the	sender	of	the	email.	Or,	in	other	words,	who	the	email	is	going	to	be	"from".
There	are	two	ways	to	configure	the	sender.	First,	you	may	use	the	from	method	within	your	mailable	class'	
build	method:

/**

	*	Build	the	message.

	*

	*	@return	$this

	*/

public	function	build()

{

				return	$this->from('example@example.com')

																->view('emails.orders.shipped');

}

Using	A	Global	from	Address

However,	if	your	application	uses	the	same	"from"	address	for	all	of	its	emails,	it	can	become	cumbersome	to
call	the	from	method	in	each	mailable	class	you	generate.	Instead,	you	may	specify	a	global	"from"	address	in
your	config/mail.php	configuration	file.	This	address	will	be	used	if	no	other	"from"	address	is	specified	within
the	mailable	class:

'from'	=>	['address'	=>	'example@example.com',	'name'	=>	'App	Name'],

In	addition,	you	may	define	a	global	"reply_to"	address	within	your	config/mail.php	configuration	file:

'reply_to'	=>	['address'	=>	'example@example.com',	'name'	=>	'App	Name'],

Configuring	The	View

Within	a	mailable	class'	build	method,	you	may	use	the	view	method	to	specify	which	template	should	be	used
when	rendering	the	email's	contents.	Since	each	email	typically	uses	a	Blade	template	to	render	its	contents,
you	have	the	full	power	and	convenience	of	the	Blade	templating	engine	when	building	your	email's	HTML:

/**

	*	Build	the	message.

	*

	*	@return	$this

	*/

public	function	build()

{

				return	$this->view('emails.orders.shipped');

}

TIP	You	may	wish	to	create	a	resources/views/emails	directory	to	house	all	of	your	email	templates;
however,	you	are	free	to	place	them	wherever	you	wish	within	your	resources/views	directory.

Plain	Text	Emails

If	you	would	like	to	define	a	plain-text	version	of	your	email,	you	may	use	the	text	method.	Like	the	view
method,	the	text	method	accepts	a	template	name	which	will	be	used	to	render	the	contents	of	the	email.	You
are	free	to	define	both	an	HTML	and	plain-text	version	of	your	message:

/**

	*	Build	the	message.

	*

	*	@return	$this

	*/

public	function	build()

{

				return	$this->view('emails.orders.shipped')

																->text('emails.orders.shipped_plain');

}

Laravel	Documentation	-	7.x	/	Mail 316

View	Data

Via	Public	Properties

Typically,	you	will	want	to	pass	some	data	to	your	view	that	you	can	utilize	when	rendering	the	email's	HTML.
There	are	two	ways	you	may	make	data	available	to	your	view.	First,	any	public	property	defined	on	your
mailable	class	will	automatically	be	made	available	to	the	view.	So,	for	example,	you	may	pass	data	into	your
mailable	class'	constructor	and	set	that	data	to	public	properties	defined	on	the	class:

<?php

namespace	App\Mail;

use	App\Order;

use	Illuminate\Bus\Queueable;

use	Illuminate\Mail\Mailable;

use	Illuminate\Queue\SerializesModels;

class	OrderShipped	extends	Mailable

{

				use	Queueable,	SerializesModels;

				/**

					*	The	order	instance.

					*

					*	@var	Order

					*/

				public	$order;

				/**

					*	Create	a	new	message	instance.

					*

					*	@param		\App\Order		$order

					*	@return	void

					*/

				public	function	__construct(Order	$order)

				{

								$this->order	=	$order;

				}

				/**

					*	Build	the	message.

					*

					*	@return	$this

					*/

				public	function	build()

				{

								return	$this->view('emails.orders.shipped');

				}

}

Once	the	data	has	been	set	to	a	public	property,	it	will	automatically	be	available	in	your	view,	so	you	may
access	it	like	you	would	access	any	other	data	in	your	Blade	templates:

<div>

				Price:	{{	$order->price	}}

</div>

Via	The	with	Method:

If	you	would	like	to	customize	the	format	of	your	email's	data	before	it	is	sent	to	the	template,	you	may
manually	pass	your	data	to	the	view	via	the	with	method.	Typically,	you	will	still	pass	data	via	the	mailable
class'	constructor;	however,	you	should	set	this	data	to	protected	or	private	properties	so	the	data	is	not
automatically	made	available	to	the	template.	Then,	when	calling	the	with	method,	pass	an	array	of	data	that
you	wish	to	make	available	to	the	template:

<?php

namespace	App\Mail;

use	App\Order;

use	Illuminate\Bus\Queueable;

use	Illuminate\Mail\Mailable;

Laravel	Documentation	-	7.x	/	Mail 317

use	Illuminate\Queue\SerializesModels;

class	OrderShipped	extends	Mailable

{

				use	Queueable,	SerializesModels;

				/**

					*	The	order	instance.

					*

					*	@var	Order

					*/

				protected	$order;

				/**

					*	Create	a	new	message	instance.

					*

					*	@param		\App\Order	$order

					*	@return	void

					*/

				public	function	__construct(Order	$order)

				{

								$this->order	=	$order;

				}

				/**

					*	Build	the	message.

					*

					*	@return	$this

					*/

				public	function	build()

				{

								return	$this->view('emails.orders.shipped')

																				->with([

																								'orderName'	=>	$this->order->name,

																								'orderPrice'	=>	$this->order->price,

]);

				}

}

Once	the	data	has	been	passed	to	the	with	method,	it	will	automatically	be	available	in	your	view,	so	you	may
access	it	like	you	would	access	any	other	data	in	your	Blade	templates:

<div>

				Price:	{{	$orderPrice	}}

</div>

Attachments

To	add	attachments	to	an	email,	use	the	attach	method	within	the	mailable	class'	build	method.	The	attach
method	accepts	the	full	path	to	the	file	as	its	first	argument:

/**

	*	Build	the	message.

	*

	*	@return	$this

	*/

public	function	build()

{

				return	$this->view('emails.orders.shipped')

																->attach('/path/to/file');

}

When	attaching	files	to	a	message,	you	may	also	specify	the	display	name	and	/	or	MIME	type	by	passing	an	
array	as	the	second	argument	to	the	attach	method:

/**

	*	Build	the	message.

	*

	*	@return	$this

	*/

public	function	build()

{

				return	$this->view('emails.orders.shipped')

																->attach('/path/to/file',	[

																				'as'	=>	'name.pdf',

																				'mime'	=>	'application/pdf',

Laravel	Documentation	-	7.x	/	Mail 318

]);

}

Attaching	Files	from	Disk

If	you	have	stored	a	file	on	one	of	your	filesystem	disks,	you	may	attach	it	to	the	email	using	the	
attachFromStorage	method:

/**

	*	Build	the	message.

	*

	*	@return	$this

	*/

public	function	build()

{

			return	$this->view('emails.orders.shipped')

															->attachFromStorage('/path/to/file');

}

If	necessary,	you	may	specify	the	file's	attachment	name	and	additional	options	using	the	second	and	third
arguments	to	the	attachFromStorage	method:

/**

	*	Build	the	message.

	*

	*	@return	$this

	*/

public	function	build()

{

			return	$this->view('emails.orders.shipped')

															->attachFromStorage('/path/to/file',	'name.pdf',	[

																			'mime'	=>	'application/pdf'

]);

}

The	attachFromStorageDisk	method	may	be	used	if	you	need	to	specify	a	storage	disk	other	than	your	default
disk:

/**

	*	Build	the	message.

	*

	*	@return	$this

	*/

public	function	build()

{

			return	$this->view('emails.orders.shipped')

															->attachFromStorageDisk('s3',	'/path/to/file');

}

Raw	Data	Attachments

The	attachData	method	may	be	used	to	attach	a	raw	string	of	bytes	as	an	attachment.	For	example,	you	might
use	this	method	if	you	have	generated	a	PDF	in	memory	and	want	to	attach	it	to	the	email	without	writing	it	to
disk.	The	attachData	method	accepts	the	raw	data	bytes	as	its	first	argument,	the	name	of	the	file	as	its	second
argument,	and	an	array	of	options	as	its	third	argument:

/**

	*	Build	the	message.

	*

	*	@return	$this

	*/

public	function	build()

{

				return	$this->view('emails.orders.shipped')

																->attachData($this->pdf,	'name.pdf',	[

																				'mime'	=>	'application/pdf',

]);

}

Inline	Attachments

Embedding	inline	images	into	your	emails	is	typically	cumbersome;	however,	Laravel	provides	a	convenient

Laravel	Documentation	-	7.x	/	Mail 319

way	to	attach	images	to	your	emails	and	retrieving	the	appropriate	CID.	To	embed	an	inline	image,	use	the	
embed	method	on	the	$message	variable	within	your	email	template.	Laravel	automatically	makes	the	$message
variable	available	to	all	of	your	email	templates,	so	you	don't	need	to	worry	about	passing	it	in	manually:

<body>

				Here	is	an	image:

				embed($pathToImage)	}}">

</body>

NOTE	$message	variable	is	not	available	in	plain-text	messages	since	plain-text	messages	do	not	utilize
inline	attachments.

Embedding	Raw	Data	Attachments

If	you	already	have	a	raw	data	string	you	wish	to	embed	into	an	email	template,	you	may	use	the	embedData
method	on	the	$message	variable:

<body>

				Here	is	an	image	from	raw	data:

				embedData($data,	$name)	}}">

</body>

Customizing	The	SwiftMailer	Message

The	withSwiftMessage	method	of	the	Mailable	base	class	allows	you	to	register	a	callback	which	will	be	invoked
with	the	raw	SwiftMailer	message	instance	before	sending	the	message.	This	gives	you	an	opportunity	to
customize	the	message	before	it	is	delivered:

/**

	*	Build	the	message.

	*

	*	@return	$this

	*/

public	function	build()

{

				$this->view('emails.orders.shipped');

				$this->withSwiftMessage(function	($message)	{

								$message->getHeaders()

																->addTextHeader('Custom-Header',	'HeaderValue');

				});

}

Markdown	Mailables

Markdown	mailable	messages	allow	you	to	take	advantage	of	the	pre-built	templates	and	components	of	mail
notifications	in	your	mailables.	Since	the	messages	are	written	in	Markdown,	Laravel	is	able	to	render
beautiful,	responsive	HTML	templates	for	the	messages	while	also	automatically	generating	a	plain-text
counterpart.

Generating	Markdown	Mailables

To	generate	a	mailable	with	a	corresponding	Markdown	template,	you	may	use	the	--markdown	option	of	the	
make:mail	Artisan	command:

php	artisan	make:mail	OrderShipped	--markdown=emails.orders.shipped

Then,	when	configuring	the	mailable	within	its	build	method,	call	the	markdown	method	instead	of	the	view
method.	The	markdown	method	accepts	the	name	of	the	Markdown	template	and	an	optional	array	of	data	to
make	available	to	the	template:

/**

	*	Build	the	message.

	*

	*	@return	$this

Laravel	Documentation	-	7.x	/	Mail 320

	*/

public	function	build()

{

				return	$this->from('example@example.com')

																->markdown('emails.orders.shipped');

}

Writing	Markdown	Messages

Markdown	mailables	use	a	combination	of	Blade	components	and	Markdown	syntax	which	allow	you	to	easily
construct	mail	messages	while	leveraging	Laravel's	pre-crafted	components:

@component('mail::message')

#	Order	Shipped

Your	order	has	been	shipped!

@component('mail::button',	['url'	=>	$url])

View	Order

@endcomponent

Thanks,

{{	config('app.name')	}}

@endcomponent

TIP	Do	not	use	excess	indentation	when	writing	Markdown	emails.	Markdown	parsers	will	render
indented	content	as	code	blocks.

Button	Component

The	button	component	renders	a	centered	button	link.	The	component	accepts	two	arguments,	a	url	and	an
optional	color.	Supported	colors	are	primary,	success,	and	error.	You	may	add	as	many	button	components	to	a
message	as	you	wish:

@component('mail::button',	['url'	=>	$url,	'color'	=>	'success'])

View	Order

@endcomponent

Panel	Component

The	panel	component	renders	the	given	block	of	text	in	a	panel	that	has	a	slightly	different	background	color
than	the	rest	of	the	message.	This	allows	you	to	draw	attention	to	a	given	block	of	text:

@component('mail::panel')

This	is	the	panel	content.

@endcomponent

Table	Component

The	table	component	allows	you	to	transform	a	Markdown	table	into	an	HTML	table.	The	component	accepts
the	Markdown	table	as	its	content.	Table	column	alignment	is	supported	using	the	default	Markdown	table
alignment	syntax:

@component('mail::table')

|	Laravel							|	Table									|	Example		|

|	-------------	|:-------------:|	--------:|

|	Col	2	is						|	Centered						|	$10						|

|	Col	3	is						|	Right-Aligned	|	$20						|

@endcomponent

Customizing	The	Components

You	may	export	all	of	the	Markdown	mail	components	to	your	own	application	for	customization.	To	export	the
components,	use	the	vendor:publish	Artisan	command	to	publish	the	laravel-mail	asset	tag:

php	artisan	vendor:publish	--tag=laravel-mail

This	command	will	publish	the	Markdown	mail	components	to	the	resources/views/vendor/mail	directory.	The	

Laravel	Documentation	-	7.x	/	Mail 321

mail	directory	will	contain	an	html	and	a	text	directory,	each	containing	their	respective	representations	of
every	available	component.	You	are	free	to	customize	these	components	however	you	like.

Customizing	The	CSS

After	exporting	the	components,	the	resources/views/vendor/mail/html/themes	directory	will	contain	a	
default.css	file.	You	may	customize	the	CSS	in	this	file	and	your	styles	will	automatically	be	in-lined	within
the	HTML	representations	of	your	Markdown	mail	messages.

If	you	would	like	to	build	an	entirely	new	theme	for	Laravel's	Markdown	components,	you	may	place	a	CSS
file	within	the	html/themes	directory.	After	naming	and	saving	your	CSS	file,	update	the	theme	option	of	the	
mail	configuration	file	to	match	the	name	of	your	new	theme.

To	customize	the	theme	for	an	individual	mailable,	you	may	set	the	$theme	property	of	the	mailable	class	to	the
name	of	the	theme	that	should	be	used	when	sending	that	mailable.

Sending	Mail

To	send	a	message,	use	the	to	method	on	the	Mail	facade.	The	to	method	accepts	an	email	address,	a	user
instance,	or	a	collection	of	users.	If	you	pass	an	object	or	collection	of	objects,	the	mailer	will	automatically	use
their	email	and	name	properties	when	setting	the	email	recipients,	so	make	sure	these	attributes	are	available	on
your	objects.	Once	you	have	specified	your	recipients,	you	may	pass	an	instance	of	your	mailable	class	to	the	
send	method:

<?php

namespace	App\Http\Controllers;

use	App\Http\Controllers\Controller;

use	App\Mail\OrderShipped;

use	App\Order;

use	Illuminate\Http\Request;

use	Illuminate\Support\Facades\Mail;

class	OrderController	extends	Controller

{

				/**

					*	Ship	the	given	order.

					*

					*	@param		Request		$request

					*	@param		int		$orderId

					*	@return	Response

					*/

				public	function	ship(Request	$request,	$orderId)

				{

								$order	=	Order::findOrFail($orderId);

								//	Ship	order...

								Mail::to($request->user())->send(new	OrderShipped($order));

				}

}

You	are	not	limited	to	just	specifying	the	"to"	recipients	when	sending	a	message.	You	are	free	to	set	"to",	"cc",
and	"bcc"	recipients	all	within	a	single,	chained	method	call:

use	Illuminate\Support\Facades\Mail;

Mail::to($request->user())

				->cc($moreUsers)

				->bcc($evenMoreUsers)

				->send(new	OrderShipped($order));

Looping	Over	Recipients

Occasionally,	you	may	need	to	send	a	mailable	to	a	list	of	recipients	by	iterating	over	an	array	of	recipients	/
email	addresses.	Since	the	to	method	appends	email	addresses	to	the	mailable's	list	of	recipients,	you	should
always	re-create	the	mailable	instance	for	each	recipient:

Laravel	Documentation	-	7.x	/	Mail 322

foreach	(['taylor@example.com',	'dries@example.com']	as	$recipient)	{

				Mail::to($recipient)->send(new	OrderShipped($order));

}

Sending	Mail	Via	A	Specific	Mailer

By	default,	Laravel	will	use	the	mailer	configured	as	the	default	mailer	in	your	mail	configuration	file.
However,	you	may	use	the	mailer	method	to	send	a	message	using	a	specific	mailer	configuration:

Mail::mailer('postmark')

								->to($request->user())

								->send(new	OrderShipped($order));

Queueing	Mail

Queueing	A	Mail	Message

Since	sending	email	messages	can	drastically	lengthen	the	response	time	of	your	application,	many	developers
choose	to	queue	email	messages	for	background	sending.	Laravel	makes	this	easy	using	its	built-in	unified
queue	API.	To	queue	a	mail	message,	use	the	queue	method	on	the	Mail	facade	after	specifying	the	message's
recipients:

Mail::to($request->user())

				->cc($moreUsers)

				->bcc($evenMoreUsers)

				->queue(new	OrderShipped($order));

This	method	will	automatically	take	care	of	pushing	a	job	onto	the	queue	so	the	message	is	sent	in	the
background.	You	will	need	to	configure	your	queues	before	using	this	feature.

Delayed	Message	Queueing

If	you	wish	to	delay	the	delivery	of	a	queued	email	message,	you	may	use	the	later	method.	As	its	first
argument,	the	later	method	accepts	a	DateTime	instance	indicating	when	the	message	should	be	sent:

$when	=	now()->addMinutes(10);

Mail::to($request->user())

				->cc($moreUsers)

				->bcc($evenMoreUsers)

				->later($when,	new	OrderShipped($order));

Pushing	To	Specific	Queues

Since	all	mailable	classes	generated	using	the	make:mail	command	make	use	of	the	Illuminate\Bus\Queueable
trait,	you	may	call	the	onQueue	and	onConnection	methods	on	any	mailable	class	instance,	allowing	you	to
specify	the	connection	and	queue	name	for	the	message:

$message	=	(new	OrderShipped($order))

																->onConnection('sqs')

																->onQueue('emails');

Mail::to($request->user())

				->cc($moreUsers)

				->bcc($evenMoreUsers)

				->queue($message);

Queueing	By	Default

If	you	have	mailable	classes	that	you	want	to	always	be	queued,	you	may	implement	the	ShouldQueue	contract
on	the	class.	Now,	even	if	you	call	the	send	method	when	mailing,	the	mailable	will	still	be	queued	since	it
implements	the	contract:

use	Illuminate\Contracts\Queue\ShouldQueue;

class	OrderShipped	extends	Mailable	implements	ShouldQueue

{

Laravel	Documentation	-	7.x	/	Mail 323

				//

}

Rendering	Mailables

Sometimes	you	may	wish	to	capture	the	HTML	content	of	a	mailable	without	sending	it.	To	accomplish	this,
you	may	call	the	render	method	of	the	mailable.	This	method	will	return	the	evaluated	contents	of	the	mailable
as	a	string:

$invoice	=	App\Invoice::find(1);

return	(new	App\Mail\InvoicePaid($invoice))->render();

Previewing	Mailables	In	The	Browser

When	designing	a	mailable's	template,	it	is	convenient	to	quickly	preview	the	rendered	mailable	in	your
browser	like	a	typical	Blade	template.	For	this	reason,	Laravel	allows	you	to	return	any	mailable	directly	from	a
route	Closure	or	controller.	When	a	mailable	is	returned,	it	will	be	rendered	and	displayed	in	the	browser,
allowing	you	to	quickly	preview	its	design	without	needing	to	send	it	to	an	actual	email	address:

Route::get('mailable',	function	()	{

				$invoice	=	App\Invoice::find(1);

				return	new	App\Mail\InvoicePaid($invoice);

});

Localizing	Mailables

Laravel	allows	you	to	send	mailables	in	a	locale	other	than	the	current	language,	and	will	even	remember	this
locale	if	the	mail	is	queued.

To	accomplish	this,	the	Mail	facade	offers	a	locale	method	to	set	the	desired	language.	The	application	will
change	into	this	locale	when	the	mailable	is	being	formatted	and	then	revert	back	to	the	previous	locale	when
formatting	is	complete:

Mail::to($request->user())->locale('es')->send(

				new	OrderShipped($order)

);

User	Preferred	Locales

Sometimes,	applications	store	each	user's	preferred	locale.	By	implementing	the	HasLocalePreference	contract
on	one	or	more	of	your	models,	you	may	instruct	Laravel	to	use	this	stored	locale	when	sending	mail:

use	Illuminate\Contracts\Translation\HasLocalePreference;

class	User	extends	Model	implements	HasLocalePreference

{

				/**

					*	Get	the	user's	preferred	locale.

					*

					*	@return	string

					*/

				public	function	preferredLocale()

				{

								return	$this->locale;

				}

}

Once	you	have	implemented	the	interface,	Laravel	will	automatically	use	the	preferred	locale	when	sending
mailables	and	notifications	to	the	model.	Therefore,	there	is	no	need	to	call	the	locale	method	when	using	this
interface:

Mail::to($request->user())->send(new	OrderShipped($order));

Mail	&	Local	Development

Laravel	Documentation	-	7.x	/	Mail 324

When	developing	an	application	that	sends	email,	you	probably	don't	want	to	actually	send	emails	to	live	email
addresses.	Laravel	provides	several	ways	to	"disable"	the	actual	sending	of	emails	during	local	development.

Log	Driver

Instead	of	sending	your	emails,	the	log	mail	driver	will	write	all	email	messages	to	your	log	files	for	inspection.
For	more	information	on	configuring	your	application	per	environment,	check	out	the	configuration
documentation.

Universal	To

Another	solution	provided	by	Laravel	is	to	set	a	universal	recipient	of	all	emails	sent	by	the	framework.	This
way,	all	the	emails	generated	by	your	application	will	be	sent	to	a	specific	address,	instead	of	the	address
actually	specified	when	sending	the	message.	This	can	be	done	via	the	to	option	in	your	config/mail.php
configuration	file:

'to'	=>	[

				'address'	=>	'example@example.com',

				'name'	=>	'Example'

],

Mailtrap

Finally,	you	may	use	a	service	like	Mailtrap	and	the	smtp	driver	to	send	your	email	messages	to	a	"dummy"
mailbox	where	you	may	view	them	in	a	true	email	client.	This	approach	has	the	benefit	of	allowing	you	to
actually	inspect	the	final	emails	in	Mailtrap's	message	viewer.

Events

Laravel	fires	two	events	during	the	process	of	sending	mail	messages.	The	MessageSending	event	is	fired	prior	to
a	message	being	sent,	while	the	MessageSent	event	is	fired	after	a	message	has	been	sent.	Remember,	these
events	are	fired	when	the	mail	is	being	sent,	not	when	it	is	queued.	You	may	register	an	event	listener	for	this
event	in	your	EventServiceProvider:

/**

	*	The	event	listener	mappings	for	the	application.

	*

	*	@var	array

	*/

protected	$listen	=	[

				'Illuminate\Mail\Events\MessageSending'	=>	[

								'App\Listeners\LogSendingMessage',

],

				'Illuminate\Mail\Events\MessageSent'	=>	[

								'App\Listeners\LogSentMessage',

],

];

Laravel	Documentation	-	7.x	/	Mail 325

https://mailtrap.io

Digging	Deeper

Notifications
Introduction
Creating	Notifications
Sending	Notifications

Using	The	Notifiable	Trait
Using	The	Notification	Facade
Specifying	Delivery	Channels
Queueing	Notifications
On-Demand	Notifications

Mail	Notifications
Formatting	Mail	Messages
Customizing	The	Sender
Customizing	The	Recipient
Customizing	The	Subject
Customizing	The	Mailer
Customizing	The	Templates
Previewing	Mail	Notifications

Markdown	Mail	Notifications
Generating	The	Message
Writing	The	Message
Customizing	The	Components

Database	Notifications
Prerequisites
Formatting	Database	Notifications
Accessing	The	Notifications
Marking	Notifications	As	Read

Broadcast	Notifications
Prerequisites
Formatting	Broadcast	Notifications
Listening	For	Notifications

SMS	Notifications
Prerequisites
Formatting	SMS	Notifications
Formatting	Shortcode	Notifications
Customizing	The	"From"	Number
Routing	SMS	Notifications

Slack	Notifications
Prerequisites
Formatting	Slack	Notifications
Slack	Attachments
Routing	Slack	Notifications

Localizing	Notifications
Notification	Events
Custom	Channels

Introduction

In	addition	to	support	for	sending	email,	Laravel	provides	support	for	sending	notifications	across	a	variety	of
delivery	channels,	including	mail,	SMS	(via	Vonage,	formerly	known	as	Nexmo),	and	Slack.	Notifications	may
also	be	stored	in	a	database	so	they	may	be	displayed	in	your	web	interface.

Typically,	notifications	should	be	short,	informational	messages	that	notify	users	of	something	that	occurred	in
your	application.	For	example,	if	you	are	writing	a	billing	application,	you	might	send	an	"Invoice	Paid"
notification	to	your	users	via	the	email	and	SMS	channels.

Laravel	Documentation	-	7.x	/	Notifications 326

https://www.vonage.com/communications-apis/
https://slack.com

Creating	Notifications

In	Laravel,	each	notification	is	represented	by	a	single	class	(typically	stored	in	the	app/Notifications
directory).	Don't	worry	if	you	don't	see	this	directory	in	your	application,	it	will	be	created	for	you	when	you
run	the	make:notification	Artisan	command:

php	artisan	make:notification	InvoicePaid

This	command	will	place	a	fresh	notification	class	in	your	app/Notifications	directory.	Each	notification	class
contains	a	via	method	and	a	variable	number	of	message	building	methods	(such	as	toMail	or	toDatabase)	that
convert	the	notification	to	a	message	optimized	for	that	particular	channel.

Sending	Notifications

Using	The	Notifiable	Trait

Notifications	may	be	sent	in	two	ways:	using	the	notify	method	of	the	Notifiable	trait	or	using	the	
Notification	facade.	First,	let's	explore	using	the	trait:

<?php

namespace	App;

use	Illuminate\Foundation\Auth\User	as	Authenticatable;

use	Illuminate\Notifications\Notifiable;

class	User	extends	Authenticatable

{

				use	Notifiable;

}

This	trait	is	utilized	by	the	default	App\User	model	and	contains	one	method	that	may	be	used	to	send
notifications:	notify.	The	notify	method	expects	to	receive	a	notification	instance:

use	App\Notifications\InvoicePaid;

$user->notify(new	InvoicePaid($invoice));

TIP	Remember,	you	may	use	the	Illuminate\Notifications\Notifiable	trait	on	any	of	your	models.	You
are	not	limited	to	only	including	it	on	your	User	model.

Using	The	Notification	Facade

Alternatively,	you	may	send	notifications	via	the	Notification	facade.	This	is	useful	primarily	when	you	need
to	send	a	notification	to	multiple	notifiable	entities	such	as	a	collection	of	users.	To	send	notifications	using	the
facade,	pass	all	of	the	notifiable	entities	and	the	notification	instance	to	the	send	method:

Notification::send($users,	new	InvoicePaid($invoice));

Specifying	Delivery	Channels

Every	notification	class	has	a	via	method	that	determines	on	which	channels	the	notification	will	be	delivered.
Notifications	may	be	sent	on	the	mail,	database,	broadcast,	nexmo,	and	slack	channels.

TIP	If	you	would	like	to	use	other	delivery	channels	such	as	Telegram	or	Pusher,	check	out	the	community
driven	Laravel	Notification	Channels	website.

The	via	method	receives	a	$notifiable	instance,	which	will	be	an	instance	of	the	class	to	which	the	notification
is	being	sent.	You	may	use	$notifiable	to	determine	which	channels	the	notification	should	be	delivered	on:

/**

	*	Get	the	notification's	delivery	channels.

	*

	*	@param		mixed		$notifiable

	*	@return	array

Laravel	Documentation	-	7.x	/	Notifications 327

http://laravel-notification-channels.com

	*/

public	function	via($notifiable)

{

				return	$notifiable->prefers_sms	?	['nexmo']	:	['mail',	'database'];

}

Queueing	Notifications

NOTE	Before	queueing	notifications	you	should	configure	your	queue	and	start	a	worker.

Sending	notifications	can	take	time,	especially	if	the	channel	needs	an	external	API	call	to	deliver	the
notification.	To	speed	up	your	application's	response	time,	let	your	notification	be	queued	by	adding	the	
ShouldQueue	interface	and	Queueable	trait	to	your	class.	The	interface	and	trait	are	already	imported	for	all
notifications	generated	using	make:notification,	so	you	may	immediately	add	them	to	your	notification	class:

<?php

namespace	App\Notifications;

use	Illuminate\Bus\Queueable;

use	Illuminate\Contracts\Queue\ShouldQueue;

use	Illuminate\Notifications\Notification;

class	InvoicePaid	extends	Notification	implements	ShouldQueue

{

				use	Queueable;

				//	...

}

Once	the	ShouldQueue	interface	has	been	added	to	your	notification,	you	may	send	the	notification	like	normal.
Laravel	will	detect	the	ShouldQueue	interface	on	the	class	and	automatically	queue	the	delivery	of	the
notification:

$user->notify(new	InvoicePaid($invoice));

If	you	would	like	to	delay	the	delivery	of	the	notification,	you	may	chain	the	delay	method	onto	your
notification	instantiation:

$when	=	now()->addMinutes(10);

$user->notify((new	InvoicePaid($invoice))->delay($when));

Customizing	Notification	Channel	Queues

If	you	would	like	to	specify	a	specific	queue	that	should	be	used	for	each	notification	channel	supported	by	the
notification,	you	may	define	a	viaQueues	method	on	your	notification.	This	method	should	return	an	array	of
channel	name	/	queue	name	pairs:

/**

	*	Determine	which	queues	should	be	used	for	each	notification	channel.

	*

	*	@return	array

	*/

public	function	viaQueues()

{

				return	[

								'mail'	=>	'mail-queue',

								'slack'	=>	'slack-queue',

];

}

On-Demand	Notifications

Sometimes	you	may	need	to	send	a	notification	to	someone	who	is	not	stored	as	a	"user"	of	your	application.
Using	the	Notification::route	facade	method,	you	may	specify	ad-hoc	notification	routing	information	before
sending	the	notification:

Notification::route('mail',	'taylor@example.com')

												->route('nexmo',	'5555555555')

Laravel	Documentation	-	7.x	/	Notifications 328

												->route('slack',	'https://hooks.slack.com/services/...')

												->notify(new	InvoicePaid($invoice));

Mail	Notifications

Formatting	Mail	Messages

If	a	notification	supports	being	sent	as	an	email,	you	should	define	a	toMail	method	on	the	notification	class.
This	method	will	receive	a	$notifiable	entity	and	should	return	a	
Illuminate\Notifications\Messages\MailMessage	instance.	Mail	messages	may	contain	lines	of	text	as	well	as	a
"call	to	action".	Let's	take	a	look	at	an	example	toMail	method:

/**

	*	Get	the	mail	representation	of	the	notification.

	*

	*	@param		mixed		$notifiable

	*	@return	\Illuminate\Notifications\Messages\MailMessage

	*/

public	function	toMail($notifiable)

{

				$url	=	url('/invoice/'.$this->invoice->id);

				return	(new	MailMessage)

																->greeting('Hello!')

																->line('One	of	your	invoices	has	been	paid!')

																->action('View	Invoice',	$url)

																->line('Thank	you	for	using	our	application!');

}

TIP	Note	we	are	using	$this->invoice->id	in	our	toMail	method.	You	may	pass	any	data	your	notification
needs	to	generate	its	message	into	the	notification's	constructor.

In	this	example,	we	register	a	greeting,	a	line	of	text,	a	call	to	action,	and	then	another	line	of	text.	These
methods	provided	by	the	MailMessage	object	make	it	simple	and	fast	to	format	small	transactional	emails.	The
mail	channel	will	then	translate	the	message	components	into	a	nice,	responsive	HTML	email	template	with	a
plain-text	counterpart.	Here	is	an	example	of	an	email	generated	by	the	mail	channel:

Laravel	Documentation	-	7.x	/	Notifications 329

TIP	When	sending	mail	notifications,	be	sure	to	set	the	name	value	in	your	config/app.php	configuration
file.	This	value	will	be	used	in	the	header	and	footer	of	your	mail	notification	messages.

Other	Notification	Formatting	Options

Instead	of	defining	the	"lines"	of	text	in	the	notification	class,	you	may	use	the	view	method	to	specify	a	custom
template	that	should	be	used	to	render	the	notification	email:

/**

	*	Get	the	mail	representation	of	the	notification.

	*

	*	@param		mixed		$notifiable

	*	@return	\Illuminate\Notifications\Messages\MailMessage

	*/

public	function	toMail($notifiable)

{

				return	(new	MailMessage)->view(

								'emails.name',	['invoice'	=>	$this->invoice]

);

}

You	may	specify	a	plain-text	view	for	the	mail	message	by	passing	the	view	name	as	the	second	element	of	an
array	that	is	given	to	the	view	method	of	the	MailMessage:

/**

	*	Get	the	mail	representation	of	the	notification.

Laravel	Documentation	-	7.x	/	Notifications 330

	*

	*	@param		mixed		$notifiable

	*	@return	\Illuminate\Notifications\Messages\MailMessage

	*/

public	function	toMail($notifiable)

{

				return	(new	MailMessage)->view(

								['emails.name.html',	'emails.name.plain'],	

								['invoice'	=>	$this->invoice]

);

}

In	addition,	you	may	return	a	full	mailable	object	from	the	toMail	method:

use	App\Mail\InvoicePaid	as	Mailable;

/**

	*	Get	the	mail	representation	of	the	notification.

	*

	*	@param		mixed		$notifiable

	*	@return	Mailable

	*/

public	function	toMail($notifiable)

{

				return	(new	Mailable($this->invoice))->to($notifiable->email);

}

Error	Messages

Some	notifications	inform	users	of	errors,	such	as	a	failed	invoice	payment.	You	may	indicate	that	a	mail
message	is	regarding	an	error	by	calling	the	error	method	when	building	your	message.	When	using	the	error
method	on	a	mail	message,	the	call	to	action	button	will	be	red	instead	of	blue:

/**

	*	Get	the	mail	representation	of	the	notification.

	*

	*	@param		mixed		$notifiable

	*	@return	\Illuminate\Notifications\Message

	*/

public	function	toMail($notifiable)

{

				return	(new	MailMessage)

																->error()

																->subject('Notification	Subject')

																->line('...');

}

Customizing	The	Sender

By	default,	the	email's	sender	/	from	address	is	defined	in	the	config/mail.php	configuration	file.	However,	you
may	specify	the	from	address	for	a	specific	notification	using	the	from	method:

/**

	*	Get	the	mail	representation	of	the	notification.

	*

	*	@param		mixed		$notifiable

	*	@return	\Illuminate\Notifications\Messages\MailMessage

	*/

public	function	toMail($notifiable)

{

				return	(new	MailMessage)

																->from('test@example.com',	'Example')

																->line('...');

}

Customizing	The	Recipient

When	sending	notifications	via	the	mail	channel,	the	notification	system	will	automatically	look	for	an	email
property	on	your	notifiable	entity.	You	may	customize	which	email	address	is	used	to	deliver	the	notification	by
defining	a	routeNotificationForMail	method	on	the	entity:

<?php

Laravel	Documentation	-	7.x	/	Notifications 331

namespace	App;

use	Illuminate\Foundation\Auth\User	as	Authenticatable;

use	Illuminate\Notifications\Notifiable;

class	User	extends	Authenticatable

{

				use	Notifiable;

				/**

					*	Route	notifications	for	the	mail	channel.

					*

					*	@param		\Illuminate\Notifications\Notification		$notification

					*	@return	array|string

					*/

				public	function	routeNotificationForMail($notification)

				{

								//	Return	email	address	only...

								return	$this->email_address;

								//	Return	name	and	email	address...

								return	[$this->email_address	=>	$this->name];

				}

}

Customizing	The	Subject

By	default,	the	email's	subject	is	the	class	name	of	the	notification	formatted	to	"title	case".	So,	if	your
notification	class	is	named	InvoicePaid,	the	email's	subject	will	be	Invoice	Paid.	If	you	would	like	to	specify	an
explicit	subject	for	the	message,	you	may	call	the	subject	method	when	building	your	message:

/**

	*	Get	the	mail	representation	of	the	notification.

	*

	*	@param		mixed		$notifiable

	*	@return	\Illuminate\Notifications\Messages\MailMessage

	*/

public	function	toMail($notifiable)

{

				return	(new	MailMessage)

																->subject('Notification	Subject')

																->line('...');

}

Customizing	The	Mailer

By	default,	the	email	notification	will	be	sent	using	the	default	driver	defined	in	the	config/mail.php
configuration	file.	However,	you	may	specify	a	different	mailer	at	runtime	by	calling	the	mailer	method	when
building	your	message:

/**

	*	Get	the	mail	representation	of	the	notification.

	*

	*	@param		mixed		$notifiable

	*	@return	\Illuminate\Notifications\Messages\MailMessage

	*/

public	function	toMail($notifiable)

{

				return	(new	MailMessage)

																->mailer('postmark')

																->line('...');

}

Customizing	The	Templates

You	can	modify	the	HTML	and	plain-text	template	used	by	mail	notifications	by	publishing	the	notification
package's	resources.	After	running	this	command,	the	mail	notification	templates	will	be	located	in	the	
resources/views/vendor/notifications	directory:

php	artisan	vendor:publish	--tag=laravel-notifications

Laravel	Documentation	-	7.x	/	Notifications 332

Previewing	Mail	Notifications

When	designing	a	mail	notification	template,	it	is	convenient	to	quickly	preview	the	rendered	mail	message	in
your	browser	like	a	typical	Blade	template.	For	this	reason,	Laravel	allows	you	to	return	any	mail	message
generated	by	a	mail	notification	directly	from	a	route	Closure	or	controller.	When	a	MailMessage	is	returned,	it
will	be	rendered	and	displayed	in	the	browser,	allowing	you	to	quickly	preview	its	design	without	needing	to
send	it	to	an	actual	email	address:

Route::get('mail',	function	()	{

				$invoice	=	App\Invoice::find(1);

				return	(new	App\Notifications\InvoicePaid($invoice))

																->toMail($invoice->user);

});

Markdown	Mail	Notifications

Markdown	mail	notifications	allow	you	to	take	advantage	of	the	pre-built	templates	of	mail	notifications,	while
giving	you	more	freedom	to	write	longer,	customized	messages.	Since	the	messages	are	written	in	Markdown,
Laravel	is	able	to	render	beautiful,	responsive	HTML	templates	for	the	messages	while	also	automatically
generating	a	plain-text	counterpart.

Generating	The	Message

To	generate	a	notification	with	a	corresponding	Markdown	template,	you	may	use	the	--markdown	option	of	the	
make:notification	Artisan	command:

php	artisan	make:notification	InvoicePaid	--markdown=mail.invoice.paid

Like	all	other	mail	notifications,	notifications	that	use	Markdown	templates	should	define	a	toMail	method	on
their	notification	class.	However,	instead	of	using	the	line	and	action	methods	to	construct	the	notification,	use
the	markdown	method	to	specify	the	name	of	the	Markdown	template	that	should	be	used:

/**

	*	Get	the	mail	representation	of	the	notification.

	*

	*	@param		mixed		$notifiable

	*	@return	\Illuminate\Notifications\Messages\MailMessage

	*/

public	function	toMail($notifiable)

{

				$url	=	url('/invoice/'.$this->invoice->id);

				return	(new	MailMessage)

																->subject('Invoice	Paid')

																->markdown('mail.invoice.paid',	['url'	=>	$url]);

}

Writing	The	Message

Markdown	mail	notifications	use	a	combination	of	Blade	components	and	Markdown	syntax	which	allow	you
to	easily	construct	notifications	while	leveraging	Laravel's	pre-crafted	notification	components:

@component('mail::message')

#	Invoice	Paid

Your	invoice	has	been	paid!

@component('mail::button',	['url'	=>	$url])

View	Invoice

@endcomponent

Thanks,

{{	config('app.name')	}}

@endcomponent

Button	Component

Laravel	Documentation	-	7.x	/	Notifications 333

The	button	component	renders	a	centered	button	link.	The	component	accepts	two	arguments,	a	url	and	an
optional	color.	Supported	colors	are	blue,	green,	and	red.	You	may	add	as	many	button	components	to	a
notification	as	you	wish:

@component('mail::button',	['url'	=>	$url,	'color'	=>	'green'])

View	Invoice

@endcomponent

Panel	Component

The	panel	component	renders	the	given	block	of	text	in	a	panel	that	has	a	slightly	different	background	color
than	the	rest	of	the	notification.	This	allows	you	to	draw	attention	to	a	given	block	of	text:

@component('mail::panel')

This	is	the	panel	content.

@endcomponent

Table	Component

The	table	component	allows	you	to	transform	a	Markdown	table	into	an	HTML	table.	The	component	accepts
the	Markdown	table	as	its	content.	Table	column	alignment	is	supported	using	the	default	Markdown	table
alignment	syntax:

@component('mail::table')

|	Laravel							|	Table									|	Example		|

|	-------------	|:-------------:|	--------:|

|	Col	2	is						|	Centered						|	$10						|

|	Col	3	is						|	Right-Aligned	|	$20						|

@endcomponent

Customizing	The	Components

You	may	export	all	of	the	Markdown	notification	components	to	your	own	application	for	customization.	To
export	the	components,	use	the	vendor:publish	Artisan	command	to	publish	the	laravel-mail	asset	tag:

php	artisan	vendor:publish	--tag=laravel-mail

This	command	will	publish	the	Markdown	mail	components	to	the	resources/views/vendor/mail	directory.	The	
mail	directory	will	contain	an	html	and	a	text	directory,	each	containing	their	respective	representations	of
every	available	component.	You	are	free	to	customize	these	components	however	you	like.

Customizing	The	CSS

After	exporting	the	components,	the	resources/views/vendor/mail/html/themes	directory	will	contain	a	
default.css	file.	You	may	customize	the	CSS	in	this	file	and	your	styles	will	automatically	be	in-lined	within
the	HTML	representations	of	your	Markdown	notifications.

If	you	would	like	to	build	an	entirely	new	theme	for	Laravel's	Markdown	components,	you	may	place	a	CSS
file	within	the	html/themes	directory.	After	naming	and	saving	your	CSS	file,	update	the	theme	option	of	the	
mail	configuration	file	to	match	the	name	of	your	new	theme.

To	customize	the	theme	for	an	individual	notification,	you	may	call	the	theme	method	while	building	the
notification's	mail	message.	The	theme	method	accepts	the	name	of	the	theme	that	should	be	used	when	sending
the	notification:

/**

	*	Get	the	mail	representation	of	the	notification.

	*

	*	@param		mixed		$notifiable

	*	@return	\Illuminate\Notifications\Messages\MailMessage

	*/

public	function	toMail($notifiable)

{

				return	(new	MailMessage)

																->theme('invoice')

																->subject('Invoice	Paid')

																->markdown('mail.invoice.paid',	['url'	=>	$url]);

Laravel	Documentation	-	7.x	/	Notifications 334

}

Database	Notifications

Prerequisites

The	database	notification	channel	stores	the	notification	information	in	a	database	table.	This	table	will	contain
information	such	as	the	notification	type	as	well	as	custom	JSON	data	that	describes	the	notification.

You	can	query	the	table	to	display	the	notifications	in	your	application's	user	interface.	But,	before	you	can	do
that,	you	will	need	to	create	a	database	table	to	hold	your	notifications.	You	may	use	the	notifications:table
command	to	generate	a	migration	with	the	proper	table	schema:

php	artisan	notifications:table

php	artisan	migrate

Formatting	Database	Notifications

If	a	notification	supports	being	stored	in	a	database	table,	you	should	define	a	toDatabase	or	toArray	method	on
the	notification	class.	This	method	will	receive	a	$notifiable	entity	and	should	return	a	plain	PHP	array.	The
returned	array	will	be	encoded	as	JSON	and	stored	in	the	data	column	of	your	notifications	table.	Let's	take	a
look	at	an	example	toArray	method:

/**

	*	Get	the	array	representation	of	the	notification.

	*

	*	@param		mixed		$notifiable

	*	@return	array

	*/

public	function	toArray($notifiable)

{

				return	[

								'invoice_id'	=>	$this->invoice->id,

								'amount'	=>	$this->invoice->amount,

];

}

toDatabase	Vs.	toArray

The	toArray	method	is	also	used	by	the	broadcast	channel	to	determine	which	data	to	broadcast	to	your
JavaScript	client.	If	you	would	like	to	have	two	different	array	representations	for	the	database	and	broadcast
channels,	you	should	define	a	toDatabase	method	instead	of	a	toArray	method.

Accessing	The	Notifications

Once	notifications	are	stored	in	the	database,	you	need	a	convenient	way	to	access	them	from	your	notifiable
entities.	The	Illuminate\Notifications\Notifiable	trait,	which	is	included	on	Laravel's	default	App\User	model,
includes	a	notifications	Eloquent	relationship	that	returns	the	notifications	for	the	entity.	To	fetch	notifications,
you	may	access	this	method	like	any	other	Eloquent	relationship.	By	default,	notifications	will	be	sorted	by	the	
created_at	timestamp:

$user	=	App\User::find(1);

foreach	($user->notifications	as	$notification)	{

				echo	$notification->type;

}

If	you	want	to	retrieve	only	the	"unread"	notifications,	you	may	use	the	unreadNotifications	relationship.
Again,	these	notifications	will	be	sorted	by	the	created_at	timestamp:

$user	=	App\User::find(1);

foreach	($user->unreadNotifications	as	$notification)	{

				echo	$notification->type;

}

Laravel	Documentation	-	7.x	/	Notifications 335

TIP	To	access	your	notifications	from	your	JavaScript	client,	you	should	define	a	notification	controller	for
your	application	which	returns	the	notifications	for	a	notifiable	entity,	such	as	the	current	user.	You	may
then	make	an	HTTP	request	to	that	controller's	URI	from	your	JavaScript	client.

Marking	Notifications	As	Read

Typically,	you	will	want	to	mark	a	notification	as	"read"	when	a	user	views	it.	The	
Illuminate\Notifications\Notifiable	trait	provides	a	markAsRead	method,	which	updates	the	read_at	column	on
the	notification's	database	record:

$user	=	App\User::find(1);

foreach	($user->unreadNotifications	as	$notification)	{

				$notification->markAsRead();

}

However,	instead	of	looping	through	each	notification,	you	may	use	the	markAsRead	method	directly	on	a
collection	of	notifications:

$user->unreadNotifications->markAsRead();

You	may	also	use	a	mass-update	query	to	mark	all	of	the	notifications	as	read	without	retrieving	them	from	the
database:

$user	=	App\User::find(1);

$user->unreadNotifications()->update(['read_at'	=>	now()]);

You	may	delete	the	notifications	to	remove	them	from	the	table	entirely:

$user->notifications()->delete();

Broadcast	Notifications

Prerequisites

Before	broadcasting	notifications,	you	should	configure	and	be	familiar	with	Laravel's	event	broadcasting
services.	Event	broadcasting	provides	a	way	to	react	to	server-side	fired	Laravel	events	from	your	JavaScript
client.

Formatting	Broadcast	Notifications

The	broadcast	channel	broadcasts	notifications	using	Laravel's	event	broadcasting	services,	allowing	your
JavaScript	client	to	catch	notifications	in	realtime.	If	a	notification	supports	broadcasting,	you	can	define	a	
toBroadcast	method	on	the	notification	class.	This	method	will	receive	a	$notifiable	entity	and	should	return	a	
BroadcastMessage	instance.	If	the	toBroadcast	method	does	not	exist,	the	toArray	method	will	be	used	to	gather
the	data	that	should	be	broadcast.	The	returned	data	will	be	encoded	as	JSON	and	broadcast	to	your	JavaScript
client.	Let's	take	a	look	at	an	example	toBroadcast	method:

use	Illuminate\Notifications\Messages\BroadcastMessage;

/**

	*	Get	the	broadcastable	representation	of	the	notification.

	*

	*	@param		mixed		$notifiable

	*	@return	BroadcastMessage

	*/

public	function	toBroadcast($notifiable)

{

				return	new	BroadcastMessage([

								'invoice_id'	=>	$this->invoice->id,

								'amount'	=>	$this->invoice->amount,

]);

}

Broadcast	Queue	Configuration

Laravel	Documentation	-	7.x	/	Notifications 336

All	broadcast	notifications	are	queued	for	broadcasting.	If	you	would	like	to	configure	the	queue	connection	or
queue	name	that	is	used	to	queue	the	broadcast	operation,	you	may	use	the	onConnection	and	onQueue	methods
of	the	BroadcastMessage:

return	(new	BroadcastMessage($data))

																->onConnection('sqs')

																->onQueue('broadcasts');

Customizing	The	Notification	Type

In	addition	to	the	data	you	specify,	all	broadcast	notifications	also	have	a	type	field	containing	the	full	class
name	of	the	notification.	If	you	would	like	to	customize	the	notification	type	that	is	provided	to	your	JavaScript
client,	you	may	define	a	broadcastType	method	on	the	notification	class:

use	Illuminate\Notifications\Messages\BroadcastMessage;

/**

	*	Get	the	type	of	the	notification	being	broadcast.

	*

	*	@return	string

	*/

public	function	broadcastType()

{

				return	'broadcast.message';

}

Listening	For	Notifications

Notifications	will	broadcast	on	a	private	channel	formatted	using	a	{notifiable}.{id}	convention.	So,	if	you	are
sending	a	notification	to	a	App\User	instance	with	an	ID	of	1,	the	notification	will	be	broadcast	on	the	App.User.1
private	channel.	When	using	Laravel	Echo,	you	may	easily	listen	for	notifications	on	a	channel	using	the	
notification	helper	method:

Echo.private('App.User.'	+	userId)

				.notification((notification)	=>	{

								console.log(notification.type);

				});

Customizing	The	Notification	Channel

If	you	would	like	to	customize	which	channels	a	notifiable	entity	receives	its	broadcast	notifications	on,	you
may	define	a	receivesBroadcastNotificationsOn	method	on	the	notifiable	entity:

<?php

namespace	App;

use	Illuminate\Broadcasting\PrivateChannel;

use	Illuminate\Foundation\Auth\User	as	Authenticatable;

use	Illuminate\Notifications\Notifiable;

class	User	extends	Authenticatable

{

				use	Notifiable;

				/**

					*	The	channels	the	user	receives	notification	broadcasts	on.

					*

					*	@return	string

					*/

				public	function	receivesBroadcastNotificationsOn()

				{

								return	'users.'.$this->id;

				}

}

SMS	Notifications

Prerequisites

Laravel	Documentation	-	7.x	/	Notifications 337

Sending	SMS	notifications	in	Laravel	is	powered	by	Nexmo.	Before	you	can	send	notifications	via	Nexmo,	you
need	to	install	the	laravel/nexmo-notification-channel	Composer	package:

composer	require	laravel/nexmo-notification-channel

This	will	also	install	the	nexmo/laravel	package.	This	package	includes	its	own	configuration	file.	You	can	use
the	NEXMO_KEY	and	NEXMO_SECRET	environment	variables	to	set	your	Nexmo	public	and	secret	key.

Next,	you	will	need	to	add	a	configuration	option	to	your	config/services.php	configuration	file.	You	may	copy
the	example	configuration	below	to	get	started:

'nexmo'	=>	[

				'sms_from'	=>	'15556666666',

],

The	sms_from	option	is	the	phone	number	that	your	SMS	messages	will	be	sent	from.	You	should	generate	a
phone	number	for	your	application	in	the	Nexmo	control	panel.

Formatting	SMS	Notifications

If	a	notification	supports	being	sent	as	an	SMS,	you	should	define	a	toNexmo	method	on	the	notification	class.
This	method	will	receive	a	$notifiable	entity	and	should	return	a	
Illuminate\Notifications\Messages\NexmoMessage	instance:

/**

	*	Get	the	Nexmo	/	SMS	representation	of	the	notification.

	*

	*	@param		mixed		$notifiable

	*	@return	NexmoMessage

	*/

public	function	toNexmo($notifiable)

{

				return	(new	NexmoMessage)

																->content('Your	SMS	message	content');

}

Formatting	Shortcode	Notifications

Laravel	also	supports	sending	shortcode	notifications,	which	are	pre-defined	message	templates	in	your	Nexmo
account.	You	may	specify	the	type	of	notification	(alert,	2fa,	or	marketing),	as	well	as	the	custom	values	that
will	populate	the	template:

/**

	*	Get	the	Nexmo	/	Shortcode	representation	of	the	notification.

	*

	*	@param		mixed		$notifiable

	*	@return	array

	*/

public	function	toShortcode($notifiable)

{

				return	[

								'type'	=>	'alert',

								'custom'	=>	[

												'code'	=>	'ABC123',

];

];

}

TIP	Like	routing	SMS	Notifications,	you	should	implement	the	routeNotificationForShortcode	method	on
your	notifiable	model.

Unicode	Content

If	your	SMS	message	will	contain	unicode	characters,	you	should	call	the	unicode	method	when	constructing
the	NexmoMessage	instance:

/**

	*	Get	the	Nexmo	/	SMS	representation	of	the	notification.

	*

Laravel	Documentation	-	7.x	/	Notifications 338

https://www.nexmo.com/
https://github.com/Nexmo/nexmo-laravel
https://github.com/Nexmo/nexmo-laravel/blob/master/config/nexmo.php

	*	@param		mixed		$notifiable

	*	@return	NexmoMessage

	*/

public	function	toNexmo($notifiable)

{

				return	(new	NexmoMessage)

																->content('Your	unicode	message')

																->unicode();

}

Customizing	The	"From"	Number

If	you	would	like	to	send	some	notifications	from	a	phone	number	that	is	different	from	the	phone	number
specified	in	your	config/services.php	file,	you	may	use	the	from	method	on	a	NexmoMessage	instance:

/**

	*	Get	the	Nexmo	/	SMS	representation	of	the	notification.

	*

	*	@param		mixed		$notifiable

	*	@return	NexmoMessage

	*/

public	function	toNexmo($notifiable)

{

				return	(new	NexmoMessage)

																->content('Your	SMS	message	content')

																->from('15554443333');

}

Routing	SMS	Notifications

To	route	Nexmo	notifications	to	the	proper	phone	number,	define	a	routeNotificationForNexmo	method	on	your
notifiable	entity:

<?php

namespace	App;

use	Illuminate\Foundation\Auth\User	as	Authenticatable;

use	Illuminate\Notifications\Notifiable;

class	User	extends	Authenticatable

{

				use	Notifiable;

				/**

					*	Route	notifications	for	the	Nexmo	channel.

					*

					*	@param		\Illuminate\Notifications\Notification		$notification

					*	@return	string

					*/

				public	function	routeNotificationForNexmo($notification)

				{

								return	$this->phone_number;

				}

}

Slack	Notifications

Prerequisites

Before	you	can	send	notifications	via	Slack,	you	must	install	the	notification	channel	via	Composer:

composer	require	laravel/slack-notification-channel

You	will	also	need	to	configure	an	"Incoming	Webhook"	integration	for	your	Slack	team.	This	integration	will
provide	you	with	a	URL	you	may	use	when	routing	Slack	notifications.

Formatting	Slack	Notifications

If	a	notification	supports	being	sent	as	a	Slack	message,	you	should	define	a	toSlack	method	on	the	notification

Laravel	Documentation	-	7.x	/	Notifications 339

https://slack.com/apps/A0F7XDUAZ-incoming-webhooks

class.	This	method	will	receive	a	$notifiable	entity	and	should	return	a	
Illuminate\Notifications\Messages\SlackMessage	instance.	Slack	messages	may	contain	text	content	as	well	as
an	"attachment"	that	formats	additional	text	or	an	array	of	fields.	Let's	take	a	look	at	a	basic	toSlack	example:

/**

	*	Get	the	Slack	representation	of	the	notification.

	*

	*	@param		mixed		$notifiable

	*	@return	SlackMessage

	*/

public	function	toSlack($notifiable)

{

				return	(new	SlackMessage)

																->content('One	of	your	invoices	has	been	paid!');

}

In	this	example	we	are	just	sending	a	single	line	of	text	to	Slack,	which	will	create	a	message	that	looks	like	the
following:

Customizing	The	Sender	&	Recipient

You	may	use	the	from	and	to	methods	to	customize	the	sender	and	recipient.	The	from	method	accepts	a
username	and	emoji	identifier,	while	the	to	method	accepts	a	channel	or	username:

/**

	*	Get	the	Slack	representation	of	the	notification.

	*

	*	@param		mixed		$notifiable

	*	@return	SlackMessage

	*/

public	function	toSlack($notifiable)

{

				return	(new	SlackMessage)

																->from('Ghost',	':ghost:')

																->to('#other')

																->content('This	will	be	sent	to	#other');

}

You	may	also	use	an	image	as	your	logo	instead	of	an	emoji:

/**

	*	Get	the	Slack	representation	of	the	notification.

	*

	*	@param		mixed		$notifiable

	*	@return	SlackMessage

	*/

public	function	toSlack($notifiable)

{

				return	(new	SlackMessage)

																->from('Laravel')

																->image('https://laravel.com/img/favicon/favicon.ico')

																->content('This	will	display	the	Laravel	logo	next	to	the	message');

}

Slack	Attachments

You	may	also	add	"attachments"	to	Slack	messages.	Attachments	provide	richer	formatting	options	than	simple
text	messages.	In	this	example,	we	will	send	an	error	notification	about	an	exception	that	occurred	in	an
application,	including	a	link	to	view	more	details	about	the	exception:

/**

	*	Get	the	Slack	representation	of	the	notification.

	*

	*	@param		mixed		$notifiable

	*	@return	SlackMessage

	*/

public	function	toSlack($notifiable)

Laravel	Documentation	-	7.x	/	Notifications 340

{

				$url	=	url('/exceptions/'.$this->exception->id);

				return	(new	SlackMessage)

																->error()

																->content('Whoops!	Something	went	wrong.')

																->attachment(function	($attachment)	use	($url)	{

																				$attachment->title('Exception:	File	Not	Found',	$url)

																															->content('File	[background.jpg]	was	not	found.');

																});

}

The	example	above	will	generate	a	Slack	message	that	looks	like	the	following:

Attachments	also	allow	you	to	specify	an	array	of	data	that	should	be	presented	to	the	user.	The	given	data	will
be	presented	in	a	table-style	format	for	easy	reading:

/**

	*	Get	the	Slack	representation	of	the	notification.

	*

	*	@param		mixed		$notifiable

	*	@return	SlackMessage

	*/

public	function	toSlack($notifiable)

{

				$url	=	url('/invoices/'.$this->invoice->id);

				return	(new	SlackMessage)

																->success()

																->content('One	of	your	invoices	has	been	paid!')

																->attachment(function	($attachment)	use	($url)	{

																				$attachment->title('Invoice	1322',	$url)

																															->fields([

																																				'Title'	=>	'Server	Expenses',

																																				'Amount'	=>	'$1,234',

																																				'Via'	=>	'American	Express',

																																				'Was	Overdue'	=>	':-1:',

]);

																});

}

The	example	above	will	create	a	Slack	message	that	looks	like	the	following:

Markdown	Attachment	Content

If	some	of	your	attachment	fields	contain	Markdown,	you	may	use	the	markdown	method	to	instruct	Slack	to
parse	and	display	the	given	attachment	fields	as	Markdown	formatted	text.	The	values	accepted	by	this	method
are:	pretext,	text,	and	/	or	fields.	For	more	information	about	Slack	attachment	formatting,	check	out	the

Laravel	Documentation	-	7.x	/	Notifications 341

Slack	API	documentation:

/**

	*	Get	the	Slack	representation	of	the	notification.

	*

	*	@param		mixed		$notifiable

	*	@return	SlackMessage

	*/

public	function	toSlack($notifiable)

{

				$url	=	url('/exceptions/'.$this->exception->id);

				return	(new	SlackMessage)

																->error()

																->content('Whoops!	Something	went	wrong.')

																->attachment(function	($attachment)	use	($url)	{

																				$attachment->title('Exception:	File	Not	Found',	$url)

																															->content('File	[background.jpg]	was	*not	found*.')

																															->markdown(['text']);

																});

}

Routing	Slack	Notifications

To	route	Slack	notifications	to	the	proper	location,	define	a	routeNotificationForSlack	method	on	your
notifiable	entity.	This	should	return	the	webhook	URL	to	which	the	notification	should	be	delivered.	Webhook
URLs	may	be	generated	by	adding	an	"Incoming	Webhook"	service	to	your	Slack	team:

<?php

namespace	App;

use	Illuminate\Foundation\Auth\User	as	Authenticatable;

use	Illuminate\Notifications\Notifiable;

class	User	extends	Authenticatable

{

				use	Notifiable;

				/**

					*	Route	notifications	for	the	Slack	channel.

					*

					*	@param		\Illuminate\Notifications\Notification		$notification

					*	@return	string

					*/

				public	function	routeNotificationForSlack($notification)

				{

								return	'https://hooks.slack.com/services/...';

				}

}

Localizing	Notifications

Laravel	allows	you	to	send	notifications	in	a	locale	other	than	the	current	language,	and	will	even	remember
this	locale	if	the	notification	is	queued.

To	accomplish	this,	the	Illuminate\Notifications\Notification	class	offers	a	locale	method	to	set	the	desired
language.	The	application	will	change	into	this	locale	when	the	notification	is	being	formatted	and	then	revert
back	to	the	previous	locale	when	formatting	is	complete:

$user->notify((new	InvoicePaid($invoice))->locale('es'));

Localization	of	multiple	notifiable	entries	may	also	be	achieved	via	the	Notification	facade:

Notification::locale('es')->send($users,	new	InvoicePaid($invoice));

User	Preferred	Locales

Sometimes,	applications	store	each	user's	preferred	locale.	By	implementing	the	HasLocalePreference	contract
on	your	notifiable	model,	you	may	instruct	Laravel	to	use	this	stored	locale	when	sending	a	notification:

Laravel	Documentation	-	7.x	/	Notifications 342

https://api.slack.com/docs/message-formatting#message_formatting

use	Illuminate\Contracts\Translation\HasLocalePreference;

class	User	extends	Model	implements	HasLocalePreference

{

				/**

					*	Get	the	user's	preferred	locale.

					*

					*	@return	string

					*/

				public	function	preferredLocale()

				{

								return	$this->locale;

				}

}

Once	you	have	implemented	the	interface,	Laravel	will	automatically	use	the	preferred	locale	when	sending
notifications	and	mailables	to	the	model.	Therefore,	there	is	no	need	to	call	the	locale	method	when	using	this
interface:

$user->notify(new	InvoicePaid($invoice));

Notification	Events

When	a	notification	is	sent,	the	Illuminate\Notifications\Events\NotificationSent	event	is	fired	by	the
notification	system.	This	contains	the	"notifiable"	entity	and	the	notification	instance	itself.	You	may	register
listeners	for	this	event	in	your	EventServiceProvider:

/**

	*	The	event	listener	mappings	for	the	application.

	*

	*	@var	array

	*/

protected	$listen	=	[

				'Illuminate\Notifications\Events\NotificationSent'	=>	[

								'App\Listeners\LogNotification',

],

];

TIP	After	registering	listeners	in	your	EventServiceProvider,	use	the	event:generate	Artisan	command	to
quickly	generate	listener	classes.

Within	an	event	listener,	you	may	access	the	notifiable,	notification,	and	channel	properties	on	the	event	to
learn	more	about	the	notification	recipient	or	the	notification	itself:

/**

	*	Handle	the	event.

	*

	*	@param		NotificationSent		$event

	*	@return	void

	*/

public	function	handle(NotificationSent	$event)

{

				//	$event->channel

				//	$event->notifiable

				//	$event->notification

				//	$event->response

}

Custom	Channels

Laravel	ships	with	a	handful	of	notification	channels,	but	you	may	want	to	write	your	own	drivers	to	deliver
notifications	via	other	channels.	Laravel	makes	it	simple.	To	get	started,	define	a	class	that	contains	a	send
method.	The	method	should	receive	two	arguments:	a	$notifiable	and	a	$notification:

<?php

namespace	App\Channels;

use	Illuminate\Notifications\Notification;

class	VoiceChannel

{

Laravel	Documentation	-	7.x	/	Notifications 343

				/**

					*	Send	the	given	notification.

					*

					*	@param		mixed		$notifiable

					*	@param		\Illuminate\Notifications\Notification		$notification

					*	@return	void

					*/

				public	function	send($notifiable,	Notification	$notification)

				{

								$message	=	$notification->toVoice($notifiable);

								//	Send	notification	to	the	$notifiable	instance...

				}

}

Once	your	notification	channel	class	has	been	defined,	you	may	return	the	class	name	from	the	via	method	of
any	of	your	notifications:

<?php

namespace	App\Notifications;

use	App\Channels\Messages\VoiceMessage;

use	App\Channels\VoiceChannel;

use	Illuminate\Bus\Queueable;

use	Illuminate\Contracts\Queue\ShouldQueue;

use	Illuminate\Notifications\Notification;

class	InvoicePaid	extends	Notification

{

				use	Queueable;

				/**

					*	Get	the	notification	channels.

					*

					*	@param		mixed		$notifiable

					*	@return	array|string

					*/

				public	function	via($notifiable)

				{

								return	[VoiceChannel::class];

				}

				/**

					*	Get	the	voice	representation	of	the	notification.

					*

					*	@param		mixed		$notifiable

					*	@return	VoiceMessage

					*/

				public	function	toVoice($notifiable)

				{

								//	...

				}

}

Laravel	Documentation	-	7.x	/	Notifications 344

Digging	Deeper

Package	Development
Introduction

A	Note	On	Facades
Package	Discovery
Service	Providers
Resources

Configuration
Migrations
Factories
Routes
Translations
Views
View	Components

Commands
Public	Assets
Publishing	File	Groups

Introduction

Packages	are	the	primary	way	of	adding	functionality	to	Laravel.	Packages	might	be	anything	from	a	great	way
to	work	with	dates	like	Carbon,	or	an	entire	BDD	testing	framework	like	Behat.

There	are	different	types	of	packages.	Some	packages	are	stand-alone,	meaning	they	work	with	any	PHP
framework.	Carbon	and	Behat	are	examples	of	stand-alone	packages.	Any	of	these	packages	may	be	used	with
Laravel	by	requesting	them	in	your	composer.json	file.

On	the	other	hand,	other	packages	are	specifically	intended	for	use	with	Laravel.	These	packages	may	have
routes,	controllers,	views,	and	configuration	specifically	intended	to	enhance	a	Laravel	application.	This	guide
primarily	covers	the	development	of	those	packages	that	are	Laravel	specific.

A	Note	On	Facades

When	writing	a	Laravel	application,	it	generally	does	not	matter	if	you	use	contracts	or	facades	since	both
provide	essentially	equal	levels	of	testability.	However,	when	writing	packages,	your	package	will	not	typically
have	access	to	all	of	Laravel's	testing	helpers.	If	you	would	like	to	be	able	to	write	your	package	tests	as	if	they
existed	inside	a	typical	Laravel	application,	you	may	use	the	Orchestral	Testbench	package.

Package	Discovery

In	a	Laravel	application's	config/app.php	configuration	file,	the	providers	option	defines	a	list	of	service
providers	that	should	be	loaded	by	Laravel.	When	someone	installs	your	package,	you	will	typically	want	your
service	provider	to	be	included	in	this	list.	Instead	of	requiring	users	to	manually	add	your	service	provider	to
the	list,	you	may	define	the	provider	in	the	extra	section	of	your	package's	composer.json	file.	In	addition	to
service	providers,	you	may	also	list	any	facades	you	would	like	to	be	registered:

"extra":	{

				"laravel":	{

								"providers":	[

												"Barryvdh\\Debugbar\\ServiceProvider"

],

								"aliases":	{

												"Debugbar":	"Barryvdh\\Debugbar\\Facade"

								}

				}

},

Once	your	package	has	been	configured	for	discovery,	Laravel	will	automatically	register	its	service	providers
and	facades	when	it	is	installed,	creating	a	convenient	installation	experience	for	your	package's	users.

Laravel	Documentation	-	7.x	/	Package	Development 345

https://github.com/briannesbitt/Carbon
https://github.com/Behat/Behat
https://github.com/orchestral/testbench

Opting	Out	Of	Package	Discovery

If	you	are	the	consumer	of	a	package	and	would	like	to	disable	package	discovery	for	a	package,	you	may	list
the	package	name	in	the	extra	section	of	your	application's	composer.json	file:

"extra":	{

				"laravel":	{

								"dont-discover":	[

												"barryvdh/laravel-debugbar"

]

				}

},

You	may	disable	package	discovery	for	all	packages	using	the	*	character	inside	of	your	application's	dont-
discover	directive:

"extra":	{

				"laravel":	{

								"dont-discover":	[

												"*"

]

				}

},

Service	Providers

Service	providers	are	the	connection	points	between	your	package	and	Laravel.	A	service	provider	is
responsible	for	binding	things	into	Laravel's	service	container	and	informing	Laravel	where	to	load	package
resources	such	as	views,	configuration,	and	localization	files.

A	service	provider	extends	the	Illuminate\Support\ServiceProvider	class	and	contains	two	methods:	register
and	boot.	The	base	ServiceProvider	class	is	located	in	the	illuminate/support	Composer	package,	which	you
should	add	to	your	own	package's	dependencies.	To	learn	more	about	the	structure	and	purpose	of	service
providers,	check	out	their	documentation.

Resources

Configuration

Typically,	you	will	need	to	publish	your	package's	configuration	file	to	the	application's	own	config	directory.
This	will	allow	users	of	your	package	to	easily	override	your	default	configuration	options.	To	allow	your
configuration	files	to	be	published,	call	the	publishes	method	from	the	boot	method	of	your	service	provider:

/**

	*	Bootstrap	any	application	services.

	*

	*	@return	void

	*/

public	function	boot()

{

				$this->publishes([

								__DIR__.'/path/to/config/courier.php'	=>	config_path('courier.php'),

]);

}

Now,	when	users	of	your	package	execute	Laravel's	vendor:publish	command,	your	file	will	be	copied	to	the
specified	publish	location.	Once	your	configuration	has	been	published,	its	values	may	be	accessed	like	any
other	configuration	file:

$value	=	config('courier.option');

NOTE	You	should	not	define	Closures	in	your	configuration	files.	They	can	not	be	serialized	correctly
when	users	execute	the	config:cache	Artisan	command.

Default	Package	Configuration

Laravel	Documentation	-	7.x	/	Package	Development 346

You	may	also	merge	your	own	package	configuration	file	with	the	application's	published	copy.	This	will	allow
your	users	to	define	only	the	options	they	actually	want	to	override	in	the	published	copy	of	the	configuration.
To	merge	the	configurations,	use	the	mergeConfigFrom	method	within	your	service	provider's	register	method:

/**

	*	Register	any	application	services.

	*

	*	@return	void

	*/

public	function	register()

{

				$this->mergeConfigFrom(

								__DIR__.'/path/to/config/courier.php',	'courier'

);

}

NOTE	This	method	only	merges	the	first	level	of	the	configuration	array.	If	your	users	partially	define	a
multi-dimensional	configuration	array,	the	missing	options	will	not	be	merged.

Routes

If	your	package	contains	routes,	you	may	load	them	using	the	loadRoutesFrom	method.	This	method	will
automatically	determine	if	the	application's	routes	are	cached	and	will	not	load	your	routes	file	if	the	routes
have	already	been	cached:

/**

	*	Bootstrap	any	application	services.

	*

	*	@return	void

	*/

public	function	boot()

{

				$this->loadRoutesFrom(__DIR__.'/routes.php');

}

Migrations

If	your	package	contains	database	migrations,	you	may	use	the	loadMigrationsFrom	method	to	inform	Laravel
how	to	load	them.	The	loadMigrationsFrom	method	accepts	the	path	to	your	package's	migrations	as	its	only
argument:

/**

	*	Bootstrap	any	application	services.

	*

	*	@return	void

	*/

public	function	boot()

{

				$this->loadMigrationsFrom(__DIR__.'/path/to/migrations');

}

Once	your	package's	migrations	have	been	registered,	they	will	automatically	be	run	when	the	php	artisan	
migrate	command	is	executed.	You	do	not	need	to	export	them	to	the	application's	main	database/migrations
directory.

Factories

If	your	package	contains	database	factories,	you	may	use	the	loadFactoriesFrom	method	to	inform	Laravel	how
to	load	them.	The	loadFactoriesFrom	method	accepts	the	path	to	your	package's	factories	as	its	only	argument:

/**

	*	Bootstrap	any	application	services.

	*

	*	@return	void

	*/

public	function	boot()

{

				$this->loadFactoriesFrom(__DIR__.'/path/to/factories');

}

Laravel	Documentation	-	7.x	/	Package	Development 347

Once	your	package's	factories	have	been	registered,	you	can	use	them	in	your	application:

factory(Package\Namespace\Model::class)->create();

Translations

If	your	package	contains	translation	files,	you	may	use	the	loadTranslationsFrom	method	to	inform	Laravel	how
to	load	them.	For	example,	if	your	package	is	named	courier,	you	should	add	the	following	to	your	service
provider's	boot	method:

/**

	*	Bootstrap	any	application	services.

	*

	*	@return	void

	*/

public	function	boot()

{

				$this->loadTranslationsFrom(__DIR__.'/path/to/translations',	'courier');

}

Package	translations	are	referenced	using	the	package::file.line	syntax	convention.	So,	you	may	load	the	
courier	package's	welcome	line	from	the	messages	file	like	so:

echo	trans('courier::messages.welcome');

Publishing	Translations

If	you	would	like	to	publish	your	package's	translations	to	the	application's	resources/lang/vendor	directory,
you	may	use	the	service	provider's	publishes	method.	The	publishes	method	accepts	an	array	of	package	paths
and	their	desired	publish	locations.	For	example,	to	publish	the	translation	files	for	the	courier	package,	you
may	do	the	following:

/**

	*	Bootstrap	any	application	services.

	*

	*	@return	void

	*/

public	function	boot()

{

				$this->loadTranslationsFrom(__DIR__.'/path/to/translations',	'courier');

				$this->publishes([

								__DIR__.'/path/to/translations'	=>	resource_path('lang/vendor/courier'),

]);

}

Now,	when	users	of	your	package	execute	Laravel's	vendor:publish	Artisan	command,	your	package's
translations	will	be	published	to	the	specified	publish	location.

Views

To	register	your	package's	views	with	Laravel,	you	need	to	tell	Laravel	where	the	views	are	located.	You	may
do	this	using	the	service	provider's	loadViewsFrom	method.	The	loadViewsFrom	method	accepts	two	arguments:
the	path	to	your	view	templates	and	your	package's	name.	For	example,	if	your	package's	name	is	courier,	you
would	add	the	following	to	your	service	provider's	boot	method:

/**

	*	Bootstrap	any	application	services.

	*

	*	@return	void

	*/

public	function	boot()

{

				$this->loadViewsFrom(__DIR__.'/path/to/views',	'courier');

}

Package	views	are	referenced	using	the	package::view	syntax	convention.	So,	once	your	view	path	is	registered
in	a	service	provider,	you	may	load	the	admin	view	from	the	courier	package	like	so:

Laravel	Documentation	-	7.x	/	Package	Development 348

Route::get('admin',	function	()	{

				return	view('courier::admin');

});

Overriding	Package	Views

When	you	use	the	loadViewsFrom	method,	Laravel	actually	registers	two	locations	for	your	views:	the
application's	resources/views/vendor	directory	and	the	directory	you	specify.	So,	using	the	courier	example,
Laravel	will	first	check	if	a	custom	version	of	the	view	has	been	provided	by	the	developer	in	
resources/views/vendor/courier.	Then,	if	the	view	has	not	been	customized,	Laravel	will	search	the	package
view	directory	you	specified	in	your	call	to	loadViewsFrom.	This	makes	it	easy	for	package	users	to	customize	/
override	your	package's	views.

Publishing	Views

If	you	would	like	to	make	your	views	available	for	publishing	to	the	application's	resources/views/vendor
directory,	you	may	use	the	service	provider's	publishes	method.	The	publishes	method	accepts	an	array	of
package	view	paths	and	their	desired	publish	locations:

/**

	*	Bootstrap	any	application	services.

	*

	*	@return	void

	*/

public	function	boot()

{

				$this->loadViewsFrom(__DIR__.'/path/to/views',	'courier');

				$this->publishes([

								__DIR__.'/path/to/views'	=>	resource_path('views/vendor/courier'),

]);

}

Now,	when	users	of	your	package	execute	Laravel's	vendor:publish	Artisan	command,	your	package's	views
will	be	copied	to	the	specified	publish	location.

View	Components

If	your	package	contains	view	components,	you	may	use	the	loadViewComponentsAs	method	to	inform	Laravel
how	to	load	them.	The	loadViewComponentsAs	method	accepts	two	arguments:	the	tag	prefix	for	your	view
components	and	an	array	of	your	view	components	class.	For	example,	if	your	package's	prefix	is	courier	and
you	have	Alert	and	Button	view	components,	you	would	add	the	following	to	your	service	provider's	boot
method:

/**

	*	Bootstrap	any	application	services.

	*

	*	@return	void

	*/

public	function	boot()

{

				$this->loadViewComponentsAs('courier',	[

								Alert::class,

								Button::class,

]);

}

Once	your	view	components	are	registered	in	a	service	provider,	you	may	reference	them	in	your	view	like	so:

<x-courier-alert	/>

<x-courier-button	/>

Anonymous	Components

If	your	package	contains	anonymous	components,	they	must	be	placed	within	a	components	directory	of	your
package's	"views"	directory	(as	specified	by	loadViewsFrom).	Then,	you	may	render	them	by	prefixing	the
component	name	with	the	package's	view	namespace:

Laravel	Documentation	-	7.x	/	Package	Development 349

<x-courier::alert	/>

Commands

To	register	your	package's	Artisan	commands	with	Laravel,	you	may	use	the	commands	method.	This	method
expects	an	array	of	command	class	names.	Once	the	commands	have	been	registered,	you	may	execute	them
using	the	Artisan	CLI:

/**

	*	Bootstrap	the	application	services.

	*

	*	@return	void

	*/

public	function	boot()

{

				if	($this->app->runningInConsole())	{

								$this->commands([

												FooCommand::class,

												BarCommand::class,

]);

				}

}

Public	Assets

Your	package	may	have	assets	such	as	JavaScript,	CSS,	and	images.	To	publish	these	assets	to	the	application's	
public	directory,	use	the	service	provider's	publishes	method.	In	this	example,	we	will	also	add	a	public	asset
group	tag,	which	may	be	used	to	publish	groups	of	related	assets:

/**

	*	Bootstrap	any	application	services.

	*

	*	@return	void

	*/

public	function	boot()

{

				$this->publishes([

								__DIR__.'/path/to/assets'	=>	public_path('vendor/courier'),

],	'public');

}

Now,	when	your	package's	users	execute	the	vendor:publish	command,	your	assets	will	be	copied	to	the
specified	publish	location.	Since	you	will	typically	need	to	overwrite	the	assets	every	time	the	package	is
updated,	you	may	use	the	--force	flag:

php	artisan	vendor:publish	--tag=public	--force

Publishing	File	Groups

You	may	want	to	publish	groups	of	package	assets	and	resources	separately.	For	instance,	you	might	want	to
allow	your	users	to	publish	your	package's	configuration	files	without	being	forced	to	publish	your	package's
assets.	You	may	do	this	by	"tagging"	them	when	calling	the	publishes	method	from	a	package's	service
provider.	For	example,	let's	use	tags	to	define	two	publish	groups	in	the	boot	method	of	a	package	service
provider:

/**

	*	Bootstrap	any	application	services.

	*

	*	@return	void

	*/

public	function	boot()

{

				$this->publishes([

								__DIR__.'/../config/package.php'	=>	config_path('package.php')

],	'config');

				$this->publishes([

								__DIR__.'/../database/migrations/'	=>	database_path('migrations')

],	'migrations');

}

Laravel	Documentation	-	7.x	/	Package	Development 350

Now	your	users	may	publish	these	groups	separately	by	referencing	their	tag	when	executing	the	
vendor:publish	command:

php	artisan	vendor:publish	--tag=config

Laravel	Documentation	-	7.x	/	Package	Development 351

Digging	Deeper

Queues
Introduction

Connections	Vs.	Queues
Driver	Notes	&	Prerequisites

Creating	Jobs
Generating	Job	Classes
Class	Structure
Job	Middleware

Dispatching	Jobs
Delayed	Dispatching
Synchronous	Dispatching
Job	Chaining
Customizing	The	Queue	&	Connection
Specifying	Max	Job	Attempts	/	Timeout	Values
Rate	Limiting
Error	Handling

Queueing	Closures
Running	The	Queue	Worker

Queue	Priorities
Queue	Workers	&	Deployment
Job	Expirations	&	Timeouts

Supervisor	Configuration
Dealing	With	Failed	Jobs

Cleaning	Up	After	Failed	Jobs
Failed	Job	Events
Retrying	Failed	Jobs
Ignoring	Missing	Models

Job	Events

Introduction

TIP	Laravel	now	offers	Horizon,	a	beautiful	dashboard	and	configuration	system	for	your	Redis	powered
queues.	Check	out	the	full	Horizon	documentation	for	more	information.

Laravel	queues	provide	a	unified	API	across	a	variety	of	different	queue	backends,	such	as	Beanstalk,	Amazon
SQS,	Redis,	or	even	a	relational	database.	Queues	allow	you	to	defer	the	processing	of	a	time	consuming	task,
such	as	sending	an	email,	until	a	later	time.	Deferring	these	time	consuming	tasks	drastically	speeds	up	web
requests	to	your	application.

The	queue	configuration	file	is	stored	in	config/queue.php.	In	this	file	you	will	find	connection	configurations
for	each	of	the	queue	drivers	that	are	included	with	the	framework,	which	includes	a	database,	Beanstalkd,
Amazon	SQS,	Redis,	and	a	synchronous	driver	that	will	execute	jobs	immediately	(for	local	use).	A	null	queue
driver	is	also	included	which	discards	queued	jobs.

Connections	Vs.	Queues

Before	getting	started	with	Laravel	queues,	it	is	important	to	understand	the	distinction	between	"connections"
and	"queues".	In	your	config/queue.php	configuration	file,	there	is	a	connections	configuration	option.	This
option	defines	a	particular	connection	to	a	backend	service	such	as	Amazon	SQS,	Beanstalk,	or	Redis.
However,	any	given	queue	connection	may	have	multiple	"queues"	which	may	be	thought	of	as	different	stacks
or	piles	of	queued	jobs.

Note	that	each	connection	configuration	example	in	the	queue	configuration	file	contains	a	queue	attribute.	This
is	the	default	queue	that	jobs	will	be	dispatched	to	when	they	are	sent	to	a	given	connection.	In	other	words,	if
you	dispatch	a	job	without	explicitly	defining	which	queue	it	should	be	dispatched	to,	the	job	will	be	placed	on
the	queue	that	is	defined	in	the	queue	attribute	of	the	connection	configuration:

Laravel	Documentation	-	7.x	/	Queues 352

https://beanstalkd.github.io/
https://aws.amazon.com/sqs/
https://redis.io

//	This	job	is	sent	to	the	default	queue...

Job::dispatch();

//	This	job	is	sent	to	the	"emails"	queue...

Job::dispatch()->onQueue('emails');

Some	applications	may	not	need	to	ever	push	jobs	onto	multiple	queues,	instead	preferring	to	have	one	simple
queue.	However,	pushing	jobs	to	multiple	queues	can	be	especially	useful	for	applications	that	wish	to
prioritize	or	segment	how	jobs	are	processed,	since	the	Laravel	queue	worker	allows	you	to	specify	which
queues	it	should	process	by	priority.	For	example,	if	you	push	jobs	to	a	high	queue,	you	may	run	a	worker	that
gives	them	higher	processing	priority:

php	artisan	queue:work	--queue=high,default

Driver	Notes	&	Prerequisites

Database

In	order	to	use	the	database	queue	driver,	you	will	need	a	database	table	to	hold	the	jobs.	To	generate	a
migration	that	creates	this	table,	run	the	queue:table	Artisan	command.	Once	the	migration	has	been	created,
you	may	migrate	your	database	using	the	migrate	command:

php	artisan	queue:table

php	artisan	migrate

Redis

In	order	to	use	the	redis	queue	driver,	you	should	configure	a	Redis	database	connection	in	your	
config/database.php	configuration	file.

Redis	Cluster

If	your	Redis	queue	connection	uses	a	Redis	Cluster,	your	queue	names	must	contain	a	key	hash	tag.	This	is
required	in	order	to	ensure	all	of	the	Redis	keys	for	a	given	queue	are	placed	into	the	same	hash	slot:

'redis'	=>	[

				'driver'	=>	'redis',

				'connection'	=>	'default',

				'queue'	=>	'{default}',

				'retry_after'	=>	90,

],

Blocking

When	using	the	Redis	queue,	you	may	use	the	block_for	configuration	option	to	specify	how	long	the	driver
should	wait	for	a	job	to	become	available	before	iterating	through	the	worker	loop	and	re-polling	the	Redis
database.

Adjusting	this	value	based	on	your	queue	load	can	be	more	efficient	than	continually	polling	the	Redis	database
for	new	jobs.	For	instance,	you	may	set	the	value	to	5	to	indicate	that	the	driver	should	block	for	five	seconds
while	waiting	for	a	job	to	become	available:

'redis'	=>	[

				'driver'	=>	'redis',

				'connection'	=>	'default',

				'queue'	=>	'default',

				'retry_after'	=>	90,

				'block_for'	=>	5,

],

NOTE	Setting	block_for	to	0	will	cause	queue	workers	to	block	indefinitely	until	a	job	is	available.	This
will	also	prevent	signals	such	as	SIGTERM	from	being	handled	until	the	next	job	has	been	processed.

Other	Driver	Prerequisites

Laravel	Documentation	-	7.x	/	Queues 353

https://redis.io/topics/cluster-spec#keys-hash-tags

The	following	dependencies	are	needed	for	the	listed	queue	drivers:

Amazon	SQS:	aws/aws-sdk-php	~3.0
Beanstalkd:	pda/pheanstalk	~4.0
Redis:	predis/predis	~1.0	or	phpredis	PHP	extension

Creating	Jobs

Generating	Job	Classes

By	default,	all	of	the	queueable	jobs	for	your	application	are	stored	in	the	app/Jobs	directory.	If	the	app/Jobs
directory	doesn't	exist,	it	will	be	created	when	you	run	the	make:job	Artisan	command.	You	may	generate	a	new
queued	job	using	the	Artisan	CLI:

php	artisan	make:job	ProcessPodcast

The	generated	class	will	implement	the	Illuminate\Contracts\Queue\ShouldQueue	interface,	indicating	to	Laravel
that	the	job	should	be	pushed	onto	the	queue	to	run	asynchronously.

TIP	Job	stubs	may	be	customized	using	stub	publishing

Class	Structure

Job	classes	are	very	simple,	normally	containing	only	a	handle	method	which	is	called	when	the	job	is
processed	by	the	queue.	To	get	started,	let's	take	a	look	at	an	example	job	class.	In	this	example,	we'll	pretend
we	manage	a	podcast	publishing	service	and	need	to	process	the	uploaded	podcast	files	before	they	are
published:

<?php

namespace	App\Jobs;

use	App\AudioProcessor;

use	App\Podcast;

use	Illuminate\Bus\Queueable;

use	Illuminate\Contracts\Queue\ShouldQueue;

use	Illuminate\Foundation\Bus\Dispatchable;

use	Illuminate\Queue\InteractsWithQueue;

use	Illuminate\Queue\SerializesModels;

class	ProcessPodcast	implements	ShouldQueue

{

				use	Dispatchable,	InteractsWithQueue,	Queueable,	SerializesModels;

				protected	$podcast;

				/**

					*	Create	a	new	job	instance.

					*

					*	@param		Podcast		$podcast

					*	@return	void

					*/

				public	function	__construct(Podcast	$podcast)

				{

								$this->podcast	=	$podcast;

				}

				/**

					*	Execute	the	job.

					*

					*	@param		AudioProcessor		$processor

					*	@return	void

					*/

				public	function	handle(AudioProcessor	$processor)

				{

								//	Process	uploaded	podcast...

				}

}

In	this	example,	note	that	we	were	able	to	pass	an	Eloquent	model	directly	into	the	queued	job's	constructor.

Laravel	Documentation	-	7.x	/	Queues 354

Because	of	the	SerializesModels	trait	that	the	job	is	using,	Eloquent	models	and	their	loaded	relationships	will
be	gracefully	serialized	and	unserialized	when	the	job	is	processing.	If	your	queued	job	accepts	an	Eloquent
model	in	its	constructor,	only	the	identifier	for	the	model	will	be	serialized	onto	the	queue.	When	the	job	is
actually	handled,	the	queue	system	will	automatically	re-retrieve	the	full	model	instance	and	its	loaded
relationships	from	the	database.	It's	all	totally	transparent	to	your	application	and	prevents	issues	that	can	arise
from	serializing	full	Eloquent	model	instances.

The	handle	method	is	called	when	the	job	is	processed	by	the	queue.	Note	that	we	are	able	to	type-hint
dependencies	on	the	handle	method	of	the	job.	The	Laravel	service	container	automatically	injects	these
dependencies.

If	you	would	like	to	take	total	control	over	how	the	container	injects	dependencies	into	the	handle	method,	you
may	use	the	container's	bindMethod	method.	The	bindMethod	method	accepts	a	callback	which	receives	the	job
and	the	container.	Within	the	callback,	you	are	free	to	invoke	the	handle	method	however	you	wish.	Typically,
you	should	call	this	method	from	a	service	provider:

use	App\Jobs\ProcessPodcast;

$this->app->bindMethod(ProcessPodcast::class.'@handle',	function	($job,	$app)	{

				return	$job->handle($app->make(AudioProcessor::class));

});

NOTE	Binary	data,	such	as	raw	image	contents,	should	be	passed	through	the	base64_encode	function
before	being	passed	to	a	queued	job.	Otherwise,	the	job	may	not	properly	serialize	to	JSON	when	being
placed	on	the	queue.

Handling	Relationships

Because	loaded	relationships	also	get	serialized,	the	serialized	job	string	can	become	quite	large.	To	prevent
relations	from	being	serialized,	you	can	call	the	withoutRelations	method	on	the	model	when	setting	a	property
value.	This	method	will	return	an	instance	of	the	model	with	no	loaded	relationships:

/**

	*	Create	a	new	job	instance.

	*

	*	@param		\App\Podcast		$podcast

	*	@return	void

	*/

public	function	__construct(Podcast	$podcast)

{

				$this->podcast	=	$podcast->withoutRelations();

}

Job	Middleware

Job	middleware	allow	you	to	wrap	custom	logic	around	the	execution	of	queued	jobs,	reducing	boilerplate	in
the	jobs	themselves.	For	example,	consider	the	following	handle	method	which	leverages	Laravel's	Redis	rate
limiting	features	to	allow	only	one	job	to	process	every	five	seconds:

/**

	*	Execute	the	job.

	*

	*	@return	void

	*/

public	function	handle()

{

				Redis::throttle('key')->block(0)->allow(1)->every(5)->then(function	()	{

								info('Lock	obtained...');

								//	Handle	job...

				},	function	()	{

								//	Could	not	obtain	lock...

								return	$this->release(5);

				});

}

While	this	code	is	valid,	the	structure	of	the	handle	method	becomes	noisy	since	it	is	cluttered	with	Redis	rate
limiting	logic.	In	addition,	this	rate	limiting	logic	must	be	duplicated	for	any	other	jobs	that	we	want	to	rate

Laravel	Documentation	-	7.x	/	Queues 355

limit.

Instead	of	rate	limiting	in	the	handle	method,	we	could	define	a	job	middleware	that	handles	rate	limiting.
Laravel	does	not	have	a	default	location	for	job	middleware,	so	you	are	welcome	to	place	job	middleware
anywhere	in	your	application.	In	this	example,	we	will	place	the	middleware	in	a	app/Jobs/Middleware
directory:

<?php

namespace	App\Jobs\Middleware;

use	Illuminate\Support\Facades\Redis;

class	RateLimited

{

				/**

					*	Process	the	queued	job.

					*

					*	@param		mixed		$job

					*	@param		callable		$next

					*	@return	mixed

					*/

				public	function	handle($job,	$next)

				{

								Redis::throttle('key')

																->block(0)->allow(1)->every(5)

																->then(function	()	use	($job,	$next)	{

																				//	Lock	obtained...

																				$next($job);

																},	function	()	use	($job)	{

																				//	Could	not	obtain	lock...

																				$job->release(5);

																});

				}

}

As	you	can	see,	like	route	middleware,	job	middleware	receive	the	job	being	processed	and	a	callback	that
should	be	invoked	to	continue	processing	the	job.

After	creating	job	middleware,	they	may	be	attached	to	a	job	by	returning	them	from	the	job's	middleware
method.	This	method	does	not	exist	on	jobs	scaffolded	by	the	make:job	Artisan	command,	so	you	will	need	to
add	it	to	your	own	job	class	definition:

use	App\Jobs\Middleware\RateLimited;

/**

	*	Get	the	middleware	the	job	should	pass	through.

	*

	*	@return	array

	*/

public	function	middleware()

{

				return	[new	RateLimited];

}

Dispatching	Jobs

Once	you	have	written	your	job	class,	you	may	dispatch	it	using	the	dispatch	method	on	the	job	itself.	The
arguments	passed	to	the	dispatch	method	will	be	given	to	the	job's	constructor:

<?php

namespace	App\Http\Controllers;

use	App\Http\Controllers\Controller;

use	App\Jobs\ProcessPodcast;

use	Illuminate\Http\Request;

class	PodcastController	extends	Controller

{

				/**

					*	Store	a	new	podcast.

Laravel	Documentation	-	7.x	/	Queues 356

					*

					*	@param		Request		$request

					*	@return	Response

					*/

				public	function	store(Request	$request)

				{

								//	Create	podcast...

								ProcessPodcast::dispatch($podcast);

				}

}

If	you	would	like	to	conditionally	dispatch	a	job,	you	may	use	the	dispatchIf	and	dispatchUnless	methods:

ProcessPodcast::dispatchIf($accountActive	===	true,	$podcast);

ProcessPodcast::dispatchUnless($accountSuspended	===	false,	$podcast);

Delayed	Dispatching

If	you	would	like	to	delay	the	execution	of	a	queued	job,	you	may	use	the	delay	method	when	dispatching	a
job.	For	example,	let's	specify	that	a	job	should	not	be	available	for	processing	until	10	minutes	after	it	has	been
dispatched:

<?php

namespace	App\Http\Controllers;

use	App\Http\Controllers\Controller;

use	App\Jobs\ProcessPodcast;

use	Illuminate\Http\Request;

class	PodcastController	extends	Controller

{

				/**

					*	Store	a	new	podcast.

					*

					*	@param		Request		$request

					*	@return	Response

					*/

				public	function	store(Request	$request)

				{

								//	Create	podcast...

								ProcessPodcast::dispatch($podcast)

																->delay(now()->addMinutes(10));

				}

}

NOTE	The	Amazon	SQS	queue	service	has	a	maximum	delay	time	of	15	minutes.

Dispatching	After	The	Response	Is	Sent	To	Browser

Alternatively,	the	dispatchAfterResponse	method	delays	dispatching	a	job	until	after	the	response	is	sent	to	the
user's	browser.	This	will	still	allow	the	user	to	begin	using	the	application	even	though	a	queued	job	is	still
executing.	This	should	typically	only	be	used	for	jobs	that	take	about	a	second,	such	as	sending	an	email:

use	App\Jobs\SendNotification;

SendNotification::dispatchAfterResponse();

You	may	dispatch	a	Closure	and	chain	the	afterResponse	method	onto	the	helper	to	execute	a	Closure	after	the
response	has	been	sent	to	the	browser:

use	App\Mail\WelcomeMessage;

use	Illuminate\Support\Facades\Mail;

dispatch(function	()	{

				Mail::to('taylor@laravel.com')->send(new	WelcomeMessage);

})->afterResponse();

Synchronous	Dispatching

Laravel	Documentation	-	7.x	/	Queues 357

If	you	would	like	to	dispatch	a	job	immediately	(synchronously),	you	may	use	the	dispatchNow	method.	When
using	this	method,	the	job	will	not	be	queued	and	will	be	run	immediately	within	the	current	process:

<?php

namespace	App\Http\Controllers;

use	App\Http\Controllers\Controller;

use	App\Jobs\ProcessPodcast;

use	Illuminate\Http\Request;

class	PodcastController	extends	Controller

{

				/**

					*	Store	a	new	podcast.

					*

					*	@param		Request		$request

					*	@return	Response

					*/

				public	function	store(Request	$request)

				{

								//	Create	podcast...

								ProcessPodcast::dispatchNow($podcast);

				}

}

Job	Chaining

Job	chaining	allows	you	to	specify	a	list	of	queued	jobs	that	should	be	run	in	sequence	after	the	primary	job	has
executed	successfully.	If	one	job	in	the	sequence	fails,	the	rest	of	the	jobs	will	not	be	run.	To	execute	a	queued
job	chain,	you	may	use	the	withChain	method	on	any	of	your	dispatchable	jobs:

ProcessPodcast::withChain([

				new	OptimizePodcast,

				new	ReleasePodcast

])->dispatch();

In	addition	to	chaining	job	class	instances,	you	may	also	chain	Closures:

ProcessPodcast::withChain([

				new	OptimizePodcast,

				new	ReleasePodcast,

				function	()	{

								Podcast::update(...);

				},

])->dispatch();

NOTE	Deleting	jobs	using	the	$this->delete()	method	will	not	prevent	chained	jobs	from	being
processed.	The	chain	will	only	stop	executing	if	a	job	in	the	chain	fails.

Chain	Connection	&	Queue

If	you	would	like	to	specify	the	default	connection	and	queue	that	should	be	used	for	the	chained	jobs,	you	may
use	the	allOnConnection	and	allOnQueue	methods.	These	methods	specify	the	queue	connection	and	queue	name
that	should	be	used	unless	the	queued	job	is	explicitly	assigned	a	different	connection	/	queue:

ProcessPodcast::withChain([

				new	OptimizePodcast,

				new	ReleasePodcast

])->dispatch()->allOnConnection('redis')->allOnQueue('podcasts');

Customizing	The	Queue	&	Connection

Dispatching	To	A	Particular	Queue

By	pushing	jobs	to	different	queues,	you	may	"categorize"	your	queued	jobs	and	even	prioritize	how	many
workers	you	assign	to	various	queues.	Keep	in	mind,	this	does	not	push	jobs	to	different	queue	"connections"	as
defined	by	your	queue	configuration	file,	but	only	to	specific	queues	within	a	single	connection.	To	specify	the

Laravel	Documentation	-	7.x	/	Queues 358

queue,	use	the	onQueue	method	when	dispatching	the	job:

<?php

namespace	App\Http\Controllers;

use	App\Http\Controllers\Controller;

use	App\Jobs\ProcessPodcast;

use	Illuminate\Http\Request;

class	PodcastController	extends	Controller

{

				/**

					*	Store	a	new	podcast.

					*

					*	@param		Request		$request

					*	@return	Response

					*/

				public	function	store(Request	$request)

				{

								//	Create	podcast...

								ProcessPodcast::dispatch($podcast)->onQueue('processing');

				}

}

Dispatching	To	A	Particular	Connection

If	you	are	working	with	multiple	queue	connections,	you	may	specify	which	connection	to	push	a	job	to.	To
specify	the	connection,	use	the	onConnection	method	when	dispatching	the	job:

<?php

namespace	App\Http\Controllers;

use	App\Http\Controllers\Controller;

use	App\Jobs\ProcessPodcast;

use	Illuminate\Http\Request;

class	PodcastController	extends	Controller

{

				/**

					*	Store	a	new	podcast.

					*

					*	@param		Request		$request

					*	@return	Response

					*/

				public	function	store(Request	$request)

				{

								//	Create	podcast...

								ProcessPodcast::dispatch($podcast)->onConnection('sqs');

				}

}

You	may	chain	the	onConnection	and	onQueue	methods	to	specify	the	connection	and	the	queue	for	a	job:

ProcessPodcast::dispatch($podcast)

														->onConnection('sqs')

														->onQueue('processing');

Specifying	Max	Job	Attempts	/	Timeout	Values

Max	Attempts

One	approach	to	specifying	the	maximum	number	of	times	a	job	may	be	attempted	is	via	the	--tries	switch	on
the	Artisan	command	line:

php	artisan	queue:work	--tries=3

However,	you	may	take	a	more	granular	approach	by	defining	the	maximum	number	of	attempts	on	the	job
class	itself.	If	the	maximum	number	of	attempts	is	specified	on	the	job,	it	will	take	precedence	over	the	value
provided	on	the	command	line:

Laravel	Documentation	-	7.x	/	Queues 359

<?php

namespace	App\Jobs;

class	ProcessPodcast	implements	ShouldQueue

{

				/**

					*	The	number	of	times	the	job	may	be	attempted.

					*

					*	@var	int

					*/

				public	$tries	=	5;

}

Time	Based	Attempts

As	an	alternative	to	defining	how	many	times	a	job	may	be	attempted	before	it	fails,	you	may	define	a	time	at
which	the	job	should	timeout.	This	allows	a	job	to	be	attempted	any	number	of	times	within	a	given	time	frame.
To	define	the	time	at	which	a	job	should	timeout,	add	a	retryUntil	method	to	your	job	class:

/**

	*	Determine	the	time	at	which	the	job	should	timeout.

	*

	*	@return	\DateTime

	*/

public	function	retryUntil()

{

				return	now()->addSeconds(5);

}

TIP	You	may	also	define	a	retryUntil	method	on	your	queued	event	listeners.

Max	Exceptions

Sometimes	you	may	wish	to	specify	that	a	job	may	be	attempted	many	times,	but	should	fail	if	the	retries	are
triggered	by	a	given	number	of	exceptions.	To	accomplish	this,	you	may	define	a	maxExceptions	property	on
your	job	class:

<?php

namespace	App\Jobs;

class	ProcessPodcast	implements	ShouldQueue

{

				/**

					*	The	number	of	times	the	job	may	be	attempted.

					*

					*	@var	int

					*/

				public	$tries	=	25;

				/**

					*	The	maximum	number	of	exceptions	to	allow	before	failing.

					*

					*	@var	int

					*/

				public	$maxExceptions	=	3;

				/**

					*	Execute	the	job.

					*

					*	@return	void

					*/

				public	function	handle()

				{

								Redis::throttle('key')->allow(10)->every(60)->then(function	()	{

												//	Lock	obtained,	process	the	podcast...

								},	function	()	{

												//	Unable	to	obtain	lock...

												return	$this->release(10);

								});

				}

}

In	this	example,	the	job	is	released	for	ten	seconds	if	the	application	is	unable	to	obtain	a	Redis	lock	and	will

Laravel	Documentation	-	7.x	/	Queues 360

continue	to	be	retried	up	to	25	times.	However,	the	job	will	fail	if	three	unhandled	exceptions	are	thrown	by	the
job.

Timeout

NOTE	The	pcntl	PHP	extension	must	be	installed	in	order	to	specify	job	timeouts.

Likewise,	the	maximum	number	of	seconds	that	jobs	can	run	may	be	specified	using	the	--timeout	switch	on
the	Artisan	command	line:

php	artisan	queue:work	--timeout=30

However,	you	may	also	define	the	maximum	number	of	seconds	a	job	should	be	allowed	to	run	on	the	job	class
itself.	If	the	timeout	is	specified	on	the	job,	it	will	take	precedence	over	any	timeout	specified	on	the	command
line:

<?php

namespace	App\Jobs;

class	ProcessPodcast	implements	ShouldQueue

{

				/**

					*	The	number	of	seconds	the	job	can	run	before	timing	out.

					*

					*	@var	int

					*/

				public	$timeout	=	120;

}

Sometimes,	IO	blocking	processes	such	as	sockets	or	outgoing	HTTP	connections	may	not	respect	your
specified	timeout.	Therefore,	when	using	these	features,	you	should	always	attempt	to	specify	a	timeout	using
their	APIs	as	well.	For	example,	when	using	Guzzle,	you	should	always	specify	a	connection	and	request
timeout	value.

Rate	Limiting

NOTE	This	feature	requires	that	your	application	can	interact	with	a	Redis	server.

If	your	application	interacts	with	Redis,	you	may	throttle	your	queued	jobs	by	time	or	concurrency.	This	feature
can	be	of	assistance	when	your	queued	jobs	are	interacting	with	APIs	that	are	also	rate	limited.

For	example,	using	the	throttle	method,	you	may	throttle	a	given	type	of	job	to	only	run	10	times	every	60
seconds.	If	a	lock	can	not	be	obtained,	you	should	typically	release	the	job	back	onto	the	queue	so	it	can	be
retried	later:

Redis::throttle('key')->allow(10)->every(60)->then(function	()	{

				//	Job	logic...

},	function	()	{

				//	Could	not	obtain	lock...

				return	$this->release(10);

});

TIP	In	the	example	above,	the	key	may	be	any	string	that	uniquely	identifies	the	type	of	job	you	would	like
to	rate	limit.	For	example,	you	may	wish	to	construct	the	key	based	on	the	class	name	of	the	job	and	the
IDs	of	the	Eloquent	models	it	operates	on.

NOTE	Releasing	a	throttled	job	back	onto	the	queue	will	still	increment	the	job's	total	number	of	attempts.

Alternatively,	you	may	specify	the	maximum	number	of	workers	that	may	simultaneously	process	a	given	job.
This	can	be	helpful	when	a	queued	job	is	modifying	a	resource	that	should	only	be	modified	by	one	job	at	a
time.	For	example,	using	the	funnel	method,	you	may	limit	jobs	of	a	given	type	to	only	be	processed	by	one
worker	at	a	time:

Redis::funnel('key')->limit(1)->then(function	()	{

				//	Job	logic...

Laravel	Documentation	-	7.x	/	Queues 361

},	function	()	{

				//	Could	not	obtain	lock...

				return	$this->release(10);

});

TIP	When	using	rate	limiting,	the	number	of	attempts	your	job	will	need	to	run	successfully	can	be	hard	to
determine.	Therefore,	it	is	useful	to	combine	rate	limiting	with	time	based	attempts.

Error	Handling

If	an	exception	is	thrown	while	the	job	is	being	processed,	the	job	will	automatically	be	released	back	onto	the
queue	so	it	may	be	attempted	again.	The	job	will	continue	to	be	released	until	it	has	been	attempted	the
maximum	number	of	times	allowed	by	your	application.	The	maximum	number	of	attempts	is	defined	by	the	--
tries	switch	used	on	the	queue:work	Artisan	command.	Alternatively,	the	maximum	number	of	attempts	may	be
defined	on	the	job	class	itself.	More	information	on	running	the	queue	worker	can	be	found	below.

Queueing	Closures

Instead	of	dispatching	a	job	class	to	the	queue,	you	may	also	dispatch	a	Closure.	This	is	great	for	quick,	simple
tasks	that	need	to	be	executed	outside	of	the	current	request	cycle:

$podcast	=	App\Podcast::find(1);

dispatch(function	()	use	($podcast)	{

				$podcast->publish();

});

When	dispatching	Closures	to	the	queue,	the	Closure's	code	contents	is	cryptographically	signed	so	it	can	not
be	modified	in	transit.

Running	The	Queue	Worker

Laravel	includes	a	queue	worker	that	will	process	new	jobs	as	they	are	pushed	onto	the	queue.	You	may	run	the
worker	using	the	queue:work	Artisan	command.	Note	that	once	the	queue:work	command	has	started,	it	will
continue	to	run	until	it	is	manually	stopped	or	you	close	your	terminal:

php	artisan	queue:work

TIP	To	keep	the	queue:work	process	running	permanently	in	the	background,	you	should	use	a	process
monitor	such	as	Supervisor	to	ensure	that	the	queue	worker	does	not	stop	running.

Remember,	queue	workers	are	long-lived	processes	and	store	the	booted	application	state	in	memory.	As	a
result,	they	will	not	notice	changes	in	your	code	base	after	they	have	been	started.	So,	during	your	deployment
process,	be	sure	to	restart	your	queue	workers.	In	addition,	remember	that	any	static	state	created	or	modified
by	your	application	will	not	be	automatically	reset	between	jobs.

Alternatively,	you	may	run	the	queue:listen	command.	When	using	the	queue:listen	command,	you	don't	have
to	manually	restart	the	worker	when	you	want	to	reload	your	updated	code	or	reset	the	application	state;
however,	this	command	is	not	as	efficient	as	queue:work:

php	artisan	queue:listen

Specifying	The	Connection	&	Queue

You	may	also	specify	which	queue	connection	the	worker	should	utilize.	The	connection	name	passed	to	the	
work	command	should	correspond	to	one	of	the	connections	defined	in	your	config/queue.php	configuration	file:

php	artisan	queue:work	redis

You	may	customize	your	queue	worker	even	further	by	only	processing	particular	queues	for	a	given
connection.	For	example,	if	all	of	your	emails	are	processed	in	an	emails	queue	on	your	redis	queue
connection,	you	may	issue	the	following	command	to	start	a	worker	that	only	processes	that	queue:

Laravel	Documentation	-	7.x	/	Queues 362

php	artisan	queue:work	redis	--queue=emails

Processing	A	Single	Job

The	--once	option	may	be	used	to	instruct	the	worker	to	only	process	a	single	job	from	the	queue:

php	artisan	queue:work	--once

Processing	All	Queued	Jobs	&	Then	Exiting

The	--stop-when-empty	option	may	be	used	to	instruct	the	worker	to	process	all	jobs	and	then	exit	gracefully.
This	option	can	be	useful	when	working	Laravel	queues	within	a	Docker	container	if	you	wish	to	shutdown	the
container	after	the	queue	is	empty:

php	artisan	queue:work	--stop-when-empty

Resource	Considerations

Daemon	queue	workers	do	not	"reboot"	the	framework	before	processing	each	job.	Therefore,	you	should	free
any	heavy	resources	after	each	job	completes.	For	example,	if	you	are	doing	image	manipulation	with	the	GD
library,	you	should	free	the	memory	with	imagedestroy	when	you	are	done.

Queue	Priorities

Sometimes	you	may	wish	to	prioritize	how	your	queues	are	processed.	For	example,	in	your	config/queue.php
you	may	set	the	default	queue	for	your	redis	connection	to	low.	However,	occasionally	you	may	wish	to	push	a
job	to	a	high	priority	queue	like	so:

dispatch((new	Job)->onQueue('high'));

To	start	a	worker	that	verifies	that	all	of	the	high	queue	jobs	are	processed	before	continuing	to	any	jobs	on	the	
low	queue,	pass	a	comma-delimited	list	of	queue	names	to	the	work	command:

php	artisan	queue:work	--queue=high,low

Queue	Workers	&	Deployment

Since	queue	workers	are	long-lived	processes,	they	will	not	pick	up	changes	to	your	code	without	being
restarted.	So,	the	simplest	way	to	deploy	an	application	using	queue	workers	is	to	restart	the	workers	during
your	deployment	process.	You	may	gracefully	restart	all	of	the	workers	by	issuing	the	queue:restart	command:

php	artisan	queue:restart

This	command	will	instruct	all	queue	workers	to	gracefully	"die"	after	they	finish	processing	their	current	job
so	that	no	existing	jobs	are	lost.	Since	the	queue	workers	will	die	when	the	queue:restart	command	is
executed,	you	should	be	running	a	process	manager	such	as	Supervisor	to	automatically	restart	the	queue
workers.

TIP	The	queue	uses	the	cache	to	store	restart	signals,	so	you	should	verify	a	cache	driver	is	properly
configured	for	your	application	before	using	this	feature.

Job	Expirations	&	Timeouts

Job	Expiration

In	your	config/queue.php	configuration	file,	each	queue	connection	defines	a	retry_after	option.	This	option
specifies	how	many	seconds	the	queue	connection	should	wait	before	retrying	a	job	that	is	being	processed.	For
example,	if	the	value	of	retry_after	is	set	to	90,	the	job	will	be	released	back	onto	the	queue	if	it	has	been
processing	for	90	seconds	without	being	deleted.	Typically,	you	should	set	the	retry_after	value	to	the
maximum	number	of	seconds	your	jobs	should	reasonably	take	to	complete	processing.

Laravel	Documentation	-	7.x	/	Queues 363

NOTE	The	only	queue	connection	which	does	not	contain	a	retry_after	value	is	Amazon	SQS.	SQS	will
retry	the	job	based	on	the	Default	Visibility	Timeout	which	is	managed	within	the	AWS	console.

Worker	Timeouts

The	queue:work	Artisan	command	exposes	a	--timeout	option.	The	--timeout	option	specifies	how	long	the
Laravel	queue	master	process	will	wait	before	killing	off	a	child	queue	worker	that	is	processing	a	job.
Sometimes	a	child	queue	process	can	become	"frozen"	for	various	reasons.	The	--timeout	option	removes
frozen	processes	that	have	exceeded	that	specified	time	limit:

php	artisan	queue:work	--timeout=60

The	retry_after	configuration	option	and	the	--timeout	CLI	option	are	different,	but	work	together	to	ensure
that	jobs	are	not	lost	and	that	jobs	are	only	successfully	processed	once.

NOTE	The	--timeout	value	should	always	be	at	least	several	seconds	shorter	than	your	retry_after
configuration	value.	This	will	ensure	that	a	worker	processing	a	given	job	is	always	killed	before	the	job	is
retried.	If	your	--timeout	option	is	longer	than	your	retry_after	configuration	value,	your	jobs	may	be
processed	twice.

Worker	Sleep	Duration

When	jobs	are	available	on	the	queue,	the	worker	will	keep	processing	jobs	with	no	delay	in	between	them.
However,	the	sleep	option	determines	how	long	(in	seconds)	the	worker	will	"sleep"	if	there	are	no	new	jobs
available.	While	sleeping,	the	worker	will	not	process	any	new	jobs	-	the	jobs	will	be	processed	after	the
worker	wakes	up	again.

php	artisan	queue:work	--sleep=3

Supervisor	Configuration

Installing	Supervisor

Supervisor	is	a	process	monitor	for	the	Linux	operating	system,	and	will	automatically	restart	your	queue:work
process	if	it	fails.	To	install	Supervisor	on	Ubuntu,	you	may	use	the	following	command:

sudo	apt-get	install	supervisor

TIP	If	configuring	Supervisor	yourself	sounds	overwhelming,	consider	using	Laravel	Forge,	which	will
automatically	install	and	configure	Supervisor	for	your	Laravel	projects.

Configuring	Supervisor

Supervisor	configuration	files	are	typically	stored	in	the	/etc/supervisor/conf.d	directory.	Within	this	directory,
you	may	create	any	number	of	configuration	files	that	instruct	supervisor	how	your	processes	should	be
monitored.	For	example,	let's	create	a	laravel-worker.conf	file	that	starts	and	monitors	a	queue:work	process:

[program:laravel-worker]

process_name=%(program_name)s_%(process_num)02d

command=php	/home/forge/app.com/artisan	queue:work	sqs	--sleep=3	--tries=3

autostart=true

autorestart=true

user=forge

numprocs=8

redirect_stderr=true

stdout_logfile=/home/forge/app.com/worker.log

stopwaitsecs=3600

In	this	example,	the	numprocs	directive	will	instruct	Supervisor	to	run	8	queue:work	processes	and	monitor	all	of
them,	automatically	restarting	them	if	they	fail.	You	should	change	the	queue:work	sqs	portion	of	the	command
directive	to	reflect	your	desired	queue	connection.

NOTE	You	should	ensure	that	the	value	of	stopwaitsecs	is	greater	than	the	number	of	seconds	consumed

Laravel	Documentation	-	7.x	/	Queues 364

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/AboutVT.html
https://forge.laravel.com

by	your	longest	running	job.	Otherwise,	Supervisor	may	kill	the	job	before	it	is	finished	processing.

Starting	Supervisor

Once	the	configuration	file	has	been	created,	you	may	update	the	Supervisor	configuration	and	start	the
processes	using	the	following	commands:

sudo	supervisorctl	reread

sudo	supervisorctl	update

sudo	supervisorctl	start	laravel-worker:*

For	more	information	on	Supervisor,	consult	the	Supervisor	documentation.

Dealing	With	Failed	Jobs

Sometimes	your	queued	jobs	will	fail.	Don't	worry,	things	don't	always	go	as	planned!	Laravel	includes	a
convenient	way	to	specify	the	maximum	number	of	times	a	job	should	be	attempted.	After	a	job	has	exceeded
this	amount	of	attempts,	it	will	be	inserted	into	the	failed_jobs	database	table.	To	create	a	migration	for	the	
failed_jobs	table,	you	may	use	the	queue:failed-table	command:

php	artisan	queue:failed-table

php	artisan	migrate

Then,	when	running	your	queue	worker,	you	can	specify	the	maximum	number	of	times	a	job	should	be
attempted	using	the	--tries	switch	on	the	queue:work	command.	If	you	do	not	specify	a	value	for	the	--tries
option,	jobs	will	only	be	attempted	once:

php	artisan	queue:work	redis	--tries=3

In	addition,	you	may	specify	how	many	seconds	Laravel	should	wait	before	retrying	a	job	that	has	failed	using
the	--delay	option.	By	default,	a	job	is	retried	immediately:

php	artisan	queue:work	redis	--tries=3	--delay=3

If	you	would	like	to	configure	the	failed	job	retry	delay	on	a	per-job	basis,	you	may	do	so	by	defining	a	
retryAfter	property	on	your	queued	job	class:

/**

	*	The	number	of	seconds	to	wait	before	retrying	the	job.

	*

	*	@var	int

	*/

public	$retryAfter	=	3;

If	you	require	more	complex	logic	for	determining	the	retry	delay,	you	may	define	a	retryAfter	method	on	your
queued	job	class:

/**

*	Calculate	the	number	of	seconds	to	wait	before	retrying	the	job.

*

*	@return	int

*/

public	function	retryAfter()

{

				return	3;

}

Cleaning	Up	After	Failed	Jobs

You	may	define	a	failed	method	directly	on	your	job	class,	allowing	you	to	perform	job	specific	clean-up	when
a	failure	occurs.	This	is	the	perfect	location	to	send	an	alert	to	your	users	or	revert	any	actions	performed	by	the
job.	The	Throwable	exception	that	caused	the	job	to	fail	will	be	passed	to	the	failed	method:

<?php

Laravel	Documentation	-	7.x	/	Queues 365

http://supervisord.org/index.html

namespace	App\Jobs;

use	App\AudioProcessor;

use	App\Podcast;

use	Throwable;

use	Illuminate\Bus\Queueable;

use	Illuminate\Contracts\Queue\ShouldQueue;

use	Illuminate\Queue\InteractsWithQueue;

use	Illuminate\Queue\SerializesModels;

class	ProcessPodcast	implements	ShouldQueue

{

				use	InteractsWithQueue,	Queueable,	SerializesModels;

				protected	$podcast;

				/**

					*	Create	a	new	job	instance.

					*

					*	@param		\App\Podcast		$podcast

					*	@return	void

					*/

				public	function	__construct(Podcast	$podcast)

				{

								$this->podcast	=	$podcast;

				}

				/**

					*	Execute	the	job.

					*

					*	@param		\App\AudioProcessor		$processor

					*	@return	void

					*/

				public	function	handle(AudioProcessor	$processor)

				{

								//	Process	uploaded	podcast...

				}

				/**

					*	Handle	a	job	failure.

					*

					*	@param		\Throwable		$exception

					*	@return	void

					*/

				public	function	failed(Throwable	$exception)

				{

								//	Send	user	notification	of	failure,	etc...

				}

}

NOTE	The	failed	method	will	not	be	called	if	the	job	was	dispatched	using	the	dispatchNow	method.

Failed	Job	Events

If	you	would	like	to	register	an	event	that	will	be	called	when	a	job	fails,	you	may	use	the	Queue::failing
method.	This	event	is	a	great	opportunity	to	notify	your	team	via	email	or	Slack.	For	example,	we	may	attach	a
callback	to	this	event	from	the	AppServiceProvider	that	is	included	with	Laravel:

<?php

namespace	App\Providers;

use	Illuminate\Support\Facades\Queue;

use	Illuminate\Support\ServiceProvider;

use	Illuminate\Queue\Events\JobFailed;

class	AppServiceProvider	extends	ServiceProvider

{

				/**

					*	Register	any	application	services.

					*

					*	@return	void

					*/

				public	function	register()

				{

								//

				}

Laravel	Documentation	-	7.x	/	Queues 366

https://www.slack.com

				/**

					*	Bootstrap	any	application	services.

					*

					*	@return	void

					*/

				public	function	boot()

				{

								Queue::failing(function	(JobFailed	$event)	{

												//	$event->connectionName

												//	$event->job

												//	$event->exception

								});

				}

}

Retrying	Failed	Jobs

To	view	all	of	your	failed	jobs	that	have	been	inserted	into	your	failed_jobs	database	table,	you	may	use	the	
queue:failed	Artisan	command:

php	artisan	queue:failed

The	queue:failed	command	will	list	the	job	ID,	connection,	queue,	failure	time,	and	other	information	about	the
job.	The	job	ID	may	be	used	to	retry	the	failed	job.	For	instance,	to	retry	a	failed	job	that	has	an	ID	of	5,	issue
the	following	command:

php	artisan	queue:retry	5

If	necessary,	you	may	pass	multiple	IDs	or	an	ID	range	(when	using	numeric	IDs)	to	the	command:

php	artisan	queue:retry	5	6	7	8	9	10

php	artisan	queue:retry	--range=5-10

To	retry	all	of	your	failed	jobs,	execute	the	queue:retry	command	and	pass	all	as	the	ID:

php	artisan	queue:retry	all

If	you	would	like	to	delete	a	failed	job,	you	may	use	the	queue:forget	command:

php	artisan	queue:forget	5

To	delete	all	of	your	failed	jobs,	you	may	use	the	queue:flush	command:

php	artisan	queue:flush

Ignoring	Missing	Models

When	injecting	an	Eloquent	model	into	a	job,	it	is	automatically	serialized	before	being	placed	on	the	queue
and	restored	when	the	job	is	processed.	However,	if	the	model	has	been	deleted	while	the	job	was	waiting	to	be
processed	by	a	worker,	your	job	may	fail	with	a	ModelNotFoundException.

For	convenience,	you	may	choose	to	automatically	delete	jobs	with	missing	models	by	setting	your	job's	
deleteWhenMissingModels	property	to	true:

/**

	*	Delete	the	job	if	its	models	no	longer	exist.

	*

	*	@var	bool

	*/

public	$deleteWhenMissingModels	=	true;

Job	Events

Using	the	before	and	after	methods	on	the	Queue	facade,	you	may	specify	callbacks	to	be	executed	before	or
after	a	queued	job	is	processed.	These	callbacks	are	a	great	opportunity	to	perform	additional	logging	or
increment	statistics	for	a	dashboard.	Typically,	you	should	call	these	methods	from	a	service	provider.	For

Laravel	Documentation	-	7.x	/	Queues 367

example,	we	may	use	the	AppServiceProvider	that	is	included	with	Laravel:

<?php

namespace	App\Providers;

use	Illuminate\Support\Facades\Queue;

use	Illuminate\Support\ServiceProvider;

use	Illuminate\Queue\Events\JobProcessed;

use	Illuminate\Queue\Events\JobProcessing;

class	AppServiceProvider	extends	ServiceProvider

{

				/**

					*	Register	any	application	services.

					*

					*	@return	void

					*/

				public	function	register()

				{

								//

				}

				/**

					*	Bootstrap	any	application	services.

					*

					*	@return	void

					*/

				public	function	boot()

				{

								Queue::before(function	(JobProcessing	$event)	{

												//	$event->connectionName

												//	$event->job

												//	$event->job->payload()

								});

								Queue::after(function	(JobProcessed	$event)	{

												//	$event->connectionName

												//	$event->job

												//	$event->job->payload()

								});

				}

}

Using	the	looping	method	on	the	Queue	facade,	you	may	specify	callbacks	that	execute	before	the	worker
attempts	to	fetch	a	job	from	a	queue.	For	example,	you	might	register	a	Closure	to	rollback	any	transactions
that	were	left	open	by	a	previously	failed	job:

Queue::looping(function	()	{

				while	(DB::transactionLevel()	>	0)	{

								DB::rollBack();

				}

});

Laravel	Documentation	-	7.x	/	Queues 368

Digging	Deeper

Task	Scheduling
Introduction
Defining	Schedules

Scheduling	Artisan	Commands
Scheduling	Queued	Jobs
Scheduling	Shell	Commands
Schedule	Frequency	Options
Timezones
Preventing	Task	Overlaps
Running	Tasks	On	One	Server
Background	Tasks
Maintenance	Mode

Task	Output
Task	Hooks

Introduction

In	the	past,	you	may	have	generated	a	Cron	entry	for	each	task	you	needed	to	schedule	on	your	server.
However,	this	can	quickly	become	a	pain,	because	your	task	schedule	is	no	longer	in	source	control	and	you
must	SSH	into	your	server	to	add	additional	Cron	entries.

Laravel's	command	scheduler	allows	you	to	fluently	and	expressively	define	your	command	schedule	within
Laravel	itself.	When	using	the	scheduler,	only	a	single	Cron	entry	is	needed	on	your	server.	Your	task	schedule
is	defined	in	the	app/Console/Kernel.php	file's	schedule	method.	To	help	you	get	started,	a	simple	example	is
defined	within	the	method.

Starting	The	Scheduler

When	using	the	scheduler,	you	only	need	to	add	the	following	Cron	entry	to	your	server.	If	you	do	not	know
how	to	add	Cron	entries	to	your	server,	consider	using	a	service	such	as	Laravel	Forge	which	can	manage	the
Cron	entries	for	you:

*	*	*	*	*	cd	/path-to-your-project	&&	php	artisan	schedule:run	>>	/dev/null	2>&1

This	Cron	will	call	the	Laravel	command	scheduler	every	minute.	When	the	schedule:run	command	is
executed,	Laravel	will	evaluate	your	scheduled	tasks	and	runs	the	tasks	that	are	due.

Defining	Schedules

You	may	define	all	of	your	scheduled	tasks	in	the	schedule	method	of	the	App\Console\Kernel	class.	To	get
started,	let's	look	at	an	example	of	scheduling	a	task.	In	this	example,	we	will	schedule	a	Closure	to	be	called
every	day	at	midnight.	Within	the	Closure	we	will	execute	a	database	query	to	clear	a	table:

<?php

namespace	App\Console;

use	Illuminate\Console\Scheduling\Schedule;

use	Illuminate\Foundation\Console\Kernel	as	ConsoleKernel;

use	Illuminate\Support\Facades\DB;

class	Kernel	extends	ConsoleKernel

{

				/**

					*	The	Artisan	commands	provided	by	your	application.

					*

					*	@var	array

					*/

				protected	$commands	=	[

								//

Laravel	Documentation	-	7.x	/	Task	Scheduling 369

https://forge.laravel.com

];

				/**

					*	Define	the	application's	command	schedule.

					*

					*	@param		\Illuminate\Console\Scheduling\Schedule		$schedule

					*	@return	void

					*/

				protected	function	schedule(Schedule	$schedule)

				{

								$schedule->call(function	()	{

												DB::table('recent_users')->delete();

								})->daily();

				}

}

In	addition	to	scheduling	using	Closures,	you	may	also	use	invokable	objects.	Invokable	objects	are	simple
PHP	classes	that	contain	an	__invoke	method:

$schedule->call(new	DeleteRecentUsers)->daily();

Scheduling	Artisan	Commands

In	addition	to	scheduling	Closure	calls,	you	may	also	schedule	Artisan	commands	and	operating	system
commands.	For	example,	you	may	use	the	command	method	to	schedule	an	Artisan	command	using	either	the
command's	name	or	class:

$schedule->command('emails:send	Taylor	--force')->daily();

$schedule->command(EmailsCommand::class,	['Taylor',	'--force'])->daily();

Scheduling	Queued	Jobs

The	job	method	may	be	used	to	schedule	a	queued	job.	This	method	provides	a	convenient	way	to	schedule
jobs	without	using	the	call	method	to	manually	create	Closures	to	queue	the	job:

$schedule->job(new	Heartbeat)->everyFiveMinutes();

//	Dispatch	the	job	to	the	"heartbeats"	queue...

$schedule->job(new	Heartbeat,	'heartbeats')->everyFiveMinutes();

Scheduling	Shell	Commands

The	exec	method	may	be	used	to	issue	a	command	to	the	operating	system:

$schedule->exec('node	/home/forge/script.js')->daily();

Schedule	Frequency	Options

There	are	a	variety	of	schedules	you	may	assign	to	your	task:

Method Description
->cron('*	*	*	*	*'); Run	the	task	on	a	custom	Cron	schedule
->everyMinute(); Run	the	task	every	minute
->everyTwoMinutes(); Run	the	task	every	two	minutes
->everyThreeMinutes(); Run	the	task	every	three	minutes
->everyFourMinutes(); Run	the	task	every	four	minutes
->everyFiveMinutes(); Run	the	task	every	five	minutes
->everyTenMinutes(); Run	the	task	every	ten	minutes
->everyFifteenMinutes(); Run	the	task	every	fifteen	minutes
->everyThirtyMinutes(); Run	the	task	every	thirty	minutes
->hourly(); Run	the	task	every	hour
->hourlyAt(17); Run	the	task	every	hour	at	17	minutes	past	the	hour
->everyTwoHours(); Run	the	task	every	two	hours

Laravel	Documentation	-	7.x	/	Task	Scheduling 370

https://secure.php.net/manual/en/language.oop5.magic.php#object.invoke

->everyThreeHours(); Run	the	task	every	three	hours
->everyFourHours(); Run	the	task	every	four	hours
->everySixHours(); Run	the	task	every	six	hours
->daily(); Run	the	task	every	day	at	midnight
->dailyAt('13:00'); Run	the	task	every	day	at	13:00
->twiceDaily(1,	13); Run	the	task	daily	at	1:00	&	13:00
->weekly(); Run	the	task	every	sunday	at	00:00
->weeklyOn(1,	'8:00'); Run	the	task	every	week	on	Monday	at	8:00
->monthly(); Run	the	task	on	the	first	day	of	every	month	at	00:00
->monthlyOn(4,	'15:00'); Run	the	task	every	month	on	the	4th	at	15:00
->lastDayOfMonth('15:00'); Run	the	task	on	the	last	day	of	the	month	at	15:00
->quarterly(); Run	the	task	on	the	first	day	of	every	quarter	at	00:00
->yearly(); Run	the	task	on	the	first	day	of	every	year	at	00:00
->timezone('America/New_York'); Set	the	timezone

These	methods	may	be	combined	with	additional	constraints	to	create	even	more	finely	tuned	schedules	that
only	run	on	certain	days	of	the	week.	For	example,	to	schedule	a	command	to	run	weekly	on	Monday:

//	Run	once	per	week	on	Monday	at	1	PM...

$schedule->call(function	()	{

				//

})->weekly()->mondays()->at('13:00');

//	Run	hourly	from	8	AM	to	5	PM	on	weekdays...

$schedule->command('foo')

										->weekdays()

										->hourly()

										->timezone('America/Chicago')

										->between('8:00',	'17:00');

Below	is	a	list	of	the	additional	schedule	constraints:

Method Description
->weekdays(); Limit	the	task	to	weekdays
->weekends(); Limit	the	task	to	weekends
->sundays(); Limit	the	task	to	Sunday
->mondays(); Limit	the	task	to	Monday
->tuesdays(); Limit	the	task	to	Tuesday
->wednesdays(); Limit	the	task	to	Wednesday
->thursdays(); Limit	the	task	to	Thursday
->fridays(); Limit	the	task	to	Friday
->saturdays(); Limit	the	task	to	Saturday
->days(array|mixed); Limit	the	task	to	specific	days
->between($start,	$end); Limit	the	task	to	run	between	start	and	end	times
->when(Closure); Limit	the	task	based	on	a	truth	test
->environments($env); Limit	the	task	to	specific	environments

Day	Constraints

The	days	method	may	be	used	to	limit	the	execution	of	a	task	to	specific	days	of	the	week.	For	example,	you
may	schedule	a	command	to	run	hourly	on	Sundays	and	Wednesdays:

$schedule->command('reminders:send')

																->hourly()

																->days([0,	3]);

Between	Time	Constraints

The	between	method	may	be	used	to	limit	the	execution	of	a	task	based	on	the	time	of	day:

$schedule->command('reminders:send')

Laravel	Documentation	-	7.x	/	Task	Scheduling 371

																				->hourly()

																				->between('7:00',	'22:00');

Similarly,	the	unlessBetween	method	can	be	used	to	exclude	the	execution	of	a	task	for	a	period	of	time:

$schedule->command('reminders:send')

																				->hourly()

																				->unlessBetween('23:00',	'4:00');

Truth	Test	Constraints

The	when	method	may	be	used	to	limit	the	execution	of	a	task	based	on	the	result	of	a	given	truth	test.	In	other
words,	if	the	given	Closure	returns	true,	the	task	will	execute	as	long	as	no	other	constraining	conditions
prevent	the	task	from	running:

$schedule->command('emails:send')->daily()->when(function	()	{

				return	true;

});

The	skip	method	may	be	seen	as	the	inverse	of	when.	If	the	skip	method	returns	true,	the	scheduled	task	will	not
be	executed:

$schedule->command('emails:send')->daily()->skip(function	()	{

				return	true;

});

When	using	chained	when	methods,	the	scheduled	command	will	only	execute	if	all	when	conditions	return	true.

Environment	Constraints

The	environments	method	may	be	used	to	execute	tasks	only	on	the	given	environments:

$schedule->command('emails:send')

												->daily()

												->environments(['staging',	'production']);

Timezones

Using	the	timezone	method,	you	may	specify	that	a	scheduled	task's	time	should	be	interpreted	within	a	given
timezone:

$schedule->command('report:generate')

									->timezone('America/New_York')

									->at('02:00')

If	you	are	assigning	the	same	timezone	to	all	of	your	scheduled	tasks,	you	may	wish	to	define	a	
scheduleTimezone	method	in	your	app/Console/Kernel.php	file.	This	method	should	return	the	default	timezone
that	should	be	assigned	to	all	scheduled	tasks:

/**

	*	Get	the	timezone	that	should	be	used	by	default	for	scheduled	events.

	*

	*	@return	\DateTimeZone|string|null

	*/

protected	function	scheduleTimezone()

{

				return	'America/Chicago';

}

NOTE	Remember	that	some	timezones	utilize	daylight	savings	time.	When	daylight	saving	time	changes
occur,	your	scheduled	task	may	run	twice	or	even	not	run	at	all.	For	this	reason,	we	recommend	avoiding
timezone	scheduling	when	possible.

Preventing	Task	Overlaps

By	default,	scheduled	tasks	will	be	run	even	if	the	previous	instance	of	the	task	is	still	running.	To	prevent	this,
you	may	use	the	withoutOverlapping	method:

Laravel	Documentation	-	7.x	/	Task	Scheduling 372

$schedule->command('emails:send')->withoutOverlapping();

In	this	example,	the	emails:send	Artisan	command	will	be	run	every	minute	if	it	is	not	already	running.	The	
withoutOverlapping	method	is	especially	useful	if	you	have	tasks	that	vary	drastically	in	their	execution	time,
preventing	you	from	predicting	exactly	how	long	a	given	task	will	take.

If	needed,	you	may	specify	how	many	minutes	must	pass	before	the	"without	overlapping"	lock	expires.	By
default,	the	lock	will	expire	after	24	hours:

$schedule->command('emails:send')->withoutOverlapping(10);

Running	Tasks	On	One	Server

NOTE	To	utilize	this	feature,	your	application	must	be	using	the	database,	memcached,	or	redis	cache	driver
as	your	application's	default	cache	driver.	In	addition,	all	servers	must	be	communicating	with	the	same
central	cache	server.

If	your	application	is	running	on	multiple	servers,	you	may	limit	a	scheduled	job	to	only	execute	on	a	single
server.	For	instance,	assume	you	have	a	scheduled	task	that	generates	a	new	report	every	Friday	night.	If	the
task	scheduler	is	running	on	three	worker	servers,	the	scheduled	task	will	run	on	all	three	servers	and	generate
the	report	three	times.	Not	good!

To	indicate	that	the	task	should	run	on	only	one	server,	use	the	onOneServer	method	when	defining	the
scheduled	task.	The	first	server	to	obtain	the	task	will	secure	an	atomic	lock	on	the	job	to	prevent	other	servers
from	running	the	same	task	at	the	same	time:

$schedule->command('report:generate')

																->fridays()

																->at('17:00')

																->onOneServer();

Background	Tasks

By	default,	multiple	commands	scheduled	at	the	same	time	will	execute	sequentially.	If	you	have	long-running
commands,	this	may	cause	subsequent	commands	to	start	much	later	than	anticipated.	If	you	would	like	to	run
commands	in	the	background	so	that	they	may	all	run	simultaneously,	you	may	use	the	runInBackground
method:

$schedule->command('analytics:report')

									->daily()

									->runInBackground();

NOTE	The	runInBackground	method	may	only	be	used	when	scheduling	tasks	via	the	command	and	exec
methods.

Maintenance	Mode

Laravel's	scheduled	tasks	will	not	run	when	Laravel	is	in	maintenance	mode,	since	we	don't	want	your	tasks	to
interfere	with	any	unfinished	maintenance	you	may	be	performing	on	your	server.	However,	if	you	would	like
to	force	a	task	to	run	even	in	maintenance	mode,	you	may	use	the	evenInMaintenanceMode	method:

$schedule->command('emails:send')->evenInMaintenanceMode();

Task	Output

The	Laravel	scheduler	provides	several	convenient	methods	for	working	with	the	output	generated	by
scheduled	tasks.	First,	using	the	sendOutputTo	method,	you	may	send	the	output	to	a	file	for	later	inspection:

$schedule->command('emails:send')

									->daily()

									->sendOutputTo($filePath);

If	you	would	like	to	append	the	output	to	a	given	file,	you	may	use	the	appendOutputTo	method:

Laravel	Documentation	-	7.x	/	Task	Scheduling 373

$schedule->command('emails:send')

									->daily()

									->appendOutputTo($filePath);

Using	the	emailOutputTo	method,	you	may	e-mail	the	output	to	an	e-mail	address	of	your	choice.	Before	e-
mailing	the	output	of	a	task,	you	should	configure	Laravel's	e-mail	services:

$schedule->command('foo')

									->daily()

									->sendOutputTo($filePath)

									->emailOutputTo('foo@example.com');

If	you	only	want	to	e-mail	the	output	if	the	command	fails,	use	the	emailOutputOnFailure	method:

$schedule->command('foo')

									->daily()

									->emailOutputOnFailure('foo@example.com');

NOTE	The	emailOutputTo,	emailOutputOnFailure,	sendOutputTo,	and	appendOutputTo	methods	are	exclusive
to	the	command	and	exec	methods.

Task	Hooks

Using	the	before	and	after	methods,	you	may	specify	code	to	be	executed	before	and	after	the	scheduled	task	is
complete:

$schedule->command('emails:send')

									->daily()

									->before(function	()	{

													//	Task	is	about	to	start...

									})

									->after(function	()	{

													//	Task	is	complete...

									});

The	onSuccess	and	onFailure	methods	allow	you	to	specify	code	to	be	executed	if	the	scheduled	task	succeeds
or	fails:

$schedule->command('emails:send')

									->daily()

									->onSuccess(function	()	{

													//	The	task	succeeded...

									})

									->onFailure(function	()	{

													//	The	task	failed...

									});

Pinging	URLs

Using	the	pingBefore	and	thenPing	methods,	the	scheduler	can	automatically	ping	a	given	URL	before	or	after	a
task	is	complete.	This	method	is	useful	for	notifying	an	external	service,	such	as	Laravel	Envoyer,	that	your
scheduled	task	is	commencing	or	has	finished	execution:

$schedule->command('emails:send')

									->daily()

									->pingBefore($url)

									->thenPing($url);

The	pingBeforeIf	and	thenPingIf	methods	may	be	used	to	ping	a	given	URL	only	if	the	given	condition	is	true:

$schedule->command('emails:send')

									->daily()

									->pingBeforeIf($condition,	$url)

									->thenPingIf($condition,	$url);

The	pingOnSuccess	and	pingOnFailure	methods	may	be	used	to	ping	a	given	URL	only	if	the	task	succeeds	or
fails:

$schedule->command('emails:send')

									->daily()

									->pingOnSuccess($successUrl)

Laravel	Documentation	-	7.x	/	Task	Scheduling 374

https://envoyer.io

									->pingOnFailure($failureUrl);

All	of	the	ping	methods	require	the	Guzzle	HTTP	library.	You	can	add	Guzzle	to	your	project	using	the
Composer	package	manager:

composer	require	guzzlehttp/guzzle

Laravel	Documentation	-	7.x	/	Task	Scheduling 375

Database

Database:	Getting	Started
Introduction

Configuration
Read	&	Write	Connections
Using	Multiple	Database	Connections

Running	Raw	SQL	Queries
Listening	For	Query	Events
Database	Transactions

Introduction

Laravel	makes	interacting	with	databases	extremely	simple	across	a	variety	of	database	backends	using	either
raw	SQL,	the	fluent	query	builder,	and	the	Eloquent	ORM.	Currently,	Laravel	supports	four	databases:

MySQL	5.6+	(Version	Policy)
PostgreSQL	9.4+	(Version	Policy)
SQLite	3.8.8+
SQL	Server	2017+	(Version	Policy)

Configuration

The	database	configuration	for	your	application	is	located	at	config/database.php.	In	this	file	you	may	define	all
of	your	database	connections,	as	well	as	specify	which	connection	should	be	used	by	default.	Examples	for
most	of	the	supported	database	systems	are	provided	in	this	file.

By	default,	Laravel's	sample	environment	configuration	is	ready	to	use	with	Laravel	Homestead,	which	is	a
convenient	virtual	machine	for	doing	Laravel	development	on	your	local	machine.	You	are	free	to	modify	this
configuration	as	needed	for	your	local	database.

SQLite	Configuration

After	creating	a	new	SQLite	database	using	a	command	such	as	touch	database/database.sqlite,	you	can	easily
configure	your	environment	variables	to	point	to	this	newly	created	database	by	using	the	database's	absolute
path:

DB_CONNECTION=sqlite

DB_DATABASE=/absolute/path/to/database.sqlite

To	enable	foreign	key	constraints	for	SQLite	connections,	you	should	set	the	DB_FOREIGN_KEYS	environment
variable	to	true:

DB_FOREIGN_KEYS=true

Configuration	Using	URLs

Typically,	database	connections	are	configured	using	multiple	configuration	values	such	as	host,	database,	
username,	password,	etc.	Each	of	these	configuration	values	has	its	own	corresponding	environment	variable.
This	means	that	when	configuring	your	database	connection	information	on	a	production	server,	you	need	to
manage	several	environment	variables.

Some	managed	database	providers	such	as	Heroku	provide	a	single	database	"URL"	that	contains	all	of	the
connection	information	for	the	database	in	a	single	string.	An	example	database	URL	may	look	something	like
the	following:

mysql://root:password@127.0.0.1/forge?charset=UTF-8

These	URLs	typically	follow	a	standard	schema	convention:

Laravel	Documentation	-	7.x	/	Database 376

https://en.wikipedia.org/wiki/MySQL#Release_history
https://www.postgresql.org/support/versioning/
https://support.microsoft.com/en-us/lifecycle/search

driver://username:password@host:port/database?options

For	convenience,	Laravel	supports	these	URLs	as	an	alternative	to	configuring	your	database	with	multiple
configuration	options.	If	the	url	(or	corresponding	DATABASE_URL	environment	variable)	configuration	option	is
present,	it	will	be	used	to	extract	the	database	connection	and	credential	information.

Read	&	Write	Connections

Sometimes	you	may	wish	to	use	one	database	connection	for	SELECT	statements,	and	another	for	INSERT,
UPDATE,	and	DELETE	statements.	Laravel	makes	this	a	breeze,	and	the	proper	connections	will	always	be
used	whether	you	are	using	raw	queries,	the	query	builder,	or	the	Eloquent	ORM.

To	see	how	read	/	write	connections	should	be	configured,	let's	look	at	this	example:

'mysql'	=>	[

				'read'	=>	[

								'host'	=>	[

												'192.168.1.1',

												'196.168.1.2',

],

],

				'write'	=>	[

								'host'	=>	[

												'196.168.1.3',

],

],

				'sticky'	=>	true,

				'driver'	=>	'mysql',

				'database'	=>	'database',

				'username'	=>	'root',

				'password'	=>	'',

				'charset'	=>	'utf8mb4',

				'collation'	=>	'utf8mb4_unicode_ci',

				'prefix'	=>	'',

],

Note	that	three	keys	have	been	added	to	the	configuration	array:	read,	write	and	sticky.	The	read	and	write
keys	have	array	values	containing	a	single	key:	host.	The	rest	of	the	database	options	for	the	read	and	write
connections	will	be	merged	from	the	main	mysql	array.

You	only	need	to	place	items	in	the	read	and	write	arrays	if	you	wish	to	override	the	values	from	the	main
array.	So,	in	this	case,	192.168.1.1	will	be	used	as	the	host	for	the	"read"	connection,	while	192.168.1.3	will	be
used	for	the	"write"	connection.	The	database	credentials,	prefix,	character	set,	and	all	other	options	in	the	main
mysql	array	will	be	shared	across	both	connections.

The	sticky	Option

The	sticky	option	is	an	optional	value	that	can	be	used	to	allow	the	immediate	reading	of	records	that	have
been	written	to	the	database	during	the	current	request	cycle.	If	the	sticky	option	is	enabled	and	a	"write"
operation	has	been	performed	against	the	database	during	the	current	request	cycle,	any	further	"read"
operations	will	use	the	"write"	connection.	This	ensures	that	any	data	written	during	the	request	cycle	can	be
immediately	read	back	from	the	database	during	that	same	request.	It	is	up	to	you	to	decide	if	this	is	the	desired
behavior	for	your	application.

Using	Multiple	Database	Connections

When	using	multiple	connections,	you	may	access	each	connection	via	the	connection	method	on	the	DB	facade.
The	name	passed	to	the	connection	method	should	correspond	to	one	of	the	connections	listed	in	your	
config/database.php	configuration	file:

$users	=	DB::connection('foo')->select(...);

You	may	also	access	the	raw,	underlying	PDO	instance	using	the	getPdo	method	on	a	connection	instance:

$pdo	=	DB::connection()->getPdo();

Laravel	Documentation	-	7.x	/	Database 377

Running	Raw	SQL	Queries

Once	you	have	configured	your	database	connection,	you	may	run	queries	using	the	DB	facade.	The	DB	facade
provides	methods	for	each	type	of	query:	select,	update,	insert,	delete,	and	statement.

Running	A	Select	Query

To	run	a	basic	query,	you	may	use	the	select	method	on	the	DB	facade:

<?php

namespace	App\Http\Controllers;

use	App\Http\Controllers\Controller;

use	Illuminate\Support\Facades\DB;

class	UserController	extends	Controller

{

				/**

					*	Show	a	list	of	all	of	the	application's	users.

					*

					*	@return	Response

					*/

				public	function	index()

				{

								$users	=	DB::select('select	*	from	users	where	active	=	?',	[1]);

								return	view('user.index',	['users'	=>	$users]);

				}

}

The	first	argument	passed	to	the	select	method	is	the	raw	SQL	query,	while	the	second	argument	is	any
parameter	bindings	that	need	to	be	bound	to	the	query.	Typically,	these	are	the	values	of	the	where	clause
constraints.	Parameter	binding	provides	protection	against	SQL	injection.

The	select	method	will	always	return	an	array	of	results.	Each	result	within	the	array	will	be	a	PHP	stdClass
object,	allowing	you	to	access	the	values	of	the	results:

foreach	($users	as	$user)	{

				echo	$user->name;

}

Using	Named	Bindings

Instead	of	using	?	to	represent	your	parameter	bindings,	you	may	execute	a	query	using	named	bindings:

$results	=	DB::select('select	*	from	users	where	id	=	:id',	['id'	=>	1]);

Running	An	Insert	Statement

To	execute	an	insert	statement,	you	may	use	the	insert	method	on	the	DB	facade.	Like	select,	this	method
takes	the	raw	SQL	query	as	its	first	argument	and	bindings	as	its	second	argument:

DB::insert('insert	into	users	(id,	name)	values	(?,	?)',	[1,	'Dayle']);

Running	An	Update	Statement

The	update	method	should	be	used	to	update	existing	records	in	the	database.	The	number	of	rows	affected	by
the	statement	will	be	returned:

$affected	=	DB::update('update	users	set	votes	=	100	where	name	=	?',	['John']);

Running	A	Delete	Statement

The	delete	method	should	be	used	to	delete	records	from	the	database.	Like	update,	the	number	of	rows
affected	will	be	returned:

Laravel	Documentation	-	7.x	/	Database 378

$deleted	=	DB::delete('delete	from	users');

Running	A	General	Statement

Some	database	statements	do	not	return	any	value.	For	these	types	of	operations,	you	may	use	the	statement
method	on	the	DB	facade:

DB::statement('drop	table	users');

Listening	For	Query	Events

If	you	would	like	to	receive	each	SQL	query	executed	by	your	application,	you	may	use	the	listen	method.
This	method	is	useful	for	logging	queries	or	debugging.	You	may	register	your	query	listener	in	a	service
provider:

<?php

namespace	App\Providers;

use	Illuminate\Support\Facades\DB;

use	Illuminate\Support\ServiceProvider;

class	AppServiceProvider	extends	ServiceProvider

{

				/**

					*	Register	any	application	services.

					*

					*	@return	void

					*/

				public	function	register()

				{

								//

				}

				/**

					*	Bootstrap	any	application	services.

					*

					*	@return	void

					*/

				public	function	boot()

				{

								DB::listen(function	($query)	{

												//	$query->sql

												//	$query->bindings

												//	$query->time

								});

				}

}

Database	Transactions

You	may	use	the	transaction	method	on	the	DB	facade	to	run	a	set	of	operations	within	a	database	transaction.	If
an	exception	is	thrown	within	the	transaction	Closure,	the	transaction	will	automatically	be	rolled	back.	If	the	
Closure	executes	successfully,	the	transaction	will	automatically	be	committed.	You	don't	need	to	worry	about
manually	rolling	back	or	committing	while	using	the	transaction	method:

DB::transaction(function	()	{

				DB::table('users')->update(['votes'	=>	1]);

				DB::table('posts')->delete();

});

Handling	Deadlocks

The	transaction	method	accepts	an	optional	second	argument	which	defines	the	number	of	times	a	transaction
should	be	reattempted	when	a	deadlock	occurs.	Once	these	attempts	have	been	exhausted,	an	exception	will	be
thrown:

DB::transaction(function	()	{

				DB::table('users')->update(['votes'	=>	1]);

Laravel	Documentation	-	7.x	/	Database 379

				DB::table('posts')->delete();

},	5);

Manually	Using	Transactions

If	you	would	like	to	begin	a	transaction	manually	and	have	complete	control	over	rollbacks	and	commits,	you
may	use	the	beginTransaction	method	on	the	DB	facade:

DB::beginTransaction();

You	can	rollback	the	transaction	via	the	rollBack	method:

DB::rollBack();

Lastly,	you	can	commit	a	transaction	via	the	commit	method:

DB::commit();

TIP	The	DB	facade's	transaction	methods	control	the	transactions	for	both	the	query	builder	and	Eloquent
ORM.

Laravel	Documentation	-	7.x	/	Database 380

Database

Database:	Query	Builder
Introduction
Retrieving	Results

Chunking	Results
Aggregates

Selects
Raw	Expressions
Joins
Unions
Where	Clauses

Parameter	Grouping
Where	Exists	Clauses
Subquery	Where	Clauses
JSON	Where	Clauses

Ordering,	Grouping,	Limit	&	Offset
Conditional	Clauses
Inserts
Updates

Updating	JSON	Columns
Increment	&	Decrement

Deletes
Pessimistic	Locking
Debugging

Introduction

Laravel's	database	query	builder	provides	a	convenient,	fluent	interface	to	creating	and	running	database
queries.	It	can	be	used	to	perform	most	database	operations	in	your	application	and	works	on	all	supported
database	systems.

The	Laravel	query	builder	uses	PDO	parameter	binding	to	protect	your	application	against	SQL	injection
attacks.	There	is	no	need	to	clean	strings	being	passed	as	bindings.

NOTE	PDO	does	not	support	binding	column	names.	Therefore,	you	should	never	allow	user	input	to
dictate	the	column	names	referenced	by	your	queries,	including	"order	by"	columns,	etc.	If	you	must	allow
the	user	to	select	certain	columns	to	query	against,	always	validate	the	column	names	against	a	white-list
of	allowed	columns.

Retrieving	Results

Retrieving	All	Rows	From	A	Table

You	may	use	the	table	method	on	the	DB	facade	to	begin	a	query.	The	table	method	returns	a	fluent	query
builder	instance	for	the	given	table,	allowing	you	to	chain	more	constraints	onto	the	query	and	then	finally	get
the	results	using	the	get	method:

<?php

namespace	App\Http\Controllers;

use	App\Http\Controllers\Controller;

use	Illuminate\Support\Facades\DB;

class	UserController	extends	Controller

{

				/**

					*	Show	a	list	of	all	of	the	application's	users.

					*

					*	@return	Response

Laravel	Documentation	-	7.x	/	Query	Builder 381

					*/

				public	function	index()

				{

								$users	=	DB::table('users')->get();

								return	view('user.index',	['users'	=>	$users]);

				}

}

The	get	method	returns	an	Illuminate\Support\Collection	containing	the	results	where	each	result	is	an
instance	of	the	PHP	stdClass	object.	You	may	access	each	column's	value	by	accessing	the	column	as	a
property	of	the	object:

foreach	($users	as	$user)	{

				echo	$user->name;

}

Retrieving	A	Single	Row	/	Column	From	A	Table

If	you	just	need	to	retrieve	a	single	row	from	the	database	table,	you	may	use	the	first	method.	This	method
will	return	a	single	stdClass	object:

$user	=	DB::table('users')->where('name',	'John')->first();

echo	$user->name;

If	you	don't	even	need	an	entire	row,	you	may	extract	a	single	value	from	a	record	using	the	value	method.	This
method	will	return	the	value	of	the	column	directly:

$email	=	DB::table('users')->where('name',	'John')->value('email');

To	retrieve	a	single	row	by	its	id	column	value,	use	the	find	method:

$user	=	DB::table('users')->find(3);

Retrieving	A	List	Of	Column	Values

If	you	would	like	to	retrieve	a	Collection	containing	the	values	of	a	single	column,	you	may	use	the	pluck
method.	In	this	example,	we'll	retrieve	a	Collection	of	role	titles:

$titles	=	DB::table('roles')->pluck('title');

foreach	($titles	as	$title)	{

				echo	$title;

}

You	may	also	specify	a	custom	key	column	for	the	returned	Collection:

$roles	=	DB::table('roles')->pluck('title',	'name');

foreach	($roles	as	$name	=>	$title)	{

				echo	$title;

}

Chunking	Results

If	you	need	to	work	with	thousands	of	database	records,	consider	using	the	chunk	method.	This	method	retrieves
a	small	chunk	of	the	results	at	a	time	and	feeds	each	chunk	into	a	Closure	for	processing.	This	method	is	very
useful	for	writing	Artisan	commands	that	process	thousands	of	records.	For	example,	let's	work	with	the	entire	
users	table	in	chunks	of	100	records	at	a	time:

DB::table('users')->orderBy('id')->chunk(100,	function	($users)	{

				foreach	($users	as	$user)	{

								//

				}

});

You	may	stop	further	chunks	from	being	processed	by	returning	false	from	the	Closure:

Laravel	Documentation	-	7.x	/	Query	Builder 382

DB::table('users')->orderBy('id')->chunk(100,	function	($users)	{

				//	Process	the	records...

				return	false;

});

If	you	are	updating	database	records	while	chunking	results,	your	chunk	results	could	change	in	unexpected
ways.	So,	when	updating	records	while	chunking,	it	is	always	best	to	use	the	chunkById	method	instead.	This
method	will	automatically	paginate	the	results	based	on	the	record's	primary	key:

DB::table('users')->where('active',	false)

				->chunkById(100,	function	($users)	{

								foreach	($users	as	$user)	{

												DB::table('users')

																->where('id',	$user->id)

																->update(['active'	=>	true]);

								}

				});

NOTE	When	updating	or	deleting	records	inside	the	chunk	callback,	any	changes	to	the	primary	key	or
foreign	keys	could	affect	the	chunk	query.	This	could	potentially	result	in	records	not	being	included	in	the
chunked	results.

Aggregates

The	query	builder	also	provides	a	variety	of	aggregate	methods	such	as	count,	max,	min,	avg,	and	sum.	You	may
call	any	of	these	methods	after	constructing	your	query:

$users	=	DB::table('users')->count();

$price	=	DB::table('orders')->max('price');

You	may	combine	these	methods	with	other	clauses:

$price	=	DB::table('orders')

																->where('finalized',	1)

																->avg('price');

Determining	If	Records	Exist

Instead	of	using	the	count	method	to	determine	if	any	records	exist	that	match	your	query's	constraints,	you
may	use	the	exists	and	doesntExist	methods:

return	DB::table('orders')->where('finalized',	1)->exists();

return	DB::table('orders')->where('finalized',	1)->doesntExist();

Selects

Specifying	A	Select	Clause

You	may	not	always	want	to	select	all	columns	from	a	database	table.	Using	the	select	method,	you	can	specify
a	custom	select	clause	for	the	query:

$users	=	DB::table('users')->select('name',	'email	as	user_email')->get();

The	distinct	method	allows	you	to	force	the	query	to	return	distinct	results:

$users	=	DB::table('users')->distinct()->get();

If	you	already	have	a	query	builder	instance	and	you	wish	to	add	a	column	to	its	existing	select	clause,	you	may
use	the	addSelect	method:

$query	=	DB::table('users')->select('name');

$users	=	$query->addSelect('age')->get();

Laravel	Documentation	-	7.x	/	Query	Builder 383

Raw	Expressions

Sometimes	you	may	need	to	use	a	raw	expression	in	a	query.	To	create	a	raw	expression,	you	may	use	the	
DB::raw	method:

$users	=	DB::table('users')

																					->select(DB::raw('count(*)	as	user_count,	status'))

																					->where('status',	'<>',	1)

																					->groupBy('status')

																					->get();

NOTE	Raw	statements	will	be	injected	into	the	query	as	strings,	so	you	should	be	extremely	careful	to	not
create	SQL	injection	vulnerabilities.

Raw	Methods

Instead	of	using	DB::raw,	you	may	also	use	the	following	methods	to	insert	a	raw	expression	into	various	parts
of	your	query.

selectRaw

The	selectRaw	method	can	be	used	in	place	of	addSelect(DB::raw(...)).	This	method	accepts	an	optional	array
of	bindings	as	its	second	argument:

$orders	=	DB::table('orders')

																->selectRaw('price	*	?	as	price_with_tax',	[1.0825])

																->get();

whereRaw	/	orWhereRaw

The	whereRaw	and	orWhereRaw	methods	can	be	used	to	inject	a	raw	where	clause	into	your	query.	These	methods
accept	an	optional	array	of	bindings	as	their	second	argument:

$orders	=	DB::table('orders')

																->whereRaw('price	>	IF(state	=	"TX",	?,	100)',	[200])

																->get();

havingRaw	/	orHavingRaw

The	havingRaw	and	orHavingRaw	methods	may	be	used	to	set	a	raw	string	as	the	value	of	the	having	clause.	These
methods	accept	an	optional	array	of	bindings	as	their	second	argument:

$orders	=	DB::table('orders')

																->select('department',	DB::raw('SUM(price)	as	total_sales'))

																->groupBy('department')

																->havingRaw('SUM(price)	>	?',	[2500])

																->get();

orderByRaw

The	orderByRaw	method	may	be	used	to	set	a	raw	string	as	the	value	of	the	order	by	clause:

$orders	=	DB::table('orders')

																->orderByRaw('updated_at	-	created_at	DESC')

																->get();

groupByRaw

The	groupByRaw	method	may	be	used	to	set	a	raw	string	as	the	value	of	the	group	by	clause:

$orders	=	DB::table('orders')

																->select('city',	'state')

																->groupByRaw('city,	state')

																->get();

Joins

Laravel	Documentation	-	7.x	/	Query	Builder 384

Inner	Join	Clause

The	query	builder	may	also	be	used	to	write	join	statements.	To	perform	a	basic	"inner	join",	you	may	use	the	
join	method	on	a	query	builder	instance.	The	first	argument	passed	to	the	join	method	is	the	name	of	the	table
you	need	to	join	to,	while	the	remaining	arguments	specify	the	column	constraints	for	the	join.	You	can	even
join	to	multiple	tables	in	a	single	query:

$users	=	DB::table('users')

												->join('contacts',	'users.id',	'=',	'contacts.user_id')

												->join('orders',	'users.id',	'=',	'orders.user_id')

												->select('users.*',	'contacts.phone',	'orders.price')

												->get();

Left	Join	/	Right	Join	Clause

If	you	would	like	to	perform	a	"left	join"	or	"right	join"	instead	of	an	"inner	join",	use	the	leftJoin	or	rightJoin
methods.	These	methods	have	the	same	signature	as	the	join	method:

$users	=	DB::table('users')

												->leftJoin('posts',	'users.id',	'=',	'posts.user_id')

												->get();

$users	=	DB::table('users')

												->rightJoin('posts',	'users.id',	'=',	'posts.user_id')

												->get();

Cross	Join	Clause

To	perform	a	"cross	join"	use	the	crossJoin	method	with	the	name	of	the	table	you	wish	to	cross	join	to.	Cross
joins	generate	a	cartesian	product	between	the	first	table	and	the	joined	table:

$sizes	=	DB::table('sizes')

												->crossJoin('colors')

												->get();

Advanced	Join	Clauses

You	may	also	specify	more	advanced	join	clauses.	To	get	started,	pass	a	Closure	as	the	second	argument	into	the
join	method.	The	Closure	will	receive	a	JoinClause	object	which	allows	you	to	specify	constraints	on	the	join
clause:

DB::table('users')

								->join('contacts',	function	($join)	{

												$join->on('users.id',	'=',	'contacts.user_id')->orOn(...);

								})

								->get();

If	you	would	like	to	use	a	"where"	style	clause	on	your	joins,	you	may	use	the	where	and	orWhere	methods	on	a
join.	Instead	of	comparing	two	columns,	these	methods	will	compare	the	column	against	a	value:

DB::table('users')

								->join('contacts',	function	($join)	{

												$join->on('users.id',	'=',	'contacts.user_id')

																	->where('contacts.user_id',	'>',	5);

								})

								->get();

Subquery	Joins

You	may	use	the	joinSub,	leftJoinSub,	and	rightJoinSub	methods	to	join	a	query	to	a	subquery.	Each	of	these
methods	receive	three	arguments:	the	subquery,	its	table	alias,	and	a	Closure	that	defines	the	related	columns:

$latestPosts	=	DB::table('posts')

																			->select('user_id',	DB::raw('MAX(created_at)	as	last_post_created_at'))

																			->where('is_published',	true)

																			->groupBy('user_id');

$users	=	DB::table('users')

Laravel	Documentation	-	7.x	/	Query	Builder 385

								->joinSub($latestPosts,	'latest_posts',	function	($join)	{

												$join->on('users.id',	'=',	'latest_posts.user_id');

								})->get();

Unions

The	query	builder	also	provides	a	quick	way	to	"union"	two	queries	together.	For	example,	you	may	create	an
initial	query	and	use	the	union	method	to	union	it	with	a	second	query:

$first	=	DB::table('users')

												->whereNull('first_name');

$users	=	DB::table('users')

												->whereNull('last_name')

												->union($first)

												->get();

TIP	The	unionAll	method	is	also	available	and	has	the	same	method	signature	as	union.

Where	Clauses

Simple	Where	Clauses

You	may	use	the	where	method	on	a	query	builder	instance	to	add	where	clauses	to	the	query.	The	most	basic
call	to	where	requires	three	arguments.	The	first	argument	is	the	name	of	the	column.	The	second	argument	is	an
operator,	which	can	be	any	of	the	database's	supported	operators.	Finally,	the	third	argument	is	the	value	to
evaluate	against	the	column.

For	example,	here	is	a	query	that	verifies	the	value	of	the	"votes"	column	is	equal	to	100:

$users	=	DB::table('users')->where('votes',	'=',	100)->get();

For	convenience,	if	you	want	to	verify	that	a	column	is	equal	to	a	given	value,	you	may	pass	the	value	directly
as	the	second	argument	to	the	where	method:

$users	=	DB::table('users')->where('votes',	100)->get();

You	may	use	a	variety	of	other	operators	when	writing	a	where	clause:

$users	=	DB::table('users')

																->where('votes',	'>=',	100)

																->get();

$users	=	DB::table('users')

																->where('votes',	'<>',	100)

																->get();

$users	=	DB::table('users')

																->where('name',	'like',	'T%')

																->get();

You	may	also	pass	an	array	of	conditions	to	the	where	function:

$users	=	DB::table('users')->where([

				['status',	'=',	'1'],

				['subscribed',	'<>',	'1'],

])->get();

Or	Statements

You	may	chain	where	constraints	together	as	well	as	add	or	clauses	to	the	query.	The	orWhere	method	accepts
the	same	arguments	as	the	where	method:

$users	=	DB::table('users')

																				->where('votes',	'>',	100)

																				->orWhere('name',	'John')

																				->get();

Laravel	Documentation	-	7.x	/	Query	Builder 386

If	you	need	to	group	an	"or"	condition	within	parentheses,	you	may	pass	a	Closure	as	the	first	argument	to	the	
orWhere	method:

$users	=	DB::table('users')

												->where('votes',	'>',	100)

												->orWhere(function($query)	{

																$query->where('name',	'Abigail')

																						->where('votes',	'>',	50);

												})

												->get();

//	SQL:	select	*	from	users	where	votes	>	100	or	(name	=	'Abigail'	and	votes	>	50)

Additional	Where	Clauses

whereBetween	/	orWhereBetween

The	whereBetween	method	verifies	that	a	column's	value	is	between	two	values:

$users	=	DB::table('users')

											->whereBetween('votes',	[1,	100])

											->get();

whereNotBetween	/	orWhereNotBetween

The	whereNotBetween	method	verifies	that	a	column's	value	lies	outside	of	two	values:

$users	=	DB::table('users')

																				->whereNotBetween('votes',	[1,	100])

																				->get();

whereIn	/	whereNotIn	/	orWhereIn	/	orWhereNotIn

The	whereIn	method	verifies	that	a	given	column's	value	is	contained	within	the	given	array:

$users	=	DB::table('users')

																				->whereIn('id',	[1,	2,	3])

																				->get();

The	whereNotIn	method	verifies	that	the	given	column's	value	is	not	contained	in	the	given	array:

$users	=	DB::table('users')

																				->whereNotIn('id',	[1,	2,	3])

																				->get();

NOTE	If	you	are	adding	a	huge	array	of	integer	bindings	to	your	query,	the	whereIntegerInRaw	or	
whereIntegerNotInRaw	methods	may	be	used	to	greatly	reduce	your	memory	usage.

whereNull	/	whereNotNull	/	orWhereNull	/	orWhereNotNull

The	whereNull	method	verifies	that	the	value	of	the	given	column	is	NULL:

$users	=	DB::table('users')

																				->whereNull('updated_at')

																				->get();

The	whereNotNull	method	verifies	that	the	column's	value	is	not	NULL:

$users	=	DB::table('users')

																				->whereNotNull('updated_at')

																				->get();

whereDate	/	whereMonth	/	whereDay	/	whereYear	/	whereTime

The	whereDate	method	may	be	used	to	compare	a	column's	value	against	a	date:

$users	=	DB::table('users')

																->whereDate('created_at',	'2016-12-31')

																->get();

The	whereMonth	method	may	be	used	to	compare	a	column's	value	against	a	specific	month	of	a	year:

Laravel	Documentation	-	7.x	/	Query	Builder 387

$users	=	DB::table('users')

																->whereMonth('created_at',	'12')

																->get();

The	whereDay	method	may	be	used	to	compare	a	column's	value	against	a	specific	day	of	a	month:

$users	=	DB::table('users')

																->whereDay('created_at',	'31')

																->get();

The	whereYear	method	may	be	used	to	compare	a	column's	value	against	a	specific	year:

$users	=	DB::table('users')

																->whereYear('created_at',	'2016')

																->get();

The	whereTime	method	may	be	used	to	compare	a	column's	value	against	a	specific	time:

$users	=	DB::table('users')

																->whereTime('created_at',	'=',	'11:20:45')

																->get();

whereColumn	/	orWhereColumn

The	whereColumn	method	may	be	used	to	verify	that	two	columns	are	equal:

$users	=	DB::table('users')

																->whereColumn('first_name',	'last_name')

																->get();

You	may	also	pass	a	comparison	operator	to	the	method:

$users	=	DB::table('users')

																->whereColumn('updated_at',	'>',	'created_at')

																->get();

The	whereColumn	method	can	also	be	passed	an	array	of	multiple	conditions.	These	conditions	will	be	joined
using	the	and	operator:

$users	=	DB::table('users')

																->whereColumn([

																				['first_name',	'=',	'last_name'],

																				['updated_at',	'>',	'created_at'],

])->get();

Parameter	Grouping

Sometimes	you	may	need	to	create	more	advanced	where	clauses	such	as	"where	exists"	clauses	or	nested
parameter	groupings.	The	Laravel	query	builder	can	handle	these	as	well.	To	get	started,	let's	look	at	an
example	of	grouping	constraints	within	parenthesis:

$users	=	DB::table('users')

											->where('name',	'=',	'John')

											->where(function	($query)	{

															$query->where('votes',	'>',	100)

																					->orWhere('title',	'=',	'Admin');

											})

											->get();

As	you	can	see,	passing	a	Closure	into	the	where	method	instructs	the	query	builder	to	begin	a	constraint	group.
The	Closure	will	receive	a	query	builder	instance	which	you	can	use	to	set	the	constraints	that	should	be
contained	within	the	parenthesis	group.	The	example	above	will	produce	the	following	SQL:

select	*	from	users	where	name	=	'John'	and	(votes	>	100	or	title	=	'Admin')

TIP	You	should	always	group	orWhere	calls	in	order	to	avoid	unexpected	behavior	when	global	scopes	are
applied.

Where	Exists	Clauses

Laravel	Documentation	-	7.x	/	Query	Builder 388

The	whereExists	method	allows	you	to	write	where	exists	SQL	clauses.	The	whereExists	method	accepts	a	
Closure	argument,	which	will	receive	a	query	builder	instance	allowing	you	to	define	the	query	that	should	be
placed	inside	of	the	"exists"	clause:

$users	=	DB::table('users')

											->whereExists(function	($query)	{

															$query->select(DB::raw(1))

																					->from('orders')

																					->whereRaw('orders.user_id	=	users.id');

											})

											->get();

The	query	above	will	produce	the	following	SQL:

select	*	from	users

where	exists	(

				select	1	from	orders	where	orders.user_id	=	users.id

)

Subquery	Where	Clauses

Sometimes	you	may	need	to	construct	a	where	clause	that	compares	the	results	of	a	subquery	to	a	given	value.
You	may	accomplish	this	by	passing	a	Closure	and	a	value	to	the	where	method.	For	example,	the	following
query	will	retrieve	all	users	who	have	a	recent	"membership"	of	a	given	type;

use	App\User;

$users	=	User::where(function	($query)	{

				$query->select('type')

								->from('membership')

								->whereColumn('user_id',	'users.id')

								->orderByDesc('start_date')

								->limit(1);

},	'Pro')->get();

JSON	Where	Clauses

Laravel	also	supports	querying	JSON	column	types	on	databases	that	provide	support	for	JSON	column	types.
Currently,	this	includes	MySQL	5.7,	PostgreSQL,	SQL	Server	2016,	and	SQLite	3.9.0	(with	the	JSON1
extension).	To	query	a	JSON	column,	use	the	->	operator:

$users	=	DB::table('users')

																->where('options->language',	'en')

																->get();

$users	=	DB::table('users')

																->where('preferences->dining->meal',	'salad')

																->get();

You	may	use	whereJsonContains	to	query	JSON	arrays	(not	supported	on	SQLite):

$users	=	DB::table('users')

																->whereJsonContains('options->languages',	'en')

																->get();

MySQL	and	PostgreSQL	support	whereJsonContains	with	multiple	values:

$users	=	DB::table('users')

																->whereJsonContains('options->languages',	['en',	'de'])

																->get();

You	may	use	whereJsonLength	to	query	JSON	arrays	by	their	length:

$users	=	DB::table('users')

																->whereJsonLength('options->languages',	0)

																->get();

$users	=	DB::table('users')

																->whereJsonLength('options->languages',	'>',	1)

																->get();

Laravel	Documentation	-	7.x	/	Query	Builder 389

https://www.sqlite.org/json1.html

Ordering,	Grouping,	Limit	&	Offset

orderBy

The	orderBy	method	allows	you	to	sort	the	result	of	the	query	by	a	given	column.	The	first	argument	to	the	
orderBy	method	should	be	the	column	you	wish	to	sort	by,	while	the	second	argument	controls	the	direction	of
the	sort	and	may	be	either	asc	or	desc:

$users	=	DB::table('users')

																->orderBy('name',	'desc')

																->get();

																

If	you	need	to	sort	by	multiple	columns,	you	may	invoke	orderBy	as	many	times	as	needed:

$users	=	DB::table('users')

																->orderBy('name',	'desc')

																->orderBy('email',	'asc')

																->get();

latest	/	oldest

The	latest	and	oldest	methods	allow	you	to	easily	order	results	by	date.	By	default,	result	will	be	ordered	by
the	created_at	column.	Or,	you	may	pass	the	column	name	that	you	wish	to	sort	by:

$user	=	DB::table('users')

																->latest()

																->first();

inRandomOrder

The	inRandomOrder	method	may	be	used	to	sort	the	query	results	randomly.	For	example,	you	may	use	this
method	to	fetch	a	random	user:

$randomUser	=	DB::table('users')

																->inRandomOrder()

																->first();

reorder

The	reorder	method	allows	you	to	remove	all	the	existing	orders	and	optionally	apply	a	new	order.	For
example,	you	can	remove	all	the	existing	orders:

$query	=	DB::table('users')->orderBy('name');

$unorderedUsers	=	$query->reorder()->get();

To	remove	all	existing	orders	and	apply	a	new	order,	provide	the	column	and	direction	as	arguments	to	the
method:

$query	=	DB::table('users')->orderBy('name');

$usersOrderedByEmail	=	$query->reorder('email',	'desc')->get();

groupBy	/	having

The	groupBy	and	having	methods	may	be	used	to	group	the	query	results.	The	having	method's	signature	is
similar	to	that	of	the	where	method:

$users	=	DB::table('users')

																->groupBy('account_id')

																->having('account_id',	'>',	100)

																->get();

You	may	pass	multiple	arguments	to	the	groupBy	method	to	group	by	multiple	columns:

Laravel	Documentation	-	7.x	/	Query	Builder 390

$users	=	DB::table('users')

																->groupBy('first_name',	'status')

																->having('account_id',	'>',	100)

																->get();

For	more	advanced	having	statements,	see	the	havingRaw	method.

skip	/	take

To	limit	the	number	of	results	returned	from	the	query,	or	to	skip	a	given	number	of	results	in	the	query,	you
may	use	the	skip	and	take	methods:

$users	=	DB::table('users')->skip(10)->take(5)->get();

Alternatively,	you	may	use	the	limit	and	offset	methods:

$users	=	DB::table('users')

																->offset(10)

																->limit(5)

																->get();

Conditional	Clauses

Sometimes	you	may	want	clauses	to	apply	to	a	query	only	when	something	else	is	true.	For	instance	you	may
only	want	to	apply	a	where	statement	if	a	given	input	value	is	present	on	the	incoming	request.	You	may
accomplish	this	using	the	when	method:

$role	=	$request->input('role');

$users	=	DB::table('users')

																->when($role,	function	($query,	$role)	{

																				return	$query->where('role_id',	$role);

																})

																->get();

The	when	method	only	executes	the	given	Closure	when	the	first	parameter	is	true.	If	the	first	parameter	is	
false,	the	Closure	will	not	be	executed.

You	may	pass	another	Closure	as	the	third	parameter	to	the	when	method.	This	Closure	will	execute	if	the	first
parameter	evaluates	as	false.	To	illustrate	how	this	feature	may	be	used,	we	will	use	it	to	configure	the	default
sorting	of	a	query:

$sortBy	=	null;

$users	=	DB::table('users')

																->when($sortBy,	function	($query,	$sortBy)	{

																				return	$query->orderBy($sortBy);

																},	function	($query)	{

																				return	$query->orderBy('name');

																})

																->get();

Inserts

The	query	builder	also	provides	an	insert	method	for	inserting	records	into	the	database	table.	The	insert
method	accepts	an	array	of	column	names	and	values:

DB::table('users')->insert(

				['email'	=>	'john@example.com',	'votes'	=>	0]

);

You	may	even	insert	several	records	into	the	table	with	a	single	call	to	insert	by	passing	an	array	of	arrays.
Each	array	represents	a	row	to	be	inserted	into	the	table:

DB::table('users')->insert([

				['email'	=>	'taylor@example.com',	'votes'	=>	0],

				['email'	=>	'dayle@example.com',	'votes'	=>	0],

]);

Laravel	Documentation	-	7.x	/	Query	Builder 391

The	insertOrIgnore	method	will	ignore	duplicate	record	errors	while	inserting	records	into	the	database:

DB::table('users')->insertOrIgnore([

				['id'	=>	1,	'email'	=>	'taylor@example.com'],

				['id'	=>	2,	'email'	=>	'dayle@example.com'],

]);

Auto-Incrementing	IDs

If	the	table	has	an	auto-incrementing	id,	use	the	insertGetId	method	to	insert	a	record	and	then	retrieve	the	ID:

$id	=	DB::table('users')->insertGetId(

				['email'	=>	'john@example.com',	'votes'	=>	0]

);

NOTE	When	using	PostgreSQL	the	insertGetId	method	expects	the	auto-incrementing	column	to	be
named	id.	If	you	would	like	to	retrieve	the	ID	from	a	different	"sequence",	you	may	pass	the	column	name
as	the	second	parameter	to	the	insertGetId	method.

Updates

In	addition	to	inserting	records	into	the	database,	the	query	builder	can	also	update	existing	records	using	the	
update	method.	The	update	method,	like	the	insert	method,	accepts	an	array	of	column	and	value	pairs
containing	the	columns	to	be	updated.	You	may	constrain	the	update	query	using	where	clauses:

$affected	=	DB::table('users')

														->where('id',	1)

														->update(['votes'	=>	1]);

Update	Or	Insert

Sometimes	you	may	want	to	update	an	existing	record	in	the	database	or	create	it	if	no	matching	record	exists.
In	this	scenario,	the	updateOrInsert	method	may	be	used.	The	updateOrInsert	method	accepts	two	arguments:
an	array	of	conditions	by	which	to	find	the	record,	and	an	array	of	column	and	value	pairs	containing	the
columns	to	be	updated.

The	updateOrInsert	method	will	first	attempt	to	locate	a	matching	database	record	using	the	first	argument's
column	and	value	pairs.	If	the	record	exists,	it	will	be	updated	with	the	values	in	the	second	argument.	If	the
record	can	not	be	found,	a	new	record	will	be	inserted	with	the	merged	attributes	of	both	arguments:

DB::table('users')

				->updateOrInsert(

								['email'	=>	'john@example.com',	'name'	=>	'John'],

								['votes'	=>	'2']

);

Updating	JSON	Columns

When	updating	a	JSON	column,	you	should	use	->	syntax	to	access	the	appropriate	key	in	the	JSON	object.
This	operation	is	supported	on	MySQL	5.7+	and	PostgreSQL	9.5+:

$affected	=	DB::table('users')

														->where('id',	1)

														->update(['options->enabled'	=>	true]);

Increment	&	Decrement

The	query	builder	also	provides	convenient	methods	for	incrementing	or	decrementing	the	value	of	a	given
column.	This	is	a	shortcut,	providing	a	more	expressive	and	terse	interface	compared	to	manually	writing	the	
update	statement.

Both	of	these	methods	accept	at	least	one	argument:	the	column	to	modify.	A	second	argument	may	optionally
be	passed	to	control	the	amount	by	which	the	column	should	be	incremented	or	decremented:

DB::table('users')->increment('votes');

Laravel	Documentation	-	7.x	/	Query	Builder 392

DB::table('users')->increment('votes',	5);

DB::table('users')->decrement('votes');

DB::table('users')->decrement('votes',	5);

You	may	also	specify	additional	columns	to	update	during	the	operation:

DB::table('users')->increment('votes',	1,	['name'	=>	'John']);

NOTE	Model	events	are	not	fired	when	using	the	increment	and	decrement	methods.

Deletes

The	query	builder	may	also	be	used	to	delete	records	from	the	table	via	the	delete	method.	You	may	constrain	
delete	statements	by	adding	where	clauses	before	calling	the	delete	method:

DB::table('users')->delete();

DB::table('users')->where('votes',	'>',	100)->delete();

If	you	wish	to	truncate	the	entire	table,	which	will	remove	all	rows	and	reset	the	auto-incrementing	ID	to	zero,
you	may	use	the	truncate	method:

DB::table('users')->truncate();

Pessimistic	Locking

The	query	builder	also	includes	a	few	functions	to	help	you	do	"pessimistic	locking"	on	your	select	statements.
To	run	the	statement	with	a	"shared	lock",	you	may	use	the	sharedLock	method	on	a	query.	A	shared	lock
prevents	the	selected	rows	from	being	modified	until	your	transaction	commits:

DB::table('users')->where('votes',	'>',	100)->sharedLock()->get();

Alternatively,	you	may	use	the	lockForUpdate	method.	A	"for	update"	lock	prevents	the	rows	from	being
modified	or	from	being	selected	with	another	shared	lock:

DB::table('users')->where('votes',	'>',	100)->lockForUpdate()->get();

Debugging

You	may	use	the	dd	or	dump	methods	while	building	a	query	to	dump	the	query	bindings	and	SQL.	The	dd
method	will	display	the	debug	information	and	then	stop	executing	the	request.	The	dump	method	will	display
the	debug	information	but	allow	the	request	to	keep	executing:

DB::table('users')->where('votes',	'>',	100)->dd();

DB::table('users')->where('votes',	'>',	100)->dump();

Laravel	Documentation	-	7.x	/	Query	Builder 393

Database

Database:	Pagination
Introduction
Basic	Usage

Paginating	Query	Builder	Results
Paginating	Eloquent	Results
Manually	Creating	A	Paginator

Displaying	Pagination	Results
Converting	Results	To	JSON

Customizing	The	Pagination	View
Using	Tailwind

Paginator	Instance	Methods

Introduction

In	other	frameworks,	pagination	can	be	very	painful.	Laravel's	paginator	is	integrated	with	the	query	builder
and	Eloquent	ORM	and	provides	convenient,	easy-to-use	pagination	of	database	results	out	of	the	box.	The
HTML	generated	by	the	paginator	is	compatible	with	the	Bootstrap	CSS	framework.

Basic	Usage

Paginating	Query	Builder	Results

There	are	several	ways	to	paginate	items.	The	simplest	is	by	using	the	paginate	method	on	the	query	builder	or
an	Eloquent	query.	The	paginate	method	automatically	takes	care	of	setting	the	proper	limit	and	offset	based	on
the	current	page	being	viewed	by	the	user.	By	default,	the	current	page	is	detected	by	the	value	of	the	page
query	string	argument	on	the	HTTP	request.	This	value	is	automatically	detected	by	Laravel,	and	is	also
automatically	inserted	into	links	generated	by	the	paginator.

In	this	example,	the	only	argument	passed	to	the	paginate	method	is	the	number	of	items	you	would	like
displayed	"per	page".	In	this	case,	let's	specify	that	we	would	like	to	display	15	items	per	page:

<?php

namespace	App\Http\Controllers;

use	App\Http\Controllers\Controller;

use	Illuminate\Support\Facades\DB;

class	UserController	extends	Controller

{

				/**

					*	Show	all	of	the	users	for	the	application.

					*

					*	@return	Response

					*/

				public	function	index()

				{

								$users	=	DB::table('users')->paginate(15);

								return	view('user.index',	['users'	=>	$users]);

				}

}

NOTE	Currently,	pagination	operations	that	use	a	groupBy	statement	cannot	be	executed	efficiently	by
Laravel.	If	you	need	to	use	a	groupBy	with	a	paginated	result	set,	it	is	recommended	that	you	query	the
database	and	create	a	paginator	manually.

"Simple	Pagination"

If	you	only	need	to	display	simple	"Next"	and	"Previous"	links	in	your	pagination	view,	you	may	use	the	

Laravel	Documentation	-	7.x	/	Pagination 394

https://getbootstrap.com/

simplePaginate	method	to	perform	a	more	efficient	query.	This	is	very	useful	for	large	datasets	when	you	do	not
need	to	display	a	link	for	each	page	number	when	rendering	your	view:

$users	=	DB::table('users')->simplePaginate(15);

Paginating	Eloquent	Results

You	may	also	paginate	Eloquent	queries.	In	this	example,	we	will	paginate	the	User	model	with	15	items	per
page.	As	you	can	see,	the	syntax	is	nearly	identical	to	paginating	query	builder	results:

$users	=	App\User::paginate(15);

You	may	call	paginate	after	setting	other	constraints	on	the	query,	such	as	where	clauses:

$users	=	User::where('votes',	'>',	100)->paginate(15);

You	may	also	use	the	simplePaginate	method	when	paginating	Eloquent	models:

$users	=	User::where('votes',	'>',	100)->simplePaginate(15);

Manually	Creating	A	Paginator

Sometimes	you	may	wish	to	create	a	pagination	instance	manually,	passing	it	an	array	of	items.	You	may	do	so
by	creating	either	an	Illuminate\Pagination\Paginator	or	Illuminate\Pagination\LengthAwarePaginator
instance,	depending	on	your	needs.

The	Paginator	class	does	not	need	to	know	the	total	number	of	items	in	the	result	set;	however,	because	of	this,
the	class	does	not	have	methods	for	retrieving	the	index	of	the	last	page.	The	LengthAwarePaginator	accepts
almost	the	same	arguments	as	the	Paginator;	however,	it	does	require	a	count	of	the	total	number	of	items	in	the
result	set.

In	other	words,	the	Paginator	corresponds	to	the	simplePaginate	method	on	the	query	builder	and	Eloquent,
while	the	LengthAwarePaginator	corresponds	to	the	paginate	method.

NOTE	When	manually	creating	a	paginator	instance,	you	should	manually	"slice"	the	array	of	results	you
pass	to	the	paginator.	If	you're	unsure	how	to	do	this,	check	out	the	array_slice	PHP	function.

Displaying	Pagination	Results

When	calling	the	paginate	method,	you	will	receive	an	instance	of	
Illuminate\Pagination\LengthAwarePaginator.	When	calling	the	simplePaginate	method,	you	will	receive	an
instance	of	Illuminate\Pagination\Paginator.	These	objects	provide	several	methods	that	describe	the	result	set.
In	addition	to	these	helpers	methods,	the	paginator	instances	are	iterators	and	may	be	looped	as	an	array.	So,
once	you	have	retrieved	the	results,	you	may	display	the	results	and	render	the	page	links	using	Blade:

<div	class="container">

				@foreach	($users	as	$user)

								{{	$user->name	}}

				@endforeach

</div>

{{	$users->links()	}}

The	links	method	will	render	the	links	to	the	rest	of	the	pages	in	the	result	set.	Each	of	these	links	will	already
contain	the	proper	page	query	string	variable.	Remember,	the	HTML	generated	by	the	links	method	is
compatible	with	the	Bootstrap	CSS	framework.

Customizing	The	Paginator	URI

The	withPath	method	allows	you	to	customize	the	URI	used	by	the	paginator	when	generating	links.	For
example,	if	you	want	the	paginator	to	generate	links	like	http://example.com/custom/url?page=N,	you	should
pass	custom/url	to	the	withPath	method:

Laravel	Documentation	-	7.x	/	Pagination 395

https://secure.php.net/manual/en/function.array-slice.php
https://getbootstrap.com

Route::get('users',	function	()	{

				$users	=	App\User::paginate(15);

				$users->withPath('custom/url');

				//

});

Appending	To	Pagination	Links

You	may	append	to	the	query	string	of	pagination	links	using	the	appends	method.	For	example,	to	append	
sort=votes	to	each	pagination	link,	you	should	make	the	following	call	to	appends:

{{	$users->appends(['sort'	=>	'votes'])->links()	}}

If	you	wish	to	append	all	current	query	string	values	to	the	pagination	links	you	may	use	the	withQueryString
method:

{{	$users->withQueryString()->links()	}}

If	you	wish	to	append	a	"hash	fragment"	to	the	paginator's	URLs,	you	may	use	the	fragment	method.	For
example,	to	append	#foo	to	the	end	of	each	pagination	link,	make	the	following	call	to	the	fragment	method:

{{	$users->fragment('foo')->links()	}}

Adjusting	The	Pagination	Link	Window

You	may	control	how	many	additional	links	are	displayed	on	each	side	of	the	paginator's	URL	"window".	By
default,	three	links	are	displayed	on	each	side	of	the	primary	paginator	links.	However,	you	may	control	this
number	using	the	onEachSide	method:

{{	$users->onEachSide(5)->links()	}}

Converting	Results	To	JSON

The	Laravel	paginator	result	classes	implement	the	Illuminate\Contracts\Support\Jsonable	Interface	contract
and	expose	the	toJson	method,	so	it's	very	easy	to	convert	your	pagination	results	to	JSON.	You	may	also
convert	a	paginator	instance	to	JSON	by	returning	it	from	a	route	or	controller	action:

Route::get('users',	function	()	{

				return	App\User::paginate();

});

The	JSON	from	the	paginator	will	include	meta	information	such	as	total,	current_page,	last_page,	and	more.
The	actual	result	objects	will	be	available	via	the	data	key	in	the	JSON	array.	Here	is	an	example	of	the	JSON
created	by	returning	a	paginator	instance	from	a	route:

{

			"total":	50,

			"per_page":	15,

			"current_page":	1,

			"last_page":	4,

			"first_page_url":	"http://laravel.app?page=1",

			"last_page_url":	"http://laravel.app?page=4",

			"next_page_url":	"http://laravel.app?page=2",

			"prev_page_url":	null,

			"path":	"http://laravel.app",

			"from":	1,

			"to":	15,

			"data":[

								{

												//	Result	Object

								},

								{

												//	Result	Object

								}

]

}

Laravel	Documentation	-	7.x	/	Pagination 396

Customizing	The	Pagination	View

By	default,	the	views	rendered	to	display	the	pagination	links	are	compatible	with	the	Bootstrap	CSS
framework.	However,	if	you	are	not	using	Bootstrap,	you	are	free	to	define	your	own	views	to	render	these
links.	When	calling	the	links	method	on	a	paginator	instance,	pass	the	view	name	as	the	first	argument	to	the
method:

{{	$paginator->links('view.name')	}}

//	Passing	data	to	the	view...

{{	$paginator->links('view.name',	['foo'	=>	'bar'])	}}

However,	the	easiest	way	to	customize	the	pagination	views	is	by	exporting	them	to	your	
resources/views/vendor	directory	using	the	vendor:publish	command:

php	artisan	vendor:publish	--tag=laravel-pagination

This	command	will	place	the	views	in	the	resources/views/vendor/pagination	directory.	The	bootstrap-
4.blade.php	file	within	this	directory	corresponds	to	the	default	pagination	view.	You	may	edit	this	file	to
modify	the	pagination	HTML.

If	you	would	like	to	designate	a	different	file	as	the	default	pagination	view,	you	may	use	the	paginator's	
defaultView	and	defaultSimpleView	methods	within	your	AppServiceProvider:

use	Illuminate\Pagination\Paginator;

public	function	boot()

{

				Paginator::defaultView('view-name');

				Paginator::defaultSimpleView('view-name');

}

Using	Tailwind

Laravel	includes	pagination	views	built	using	Tailwind	CSS.	To	use	these	views	instead	of	the	default	Bootstrap
views,	you	may	call	the	paginator's	useTailwind	method	within	your	AppServiceProvider:

use	Illuminate\Pagination\Paginator;

public	function	boot()

{

				Paginator::useTailwind();

}

Paginator	Instance	Methods

Each	paginator	instance	provides	additional	pagination	information	via	the	following	methods:

Method Description
$paginator->count() Get	the	number	of	items	for	the	current	page.
$paginator->currentPage() Get	the	current	page	number.
$paginator->firstItem() Get	the	result	number	of	the	first	item	in	the	results.
$paginator->getOptions() Get	the	paginator	options.
$paginator->getUrlRange($start,	

$end)
Create	a	range	of	pagination	URLs.

$paginator->hasPages() Determine	if	there	are	enough	items	to	split	into	multiple	pages.
$paginator->hasMorePages() Determine	if	there	is	more	items	in	the	data	store.
$paginator->items() Get	the	items	for	the	current	page.
$paginator->lastItem() Get	the	result	number	of	the	last	item	in	the	results.
$paginator->lastPage() Get	the	page	number	of	the	last	available	page.	(Not	available	when	using	simplePaginate).
$paginator->nextPageUrl() Get	the	URL	for	the	next	page.
$paginator->onFirstPage() Determine	if	the	paginator	is	on	the	first	page.

Laravel	Documentation	-	7.x	/	Pagination 397

https://tailwindcss.com/

$paginator->perPage() The	number	of	items	to	be	shown	per	page.
$paginator->previousPageUrl() Get	the	URL	for	the	previous	page.

$paginator->total()
Determine	the	total	number	of	matching	items	in	the	data	store.	(Not	available	when	using	
simplePaginate).

$paginator->url($page) Get	the	URL	for	a	given	page	number.
$paginator->getPageName() Get	the	query	string	variable	used	to	store	the	page.
$paginator->setPageName($name) Set	the	query	string	variable	used	to	store	the	page.

Laravel	Documentation	-	7.x	/	Pagination 398

Database

Database:	Migrations
Introduction
Generating	Migrations
Migration	Structure
Running	Migrations

Rolling	Back	Migrations
Tables

Creating	Tables
Renaming	/	Dropping	Tables

Columns
Creating	Columns
Column	Modifiers
Modifying	Columns
Dropping	Columns

Indexes
Creating	Indexes
Renaming	Indexes
Dropping	Indexes
Foreign	Key	Constraints

Introduction

Migrations	are	like	version	control	for	your	database,	allowing	your	team	to	modify	and	share	the	application's
database	schema.	Migrations	are	typically	paired	with	Laravel's	schema	builder	to	build	your	application's
database	schema.	If	you	have	ever	had	to	tell	a	teammate	to	manually	add	a	column	to	their	local	database
schema,	you've	faced	the	problem	that	database	migrations	solve.

The	Laravel	Schema	facade	provides	database	agnostic	support	for	creating	and	manipulating	tables	across	all	of
Laravel's	supported	database	systems.

Generating	Migrations

To	create	a	migration,	use	the	make:migration	Artisan	command:

php	artisan	make:migration	create_users_table

The	new	migration	will	be	placed	in	your	database/migrations	directory.	Each	migration	file	name	contains	a
timestamp,	which	allows	Laravel	to	determine	the	order	of	the	migrations.

TIP	Migration	stubs	may	be	customized	using	stub	publishing

The	--table	and	--create	options	may	also	be	used	to	indicate	the	name	of	the	table	and	whether	or	not	the
migration	will	be	creating	a	new	table.	These	options	pre-fill	the	generated	migration	stub	file	with	the
specified	table:

php	artisan	make:migration	create_users_table	--create=users

php	artisan	make:migration	add_votes_to_users_table	--table=users

If	you	would	like	to	specify	a	custom	output	path	for	the	generated	migration,	you	may	use	the	--path	option
when	executing	the	make:migration	command.	The	given	path	should	be	relative	to	your	application's	base	path.

Migration	Structure

A	migration	class	contains	two	methods:	up	and	down.	The	up	method	is	used	to	add	new	tables,	columns,	or
indexes	to	your	database,	while	the	down	method	should	reverse	the	operations	performed	by	the	up	method.

Laravel	Documentation	-	7.x	/	Migrations 399

Within	both	of	these	methods	you	may	use	the	Laravel	schema	builder	to	expressively	create	and	modify	tables.
To	learn	about	all	of	the	methods	available	on	the	Schema	builder,	check	out	its	documentation.	For	example,	the
following	migration	creates	a	flights	table:

<?php

use	Illuminate\Database\Migrations\Migration;

use	Illuminate\Database\Schema\Blueprint;

use	Illuminate\Support\Facades\Schema;

class	CreateFlightsTable	extends	Migration

{

				/**

					*	Run	the	migrations.

					*

					*	@return	void

					*/

				public	function	up()

				{

								Schema::create('flights',	function	(Blueprint	$table)	{

												$table->id();

												$table->string('name');

												$table->string('airline');

												$table->timestamps();

								});

				}

				/**

					*	Reverse	the	migrations.

					*

					*	@return	void

					*/

				public	function	down()

				{

								Schema::drop('flights');

				}

}

Running	Migrations

To	run	all	of	your	outstanding	migrations,	execute	the	migrate	Artisan	command:

php	artisan	migrate

NOTE	If	you	are	using	the	Homestead	virtual	machine,	you	should	run	this	command	from	within	your
virtual	machine.

Forcing	Migrations	To	Run	In	Production

Some	migration	operations	are	destructive,	which	means	they	may	cause	you	to	lose	data.	In	order	to	protect
you	from	running	these	commands	against	your	production	database,	you	will	be	prompted	for	confirmation
before	the	commands	are	executed.	To	force	the	commands	to	run	without	a	prompt,	use	the	--force	flag:

php	artisan	migrate	--force

Rolling	Back	Migrations

To	roll	back	the	latest	migration	operation,	you	may	use	the	rollback	command.	This	command	rolls	back	the
last	"batch"	of	migrations,	which	may	include	multiple	migration	files:

php	artisan	migrate:rollback

You	may	roll	back	a	limited	number	of	migrations	by	providing	the	step	option	to	the	rollback	command.	For
example,	the	following	command	will	roll	back	the	last	five	migrations:

php	artisan	migrate:rollback	--step=5

The	migrate:reset	command	will	roll	back	all	of	your	application's	migrations:

php	artisan	migrate:reset

Laravel	Documentation	-	7.x	/	Migrations 400

Roll	Back	&	Migrate	Using	A	Single	Command

The	migrate:refresh	command	will	roll	back	all	of	your	migrations	and	then	execute	the	migrate	command.
This	command	effectively	re-creates	your	entire	database:

php	artisan	migrate:refresh

//	Refresh	the	database	and	run	all	database	seeds...

php	artisan	migrate:refresh	--seed

You	may	roll	back	&	re-migrate	a	limited	number	of	migrations	by	providing	the	step	option	to	the	refresh
command.	For	example,	the	following	command	will	roll	back	&	re-migrate	the	last	five	migrations:

php	artisan	migrate:refresh	--step=5

Drop	All	Tables	&	Migrate

The	migrate:fresh	command	will	drop	all	tables	from	the	database	and	then	execute	the	migrate	command:

php	artisan	migrate:fresh

php	artisan	migrate:fresh	--seed

Tables

Creating	Tables

To	create	a	new	database	table,	use	the	create	method	on	the	Schema	facade.	The	create	method	accepts	two
arguments:	the	first	is	the	name	of	the	table,	while	the	second	is	a	Closure	which	receives	a	Blueprint	object
that	may	be	used	to	define	the	new	table:

Schema::create('users',	function	(Blueprint	$table)	{

				$table->id();

});

When	creating	the	table,	you	may	use	any	of	the	schema	builder's	column	methods	to	define	the	table's
columns.

Checking	For	Table	/	Column	Existence

You	may	check	for	the	existence	of	a	table	or	column	using	the	hasTable	and	hasColumn	methods:

if	(Schema::hasTable('users'))	{

				//

}

if	(Schema::hasColumn('users',	'email'))	{

				//

}

Database	Connection	&	Table	Options

If	you	want	to	perform	a	schema	operation	on	a	database	connection	that	is	not	your	default	connection,	use	the
connection	method:

Schema::connection('foo')->create('users',	function	(Blueprint	$table)	{

				$table->id();

});

You	may	use	the	following	commands	on	the	schema	builder	to	define	the	table's	options:

Command Description
$table->engine	=	'InnoDB'; Specify	the	table	storage	engine	(MySQL).
$table->charset	=	'utf8mb4'; Specify	a	default	character	set	for	the	table	(MySQL).
$table->collation	=	'utf8mb4_unicode_ci'; Specify	a	default	collation	for	the	table	(MySQL).

Laravel	Documentation	-	7.x	/	Migrations 401

$table->temporary(); Create	a	temporary	table	(except	SQL	Server).

Renaming	/	Dropping	Tables

To	rename	an	existing	database	table,	use	the	rename	method:

Schema::rename($from,	$to);

To	drop	an	existing	table,	you	may	use	the	drop	or	dropIfExists	methods:

Schema::drop('users');

Schema::dropIfExists('users');

Renaming	Tables	With	Foreign	Keys

Before	renaming	a	table,	you	should	verify	that	any	foreign	key	constraints	on	the	table	have	an	explicit	name
in	your	migration	files	instead	of	letting	Laravel	assign	a	convention	based	name.	Otherwise,	the	foreign	key
constraint	name	will	refer	to	the	old	table	name.

Columns

Creating	Columns

The	table	method	on	the	Schema	facade	may	be	used	to	update	existing	tables.	Like	the	create	method,	the	table
method	accepts	two	arguments:	the	name	of	the	table	and	a	Closure	that	receives	a	Blueprint	instance	you	may
use	to	add	columns	to	the	table:

Schema::table('users',	function	(Blueprint	$table)	{

				$table->string('email');

});

Available	Column	Types

The	schema	builder	contains	a	variety	of	column	types	that	you	may	specify	when	building	your	tables:

Command Description
$table->id(); Alias	of	$table->bigIncrements('id').
$table->foreignId('user_id'); Alias	of	$table->unsignedBigInteger('user_id').
$table->bigIncrements('id'); Auto-incrementing	UNSIGNED	BIGINT	(primary	key)	equivalent	column.
$table->bigInteger('votes'); BIGINT	equivalent	column.
$table->binary('data'); BLOB	equivalent	column.
$table->boolean('confirmed'); BOOLEAN	equivalent	column.
$table->char('name',	100); CHAR	equivalent	column	with	a	length.
$table->date('created_at'); DATE	equivalent	column.
$table->dateTime('created_at',	0); DATETIME	equivalent	column	with	precision	(total	digits).
$table->dateTimeTz('created_at',	

0);
DATETIME	(with	timezone)	equivalent	column	with	precision	(total	digits).

$table->decimal('amount',	8,	2); DECIMAL	equivalent	column	with	precision	(total	digits)	and	scale	(decimal	digits).
$table->double('amount',	8,	2); DOUBLE	equivalent	column	with	precision	(total	digits)	and	scale	(decimal	digits).
$table->enum('level',	['easy',	

'hard']);
ENUM	equivalent	column.

$table->float('amount',	8,	2); FLOAT	equivalent	column	with	a	precision	(total	digits)	and	scale	(decimal	digits).
$table->geometry('positions'); GEOMETRY	equivalent	column.
$table-

>geometryCollection('positions');
GEOMETRYCOLLECTION	equivalent	column.

$table->increments('id'); Auto-incrementing	UNSIGNED	INTEGER	(primary	key)	equivalent	column.
$table->integer('votes'); INTEGER	equivalent	column.
$table->ipAddress('visitor'); IP	address	equivalent	column.
$table->json('options'); JSON	equivalent	column.

Laravel	Documentation	-	7.x	/	Migrations 402

$table->jsonb('options'); JSONB	equivalent	column.
$table->lineString('positions'); LINESTRING	equivalent	column.
$table->longText('description'); LONGTEXT	equivalent	column.
$table->macAddress('device'); MAC	address	equivalent	column.
$table->mediumIncrements('id'); Auto-incrementing	UNSIGNED	MEDIUMINT	(primary	key)	equivalent	column.
$table->mediumInteger('votes'); MEDIUMINT	equivalent	column.
$table->mediumText('description'); MEDIUMTEXT	equivalent	column.

$table->morphs('taggable');
Adds	taggable_id	UNSIGNED	BIGINT	and	taggable_type	VARCHAR	equivalent
columns.

$table->uuidMorphs('taggable');
Adds	taggable_id	CHAR(36)	and	taggable_type	VARCHAR(255)	UUID	equivalent
columns.

$table-

>multiLineString('positions');
MULTILINESTRING	equivalent	column.

$table->multiPoint('positions'); MULTIPOINT	equivalent	column.
$table->multiPolygon('positions'); MULTIPOLYGON	equivalent	column.
$table->nullableMorphs('taggable'); Adds	nullable	versions	of	morphs()	columns.
$table-

>nullableUuidMorphs('taggable');
Adds	nullable	versions	of	uuidMorphs()	columns.

$table->nullableTimestamps(0); Alias	of	timestamps()	method.
$table->point('position'); POINT	equivalent	column.
$table->polygon('positions'); POLYGON	equivalent	column.
$table->rememberToken(); Adds	a	nullable	remember_token	VARCHAR(100)	equivalent	column.
$table->set('flavors',	

['strawberry',	'vanilla']);
SET	equivalent	column.

$table->smallIncrements('id'); Auto-incrementing	UNSIGNED	SMALLINT	(primary	key)	equivalent	column.
$table->smallInteger('votes'); SMALLINT	equivalent	column.
$table->softDeletes('deleted_at',	

0);

Adds	a	nullable	deleted_at	TIMESTAMP	equivalent	column	for	soft	deletes	with
precision	(total	digits).

$table->softDeletesTz('deleted_at',	

0);

Adds	a	nullable	deleted_at	TIMESTAMP	(with	timezone)	equivalent	column	for	soft
deletes	with	precision	(total	digits).

$table->string('name',	100); VARCHAR	equivalent	column	with	a	length.
$table->text('description'); TEXT	equivalent	column.
$table->time('sunrise',	0); TIME	equivalent	column	with	precision	(total	digits).
$table->timeTz('sunrise',	0); TIME	(with	timezone)	equivalent	column	with	precision	(total	digits).
$table->timestamp('added_on',	0); TIMESTAMP	equivalent	column	with	precision	(total	digits).
$table->timestampTz('added_on',	0); TIMESTAMP	(with	timezone)	equivalent	column	with	precision	(total	digits).

$table->timestamps(0);
Adds	nullable	created_at	and	updated_at	TIMESTAMP	equivalent	columns	with
precision	(total	digits).

$table->timestampsTz(0);
Adds	nullable	created_at	and	updated_at	TIMESTAMP	(with	timezone)	equivalent
columns	with	precision	(total	digits).

$table->tinyIncrements('id'); Auto-incrementing	UNSIGNED	TINYINT	(primary	key)	equivalent	column.
$table->tinyInteger('votes'); TINYINT	equivalent	column.
$table-

>unsignedBigInteger('votes');
UNSIGNED	BIGINT	equivalent	column.

$table->unsignedDecimal('amount',	

8,	2);

UNSIGNED	DECIMAL	equivalent	column	with	a	precision	(total	digits)	and	scale
(decimal	digits).

$table->unsignedInteger('votes'); UNSIGNED	INTEGER	equivalent	column.
$table-

>unsignedMediumInteger('votes');
UNSIGNED	MEDIUMINT	equivalent	column.

$table-

>unsignedSmallInteger('votes');
UNSIGNED	SMALLINT	equivalent	column.

$table-

>unsignedTinyInteger('votes');
UNSIGNED	TINYINT	equivalent	column.

$table->uuid('id'); UUID	equivalent	column.
$table->year('birth_year'); YEAR	equivalent	column.

Column	Modifiers

In	addition	to	the	column	types	listed	above,	there	are	several	column	"modifiers"	you	may	use	while	adding	a

Laravel	Documentation	-	7.x	/	Migrations 403

column	to	a	database	table.	For	example,	to	make	the	column	"nullable",	you	may	use	the	nullable	method:

Schema::table('users',	function	(Blueprint	$table)	{

				$table->string('email')->nullable();

});

The	following	list	contains	all	available	column	modifiers.	This	list	does	not	include	the	index	modifiers:

Modifier Description
->after('column') Place	the	column	"after"	another	column	(MySQL)
->autoIncrement() Set	INTEGER	columns	as	auto-increment	(primary	key)
->charset('utf8mb4') Specify	a	character	set	for	the	column	(MySQL)
->collation('utf8mb4_unicode_ci') Specify	a	collation	for	the	column	(MySQL/PostgreSQL/SQL	Server)
->comment('my	comment') Add	a	comment	to	a	column	(MySQL/PostgreSQL)
->default($value) Specify	a	"default"	value	for	the	column
->first() Place	the	column	"first"	in	the	table	(MySQL)
->nullable($value	=	true) Allows	(by	default)	NULL	values	to	be	inserted	into	the	column
->storedAs($expression) Create	a	stored	generated	column	(MySQL)
->unsigned() Set	INTEGER	columns	as	UNSIGNED	(MySQL)
->useCurrent() Set	TIMESTAMP	columns	to	use	CURRENT_TIMESTAMP	as	default	value
->virtualAs($expression) Create	a	virtual	generated	column	(MySQL)
->generatedAs($expression) Create	an	identity	column	with	specified	sequence	options	(PostgreSQL)
->always() Defines	the	precedence	of	sequence	values	over	input	for	an	identity	column	(PostgreSQL)

Default	Expressions

The	default	modifier	accepts	a	value	or	an	\Illuminate\Database\Query\Expression	instance.	Using	an	
Expression	instance	will	prevent	wrapping	the	value	in	quotes	and	allow	you	to	use	database	specific	functions.
One	situation	where	this	is	particularly	useful	is	when	you	need	to	assign	default	values	to	JSON	columns:

<?php

use	Illuminate\Support\Facades\Schema;

use	Illuminate\Database\Schema\Blueprint;

use	Illuminate\Database\Query\Expression;

use	Illuminate\Database\Migrations\Migration;

class	CreateFlightsTable	extends	Migration

{

				/**

					*	Run	the	migrations.

					*

					*	@return	void

					*/

				public	function	up()

				{

								Schema::create('flights',	function	(Blueprint	$table)	{

												$table->id();

												$table->json('movies')->default(new	Expression('(JSON_ARRAY())'));

												$table->timestamps();

								});

				}

}

NOTE	Support	for	default	expressions	depends	on	your	database	driver,	database	version,	and	the	field
type.	Please	refer	to	the	appropriate	documentation	for	compatibility.	Also	note	that	using	database
specific	functions	may	tightly	couple	you	to	a	specific	driver.

Modifying	Columns

Prerequisites

Before	modifying	a	column,	be	sure	to	add	the	doctrine/dbal	dependency	to	your	composer.json	file.	The
Doctrine	DBAL	library	is	used	to	determine	the	current	state	of	the	column	and	create	the	SQL	queries	needed
to	make	the	required	adjustments:

Laravel	Documentation	-	7.x	/	Migrations 404

composer	require	doctrine/dbal

Updating	Column	Attributes

The	change	method	allows	you	to	modify	type	and	attributes	of	existing	columns.	For	example,	you	may	wish
to	increase	the	size	of	a	string	column.	To	see	the	change	method	in	action,	let's	increase	the	size	of	the	name
column	from	25	to	50:

Schema::table('users',	function	(Blueprint	$table)	{

				$table->string('name',	50)->change();

});

We	could	also	modify	a	column	to	be	nullable:

Schema::table('users',	function	(Blueprint	$table)	{

				$table->string('name',	50)->nullable()->change();

});

NOTE	Only	the	following	column	types	can	be	"changed":	bigInteger,	binary,	boolean,	date,	dateTime,
dateTimeTz,	decimal,	integer,	json,	longText,	mediumText,	smallInteger,	string,	text,	time,
unsignedBigInteger,	unsignedInteger,	unsignedSmallInteger	and	uuid.

Renaming	Columns

To	rename	a	column,	you	may	use	the	renameColumn	method	on	the	schema	builder.	Before	renaming	a	column,
be	sure	to	add	the	doctrine/dbal	dependency	to	your	composer.json	file:

Schema::table('users',	function	(Blueprint	$table)	{

				$table->renameColumn('from',	'to');

});

NOTE	Renaming	any	column	in	a	table	that	also	has	a	column	of	type	enum	is	not	currently	supported.

Dropping	Columns

To	drop	a	column,	use	the	dropColumn	method	on	the	schema	builder.	Before	dropping	columns	from	a	SQLite
database,	you	will	need	to	add	the	doctrine/dbal	dependency	to	your	composer.json	file	and	run	the	composer	
update	command	in	your	terminal	to	install	the	library:

Schema::table('users',	function	(Blueprint	$table)	{

				$table->dropColumn('votes');

});

You	may	drop	multiple	columns	from	a	table	by	passing	an	array	of	column	names	to	the	dropColumn	method:

Schema::table('users',	function	(Blueprint	$table)	{

				$table->dropColumn(['votes',	'avatar',	'location']);

});

NOTE	Dropping	or	modifying	multiple	columns	within	a	single	migration	while	using	a	SQLite	database
is	not	supported.

Available	Command	Aliases

Command Description
$table->dropMorphs('morphable'); Drop	the	morphable_id	and	morphable_type	columns.
$table->dropRememberToken(); Drop	the	remember_token	column.
$table->dropSoftDeletes(); Drop	the	deleted_at	column.
$table->dropSoftDeletesTz(); Alias	of	dropSoftDeletes()	method.
$table->dropTimestamps(); Drop	the	created_at	and	updated_at	columns.
$table->dropTimestampsTz(); Alias	of	dropTimestamps()	method.

Indexes

Laravel	Documentation	-	7.x	/	Migrations 405

Creating	Indexes

The	Laravel	schema	builder	supports	several	types	of	indexes.	The	following	example	creates	a	new	email
column	and	specifies	that	its	values	should	be	unique.	To	create	the	index,	we	can	chain	the	unique	method	onto
the	column	definition:

$table->string('email')->unique();

Alternatively,	you	may	create	the	index	after	defining	the	column.	For	example:

$table->unique('email');

You	may	even	pass	an	array	of	columns	to	an	index	method	to	create	a	compound	(or	composite)	index:

$table->index(['account_id',	'created_at']);

Laravel	will	automatically	generate	an	index	name	based	on	the	table,	column	names,	and	the	index	type,	but
you	may	pass	a	second	argument	to	the	method	to	specify	the	index	name	yourself:

$table->unique('email',	'unique_email');

Available	Index	Types

Each	index	method	accepts	an	optional	second	argument	to	specify	the	name	of	the	index.	If	omitted,	the	name
will	be	derived	from	the	names	of	the	table	and	column(s)	used	for	the	index,	as	well	as	the	index	type.

Command Description
$table->primary('id'); Adds	a	primary	key.
$table->primary(['id',	'parent_id']); Adds	composite	keys.
$table->unique('email'); Adds	a	unique	index.
$table->index('state'); Adds	a	plain	index.
$table->spatialIndex('location'); Adds	a	spatial	index.	(except	SQLite)

Index	Lengths	&	MySQL	/	MariaDB

Laravel	uses	the	utf8mb4	character	set	by	default,	which	includes	support	for	storing	"emojis"	in	the	database.	If
you	are	running	a	version	of	MySQL	older	than	the	5.7.7	release	or	MariaDB	older	than	the	10.2.2	release,	you
may	need	to	manually	configure	the	default	string	length	generated	by	migrations	in	order	for	MySQL	to	create
indexes	for	them.	You	may	configure	this	by	calling	the	Schema::defaultStringLength	method	within	your	
AppServiceProvider:

use	Illuminate\Support\Facades\Schema;

/**

	*	Bootstrap	any	application	services.

	*

	*	@return	void

	*/

public	function	boot()

{

				Schema::defaultStringLength(191);

}

Alternatively,	you	may	enable	the	innodb_large_prefix	option	for	your	database.	Refer	to	your	database's
documentation	for	instructions	on	how	to	properly	enable	this	option.

Renaming	Indexes

To	rename	an	index,	you	may	use	the	renameIndex	method.	This	method	accepts	the	current	index	name	as	its
first	argument	and	the	desired	new	name	as	its	second	argument:

$table->renameIndex('from',	'to')

Laravel	Documentation	-	7.x	/	Migrations 406

Dropping	Indexes

To	drop	an	index,	you	must	specify	the	index's	name.	By	default,	Laravel	automatically	assigns	an	index	name
based	on	the	table	name,	the	name	of	the	indexed	column,	and	the	index	type.	Here	are	some	examples:

Command Description
$table->dropPrimary('users_id_primary'); Drop	a	primary	key	from	the	"users"	table.
$table->dropUnique('users_email_unique'); Drop	a	unique	index	from	the	"users"	table.
$table->dropIndex('geo_state_index'); Drop	a	basic	index	from	the	"geo"	table.
$table->dropSpatialIndex('geo_location_spatialindex'); Drop	a	spatial	index	from	the	"geo"	table	(except	SQLite).

If	you	pass	an	array	of	columns	into	a	method	that	drops	indexes,	the	conventional	index	name	will	be
generated	based	on	the	table	name,	columns	and	key	type:

Schema::table('geo',	function	(Blueprint	$table)	{

				$table->dropIndex(['state']);	//	Drops	index	'geo_state_index'

});

Foreign	Key	Constraints

Laravel	also	provides	support	for	creating	foreign	key	constraints,	which	are	used	to	force	referential	integrity
at	the	database	level.	For	example,	let's	define	a	user_id	column	on	the	posts	table	that	references	the	id
column	on	a	users	table:

Schema::table('posts',	function	(Blueprint	$table)	{

				$table->unsignedBigInteger('user_id');

				$table->foreign('user_id')->references('id')->on('users');

});

Since	this	syntax	is	rather	verbose,	Laravel	provides	additional,	terser	methods	that	use	convention	to	provide	a
better	developer	experience.	The	example	above	could	be	written	like	so:

Schema::table('posts',	function	(Blueprint	$table)	{

				$table->foreignId('user_id')->constrained();

});

The	foreignId	method	is	an	alias	for	unsignedBigInteger	while	the	constrained	method	will	use	convention	to
determine	the	table	and	column	name	being	referenced.	If	your	table	name	does	not	match	the	convention,	you
may	specify	the	table	name	by	passing	it	as	an	argument	to	the	constrained	method:

Schema::table('posts',	function	(Blueprint	$table)	{

				$table->foreignId('user_id')->constrained('users');

});

You	may	also	specify	the	desired	action	for	the	"on	delete"	and	"on	update"	properties	of	the	constraint:

$table->foreignId('user_id')

						->constrained()

						->onDelete('cascade');

Any	additional	column	modifiers	must	be	called	before	constrained:

$table->foreignId('user_id')

						->nullable()

						->constrained();

To	drop	a	foreign	key,	you	may	use	the	dropForeign	method,	passing	the	foreign	key	constraint	to	be	deleted	as
an	argument.	Foreign	key	constraints	use	the	same	naming	convention	as	indexes,	based	on	the	table	name	and
the	columns	in	the	constraint,	followed	by	a	"_foreign"	suffix:

$table->dropForeign('posts_user_id_foreign');

Alternatively,	you	may	pass	an	array	containing	the	column	name	that	holds	the	foreign	key	to	the	dropForeign
method.	The	array	will	be	automatically	converted	using	the	constraint	name	convention	used	by	Laravel's
schema	builder:

Laravel	Documentation	-	7.x	/	Migrations 407

$table->dropForeign(['user_id']);

You	may	enable	or	disable	foreign	key	constraints	within	your	migrations	by	using	the	following	methods:

Schema::enableForeignKeyConstraints();

Schema::disableForeignKeyConstraints();

NOTE	SQLite	disables	foreign	key	constraints	by	default.	When	using	SQLite,	make	sure	to	enable
foreign	key	support	in	your	database	configuration	before	attempting	to	create	them	in	your	migrations.	In
addition,	SQLite	only	supports	foreign	keys	upon	creation	of	the	table	and	not	when	tables	are	altered.

Laravel	Documentation	-	7.x	/	Migrations 408

https://www.sqlite.org/omitted.html

Database

Database:	Seeding
Introduction
Writing	Seeders

Using	Model	Factories
Calling	Additional	Seeders

Running	Seeders

Introduction

Laravel	includes	a	simple	method	of	seeding	your	database	with	test	data	using	seed	classes.	All	seed	classes
are	stored	in	the	database/seeds	directory.	Seed	classes	may	have	any	name	you	wish,	but	probably	should
follow	some	sensible	convention,	such	as	UserSeeder,	etc.	By	default,	a	DatabaseSeeder	class	is	defined	for	you.
From	this	class,	you	may	use	the	call	method	to	run	other	seed	classes,	allowing	you	to	control	the	seeding
order.

Writing	Seeders

To	generate	a	seeder,	execute	the	make:seeder	Artisan	command.	All	seeders	generated	by	the	framework	will
be	placed	in	the	database/seeds	directory:

php	artisan	make:seeder	UserSeeder

A	seeder	class	only	contains	one	method	by	default:	run.	This	method	is	called	when	the	db:seed	Artisan
command	is	executed.	Within	the	run	method,	you	may	insert	data	into	your	database	however	you	wish.	You
may	use	the	query	builder	to	manually	insert	data	or	you	may	use	Eloquent	model	factories.

TIP	Mass	assignment	protection	is	automatically	disabled	during	database	seeding.

As	an	example,	let's	modify	the	default	DatabaseSeeder	class	and	add	a	database	insert	statement	to	the	run
method:

<?php

use	Illuminate\Database\Seeder;

use	Illuminate\Support\Facades\DB;

use	Illuminate\Support\Facades\Hash;

use	Illuminate\Support\Str;

class	DatabaseSeeder	extends	Seeder

{

				/**

					*	Run	the	database	seeds.

					*

					*	@return	void

					*/

				public	function	run()

				{

								DB::table('users')->insert([

												'name'	=>	Str::random(10),

												'email'	=>	Str::random(10).'@gmail.com',

												'password'	=>	Hash::make('password'),

]);

				}

}

TIP	You	may	type-hint	any	dependencies	you	need	within	the	run	method's	signature.	They	will
automatically	be	resolved	via	the	Laravel	service	container.

Using	Model	Factories

Of	course,	manually	specifying	the	attributes	for	each	model	seed	is	cumbersome.	Instead,	you	can	use	model
factories	to	conveniently	generate	large	amounts	of	database	records.	First,	review	the	model	factory

Laravel	Documentation	-	7.x	/	Seeding 409

documentation	to	learn	how	to	define	your	factories.	Once	you	have	defined	your	factories,	you	may	use	the	
factory	helper	function	to	insert	records	into	your	database.

For	example,	let's	create	50	users	and	attach	a	relationship	to	each	user:

/**

	*	Run	the	database	seeds.

	*

	*	@return	void

	*/

public	function	run()

{

				factory(App\User::class,	50)->create()->each(function	($user)	{

								$user->posts()->save(factory(App\Post::class)->make());

				});

}

Calling	Additional	Seeders

Within	the	DatabaseSeeder	class,	you	may	use	the	call	method	to	execute	additional	seed	classes.	Using	the	
call	method	allows	you	to	break	up	your	database	seeding	into	multiple	files	so	that	no	single	seeder	class
becomes	overwhelmingly	large.	Pass	the	name	of	the	seeder	class	you	wish	to	run:

/**

	*	Run	the	database	seeds.

	*

	*	@return	void

	*/

public	function	run()

{

				$this->call([

								UserSeeder::class,

								PostSeeder::class,

								CommentSeeder::class,

]);

}

Running	Seeders

Once	you	have	written	your	seeder,	you	may	need	to	regenerate	Composer's	autoloader	using	the	dump-autoload
command:

composer	dump-autoload

Now	you	may	use	the	db:seed	Artisan	command	to	seed	your	database.	By	default,	the	db:seed	command	runs
the	DatabaseSeeder	class,	which	may	be	used	to	call	other	seed	classes.	However,	you	may	use	the	--class
option	to	specify	a	specific	seeder	class	to	run	individually:

php	artisan	db:seed

php	artisan	db:seed	--class=UserSeeder

You	may	also	seed	your	database	using	the	migrate:fresh	command,	which	will	drop	all	tables	and	re-run	all	of
your	migrations.	This	command	is	useful	for	completely	re-building	your	database:

php	artisan	migrate:fresh	--seed

Forcing	Seeders	To	Run	In	Production

Some	seeding	operations	may	cause	you	to	alter	or	lose	data.	In	order	to	protect	you	from	running	seeding
commands	against	your	production	database,	you	will	be	prompted	for	confirmation	before	the	seeders	are
executed.	To	force	the	seeders	to	run	without	a	prompt,	use	the	--force	flag:

php	artisan	db:seed	--force

Laravel	Documentation	-	7.x	/	Seeding 410

Database

Redis
Introduction

Configuration
Predis
PhpRedis

Interacting	With	Redis
Pipelining	Commands

Pub	/	Sub

Introduction

Redis	is	an	open	source,	advanced	key-value	store.	It	is	often	referred	to	as	a	data	structure	server	since	keys
can	contain	strings,	hashes,	lists,	sets,	and	sorted	sets.

Before	using	Redis	with	Laravel,	we	encourage	you	to	install	and	use	the	PhpRedis	PHP	extension	via	PECL.
The	extension	is	more	complex	to	install	but	may	yield	better	performance	for	applications	that	make	heavy	use
of	Redis.

Alternatively,	you	can	install	the	predis/predis	package	via	Composer:

composer	require	predis/predis

Configuration

The	Redis	configuration	for	your	application	is	located	in	the	config/database.php	configuration	file.	Within
this	file,	you	will	see	a	redis	array	containing	the	Redis	servers	utilized	by	your	application:

'redis'	=>	[

				'client'	=>	env('REDIS_CLIENT',	'phpredis'),

				'default'	=>	[

								'host'	=>	env('REDIS_HOST',	'127.0.0.1'),

								'password'	=>	env('REDIS_PASSWORD',	null),

								'port'	=>	env('REDIS_PORT',	6379),

								'database'	=>	env('REDIS_DB',	0),

],

				'cache'	=>	[

								'host'	=>	env('REDIS_HOST',	'127.0.0.1'),

								'password'	=>	env('REDIS_PASSWORD',	null),

								'port'	=>	env('REDIS_PORT',	6379),

								'database'	=>	env('REDIS_CACHE_DB',	1),

],

],

The	default	server	configuration	should	suffice	for	development.	However,	you	are	free	to	modify	this	array
based	on	your	environment.	Each	Redis	server	defined	in	your	configuration	file	is	required	to	have	a	name,
host,	and	port	unless	you	define	a	single	URL	to	represent	the	Redis	connection:

'redis'	=>	[

				'client'	=>	env('REDIS_CLIENT',	'phpredis'),

				'default'	=>	[

								'url'	=>	'tcp://127.0.0.1:6379?database=0',

],

				'cache'	=>	[

								'url'	=>	'tls://user:password@127.0.0.1:6380?database=1',

],

],

Laravel	Documentation	-	7.x	/	Redis 411

https://redis.io
https://redis.io/topics/data-types#strings
https://redis.io/topics/data-types#hashes
https://redis.io/topics/data-types#lists
https://redis.io/topics/data-types#sets
https://redis.io/topics/data-types#sorted-sets
https://github.com/phpredis/phpredis

Configuring	The	Connection	Scheme

By	default,	Redis	clients	will	use	the	tcp	scheme	when	connecting	to	your	Redis	servers;	however,	you	may	use
TLS	/	SSL	encryption	by	specifying	a	scheme	configuration	option	in	your	Redis	server	configuration:

'redis'	=>	[

				'client'	=>	env('REDIS_CLIENT',	'phpredis'),

				'default'	=>	[

								'scheme'	=>	'tls',

								'host'	=>	env('REDIS_HOST',	'127.0.0.1'),

								'password'	=>	env('REDIS_PASSWORD',	null),

								'port'	=>	env('REDIS_PORT',	6379),

								'database'	=>	env('REDIS_DB',	0),

],

],

Configuring	Clusters

If	your	application	is	utilizing	a	cluster	of	Redis	servers,	you	should	define	these	clusters	within	a	clusters	key
of	your	Redis	configuration:

'redis'	=>	[

				'client'	=>	env('REDIS_CLIENT',	'phpredis'),

				'clusters'	=>	[

								'default'	=>	[

												[

																'host'	=>	env('REDIS_HOST',	'localhost'),

																'password'	=>	env('REDIS_PASSWORD',	null),

																'port'	=>	env('REDIS_PORT',	6379),

																'database'	=>	0,

],

],

],

],

By	default,	clusters	will	perform	client-side	sharding	across	your	nodes,	allowing	you	to	pool	nodes	and	create
a	large	amount	of	available	RAM.	However,	note	that	client-side	sharding	does	not	handle	failover;	therefore,	is
primarily	suited	for	cached	data	that	is	available	from	another	primary	data	store.	If	you	would	like	to	use
native	Redis	clustering,	you	should	specify	this	in	the	options	key	of	your	Redis	configuration:

'redis'	=>	[

				'client'	=>	env('REDIS_CLIENT',	'phpredis'),

				'options'	=>	[

								'cluster'	=>	env('REDIS_CLUSTER',	'redis'),

],

				'clusters'	=>	[

								//	...

],

],

Predis

To	utilize	the	Predis	extension,	you	should	change	the	REDIS_CLIENT	environment	variable	from	phpredis	to	
predis:

'redis'	=>	[

				'client'	=>	env('REDIS_CLIENT',	'predis'),

				//	Rest	of	Redis	configuration...

],

Laravel	Documentation	-	7.x	/	Redis 412

In	addition	to	the	default	host,	port,	database,	and	password	server	configuration	options,	Predis	supports
additional	connection	parameters	that	may	be	defined	for	each	of	your	Redis	servers.	To	utilize	these	additional
configuration	options,	add	them	to	your	Redis	server	configuration	in	the	config/database.php	configuration
file:

'default'	=>	[

				'host'	=>	env('REDIS_HOST',	'localhost'),

				'password'	=>	env('REDIS_PASSWORD',	null),

				'port'	=>	env('REDIS_PORT',	6379),

				'database'	=>	0,

				'read_write_timeout'	=>	60,

],

PhpRedis

The	PhpRedis	extension	is	configured	as	default	at	REDIS_CLIENT	env	and	in	your	config/database.php:

'redis'	=>	[

				'client'	=>	env('REDIS_CLIENT',	'phpredis'),

				//	Rest	of	Redis	configuration...

],

If	you	plan	to	use	PhpRedis	extension	along	with	the	Redis	Facade	alias,	you	should	rename	it	to	something
else,	like	RedisManager,	to	avoid	a	collision	with	the	Redis	class.	You	can	do	that	in	the	aliases	section	of	your	
app.php	config	file.

'RedisManager'	=>	Illuminate\Support\Facades\Redis::class,

In	addition	to	the	default	host,	port,	database,	and	password	server	configuration	options,	PhpRedis	supports	the
following	additional	connection	parameters:	persistent,	prefix,	read_timeout,	timeout,	and	context.	You	may
add	any	of	these	options	to	your	Redis	server	configuration	in	the	config/database.php	configuration	file:

'default'	=>	[

				'host'	=>	env('REDIS_HOST',	'localhost'),

				'password'	=>	env('REDIS_PASSWORD',	null),

				'port'	=>	env('REDIS_PORT',	6379),

				'database'	=>	0,

				'read_timeout'	=>	60,

				'context'	=>	[

								//	'auth'	=>	['username',	'secret'],

								//	'stream'	=>	['verify_peer'	=>	false],

],

],

The	Redis	Facade

To	avoid	class	naming	collisions	with	the	Redis	PHP	extension	itself,	you	will	need	to	delete	or	rename	the	
Illuminate\Support\Facades\Redis	facade	alias	from	your	app	configuration	file's	aliases	array.	Generally,	you
should	remove	this	alias	entirely	and	only	reference	the	facade	by	its	fully	qualified	class	name	while	using	the
Redis	PHP	extension.

Interacting	With	Redis

You	may	interact	with	Redis	by	calling	various	methods	on	the	Redis	facade.	The	Redis	facade	supports
dynamic	methods,	meaning	you	may	call	any	Redis	command	on	the	facade	and	the	command	will	be	passed
directly	to	Redis.	In	this	example,	we	will	call	the	Redis	GET	command	by	calling	the	get	method	on	the	Redis
facade:

<?php

namespace	App\Http\Controllers;

use	App\Http\Controllers\Controller;

use	Illuminate\Support\Facades\Redis;

class	UserController	extends	Controller

{

Laravel	Documentation	-	7.x	/	Redis 413

https://github.com/nrk/predis/wiki/Connection-Parameters
https://redis.io/commands

				/**

					*	Show	the	profile	for	the	given	user.

					*

					*	@param		int		$id

					*	@return	Response

					*/

				public	function	showProfile($id)

				{

								$user	=	Redis::get('user:profile:'.$id);

								return	view('user.profile',	['user'	=>	$user]);

				}

}

As	mentioned	above,	you	may	call	any	of	the	Redis	commands	on	the	Redis	facade.	Laravel	uses	magic
methods	to	pass	the	commands	to	the	Redis	server,	so	pass	the	arguments	the	Redis	command	expects:

Redis::set('name',	'Taylor');

$values	=	Redis::lrange('names',	5,	10);

Alternatively,	you	may	also	pass	commands	to	the	server	using	the	command	method,	which	accepts	the	name	of
the	command	as	its	first	argument,	and	an	array	of	values	as	its	second	argument:

$values	=	Redis::command('lrange',	['name',	5,	10]);

Using	Multiple	Redis	Connections

You	may	get	a	Redis	instance	by	calling	the	Redis::connection	method:

$redis	=	Redis::connection();

This	will	give	you	an	instance	of	the	default	Redis	server.	You	may	also	pass	the	connection	or	cluster	name	to
the	connection	method	to	get	a	specific	server	or	cluster	as	defined	in	your	Redis	configuration:

$redis	=	Redis::connection('my-connection');

Pipelining	Commands

Pipelining	should	be	used	when	you	need	to	send	many	commands	to	the	server.	The	pipeline	method	accepts
one	argument:	a	Closure	that	receives	a	Redis	instance.	You	may	issue	all	of	your	commands	to	this	Redis
instance	and	they	will	all	be	streamed	to	the	server	thus	providing	better	performance:

Redis::pipeline(function	($pipe)	{

				for	($i	=	0;	$i	<	1000;	$i++)	{

								$pipe->set("key:$i",	$i);

				}

});

Pub	/	Sub

Laravel	provides	a	convenient	interface	to	the	Redis	publish	and	subscribe	commands.	These	Redis	commands
allow	you	to	listen	for	messages	on	a	given	"channel".	You	may	publish	messages	to	the	channel	from	another
application,	or	even	using	another	programming	language,	allowing	easy	communication	between	applications
and	processes.

First,	let's	setup	a	channel	listener	using	the	subscribe	method.	We'll	place	this	method	call	within	an	Artisan
command	since	calling	the	subscribe	method	begins	a	long-running	process:

<?php

namespace	App\Console\Commands;

use	Illuminate\Console\Command;

use	Illuminate\Support\Facades\Redis;

class	RedisSubscribe	extends	Command

{

				/**

Laravel	Documentation	-	7.x	/	Redis 414

					*	The	name	and	signature	of	the	console	command.

					*

					*	@var	string

					*/

				protected	$signature	=	'redis:subscribe';

				/**

					*	The	console	command	description.

					*

					*	@var	string

					*/

				protected	$description	=	'Subscribe	to	a	Redis	channel';

				/**

					*	Execute	the	console	command.

					*

					*	@return	mixed

					*/

				public	function	handle()

				{

								Redis::subscribe(['test-channel'],	function	($message)	{

												echo	$message;

								});

				}

}

Now	we	may	publish	messages	to	the	channel	using	the	publish	method:

Route::get('publish',	function	()	{

				//	Route	logic...

				Redis::publish('test-channel',	json_encode(['foo'	=>	'bar']));

});

Wildcard	Subscriptions

Using	the	psubscribe	method,	you	may	subscribe	to	a	wildcard	channel,	which	may	be	useful	for	catching	all
messages	on	all	channels.	The	$channel	name	will	be	passed	as	the	second	argument	to	the	provided	callback	
Closure:

Redis::psubscribe(['*'],	function	($message,	$channel)	{

				echo	$message;

});

Redis::psubscribe(['users.*'],	function	($message,	$channel)	{

				echo	$message;

});

Laravel	Documentation	-	7.x	/	Redis 415

Eloquent	ORM

Eloquent:	Getting	Started
Introduction
Defining	Models

Eloquent	Model	Conventions
Default	Attribute	Values

Retrieving	Models
Collections
Chunking	Results
Advanced	Subqueries

Retrieving	Single	Models	/	Aggregates
Retrieving	Aggregates

Inserting	&	Updating	Models
Inserts
Updates
Mass	Assignment
Other	Creation	Methods

Deleting	Models
Soft	Deleting
Querying	Soft	Deleted	Models

Replicating	Models
Query	Scopes

Global	Scopes
Local	Scopes

Comparing	Models
Events

Using	Closures
Observers
Muting	Events

Introduction

The	Eloquent	ORM	included	with	Laravel	provides	a	beautiful,	simple	ActiveRecord	implementation	for
working	with	your	database.	Each	database	table	has	a	corresponding	"Model"	which	is	used	to	interact	with
that	table.	Models	allow	you	to	query	for	data	in	your	tables,	as	well	as	insert	new	records	into	the	table.

Before	getting	started,	be	sure	to	configure	a	database	connection	in	config/database.php.	For	more	information
on	configuring	your	database,	check	out	the	documentation.

Defining	Models

To	get	started,	let's	create	an	Eloquent	model.	Models	typically	live	in	the	app	directory,	but	you	are	free	to
place	them	anywhere	that	can	be	auto-loaded	according	to	your	composer.json	file.	All	Eloquent	models	extend	
Illuminate\Database\Eloquent\Model	class.

The	easiest	way	to	create	a	model	instance	is	using	the	make:model	Artisan	command:

php	artisan	make:model	Flight

If	you	would	like	to	generate	a	database	migration	when	you	generate	the	model,	you	may	use	the	--migration
or	-m	option:

php	artisan	make:model	Flight	--migration

php	artisan	make:model	Flight	-m

Eloquent	Model	Conventions

Laravel	Documentation	-	7.x	/	Eloquent	ORM 416

Now,	let's	look	at	an	example	Flight	model,	which	we	will	use	to	retrieve	and	store	information	from	our	
flights	database	table:

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

class	Flight	extends	Model

{

				//

}

Table	Names

Note	that	we	did	not	tell	Eloquent	which	table	to	use	for	our	Flight	model.	By	convention,	the	"snake	case",
plural	name	of	the	class	will	be	used	as	the	table	name	unless	another	name	is	explicitly	specified.	So,	in	this
case,	Eloquent	will	assume	the	Flight	model	stores	records	in	the	flights	table.	You	may	specify	a	custom
table	by	defining	a	table	property	on	your	model:

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

class	Flight	extends	Model

{

				/**

					*	The	table	associated	with	the	model.

					*

					*	@var	string

					*/

				protected	$table	=	'my_flights';

}

Primary	Keys

Eloquent	will	also	assume	that	each	table	has	a	primary	key	column	named	id.	You	may	define	a	protected	
$primaryKey	property	to	override	this	convention:

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

class	Flight	extends	Model

{

				/**

					*	The	primary	key	associated	with	the	table.

					*

					*	@var	string

					*/

				protected	$primaryKey	=	'flight_id';

}

In	addition,	Eloquent	assumes	that	the	primary	key	is	an	incrementing	integer	value,	which	means	that	by
default	the	primary	key	will	automatically	be	cast	to	an	int.	If	you	wish	to	use	a	non-incrementing	or	a	non-
numeric	primary	key	you	must	set	the	public	$incrementing	property	on	your	model	to	false:

<?php

class	Flight	extends	Model

{

				/**

					*	Indicates	if	the	IDs	are	auto-incrementing.

					*

					*	@var	bool

					*/

				public	$incrementing	=	false;

}

Laravel	Documentation	-	7.x	/	Eloquent	ORM 417

If	your	primary	key	is	not	an	integer,	you	should	set	the	protected	$keyType	property	on	your	model	to	string:

<?php

class	Flight	extends	Model

{

				/**

					*	The	"type"	of	the	auto-incrementing	ID.

					*

					*	@var	string

					*/

				protected	$keyType	=	'string';

}

Timestamps

By	default,	Eloquent	expects	created_at	and	updated_at	columns	to	exist	on	your	tables.	If	you	do	not	wish	to
have	these	columns	automatically	managed	by	Eloquent,	set	the	$timestamps	property	on	your	model	to	false:

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

class	Flight	extends	Model

{

				/**

					*	Indicates	if	the	model	should	be	timestamped.

					*

					*	@var	bool

					*/

				public	$timestamps	=	false;

}

If	you	need	to	customize	the	format	of	your	timestamps,	set	the	$dateFormat	property	on	your	model.	This
property	determines	how	date	attributes	are	stored	in	the	database,	as	well	as	their	format	when	the	model	is
serialized	to	an	array	or	JSON:

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

class	Flight	extends	Model

{

				/**

					*	The	storage	format	of	the	model's	date	columns.

					*

					*	@var	string

					*/

				protected	$dateFormat	=	'U';

}

If	you	need	to	customize	the	names	of	the	columns	used	to	store	the	timestamps,	you	may	set	the	CREATED_AT
and	UPDATED_AT	constants	in	your	model:

<?php

class	Flight	extends	Model

{

				const	CREATED_AT	=	'creation_date';

				const	UPDATED_AT	=	'last_update';

}

Database	Connection

By	default,	all	Eloquent	models	will	use	the	default	database	connection	configured	for	your	application.	If	you
would	like	to	specify	a	different	connection	for	the	model,	use	the	$connection	property:

<?php

namespace	App;

Laravel	Documentation	-	7.x	/	Eloquent	ORM 418

use	Illuminate\Database\Eloquent\Model;

class	Flight	extends	Model

{

				/**

					*	The	connection	name	for	the	model.

					*

					*	@var	string

					*/

				protected	$connection	=	'connection-name';

}

Default	Attribute	Values

If	you	would	like	to	define	the	default	values	for	some	of	your	model's	attributes,	you	may	define	an	
$attributes	property	on	your	model:

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

class	Flight	extends	Model

{

				/**

					*	The	model's	default	values	for	attributes.

					*

					*	@var	array

					*/

				protected	$attributes	=	[

								'delayed'	=>	false,

];

}

Retrieving	Models

Once	you	have	created	a	model	and	its	associated	database	table,	you	are	ready	to	start	retrieving	data	from
your	database.	Think	of	each	Eloquent	model	as	a	powerful	query	builder	allowing	you	to	fluently	query	the
database	table	associated	with	the	model.	For	example:

<?php

$flights	=	App\Flight::all();

foreach	($flights	as	$flight)	{

				echo	$flight->name;

}

Adding	Additional	Constraints

The	Eloquent	all	method	will	return	all	of	the	results	in	the	model's	table.	Since	each	Eloquent	model	serves	as
a	query	builder,	you	may	also	add	constraints	to	queries,	and	then	use	the	get	method	to	retrieve	the	results:

$flights	=	App\Flight::where('active',	1)

															->orderBy('name',	'desc')

															->take(10)

															->get();

TIP	Since	Eloquent	models	are	query	builders,	you	should	review	all	of	the	methods	available	on	the	query
builder.	You	may	use	any	of	these	methods	in	your	Eloquent	queries.

Refreshing	Models

You	can	refresh	models	using	the	fresh	and	refresh	methods.	The	fresh	method	will	re-retrieve	the	model	from
the	database.	The	existing	model	instance	will	not	be	affected:

$flight	=	App\Flight::where('number',	'FR	900')->first();

Laravel	Documentation	-	7.x	/	Eloquent	ORM 419

$freshFlight	=	$flight->fresh();

The	refresh	method	will	re-hydrate	the	existing	model	using	fresh	data	from	the	database.	In	addition,	all	of	its
loaded	relationships	will	be	refreshed	as	well:

$flight	=	App\Flight::where('number',	'FR	900')->first();

$flight->number	=	'FR	456';

$flight->refresh();

$flight->number;	//	"FR	900"

Collections

For	Eloquent	methods	like	all	and	get	which	retrieve	multiple	results,	an	instance	of	
Illuminate\Database\Eloquent\Collection	will	be	returned.	The	Collection	class	provides	a	variety	of	helpful
methods	for	working	with	your	Eloquent	results:

$flights	=	$flights->reject(function	($flight)	{

				return	$flight->cancelled;

});

You	may	also	loop	over	the	collection	like	an	array:

foreach	($flights	as	$flight)	{

				echo	$flight->name;

}

Chunking	Results

If	you	need	to	process	thousands	of	Eloquent	records,	use	the	chunk	command.	The	chunk	method	will	retrieve	a
"chunk"	of	Eloquent	models,	feeding	them	to	a	given	Closure	for	processing.	Using	the	chunk	method	will
conserve	memory	when	working	with	large	result	sets:

Flight::chunk(200,	function	($flights)	{

				foreach	($flights	as	$flight)	{

								//

				}

});

The	first	argument	passed	to	the	method	is	the	number	of	records	you	wish	to	receive	per	"chunk".	The	Closure
passed	as	the	second	argument	will	be	called	for	each	chunk	that	is	retrieved	from	the	database.	A	database
query	will	be	executed	to	retrieve	each	chunk	of	records	passed	to	the	Closure.

Using	Cursors

The	cursor	method	allows	you	to	iterate	through	your	database	records	using	a	cursor,	which	will	only	execute
a	single	query.	When	processing	large	amounts	of	data,	the	cursor	method	may	be	used	to	greatly	reduce	your
memory	usage:

foreach	(Flight::where('foo',	'bar')->cursor()	as	$flight)	{

				//

}

The	cursor	returns	an	Illuminate\Support\LazyCollection	instance.	Lazy	collections	allow	you	to	use	many	of
collection	methods	available	on	typical	Laravel	collections	while	only	loading	a	single	model	into	memory	at	a
time:

$users	=	App\User::cursor()->filter(function	($user)	{

				return	$user->id	>	500;

});

foreach	($users	as	$user)	{

				echo	$user->id;

}

Advanced	Subqueries

Laravel	Documentation	-	7.x	/	Eloquent	ORM 420

Subquery	Selects

Eloquent	also	offers	advanced	subquery	support,	which	allows	you	to	pull	information	from	related	tables	in	a
single	query.	For	example,	let's	imagine	that	we	have	a	table	of	flight	destinations	and	a	table	of	flights	to
destinations.	The	flights	table	contains	an	arrived_at	column	which	indicates	when	the	flight	arrived	at	the
destination.

Using	the	subquery	functionality	available	to	the	select	and	addSelect	methods,	we	can	select	all	of	the	
destinations	and	the	name	of	the	flight	that	most	recently	arrived	at	that	destination	using	a	single	query:

use	App\Destination;

use	App\Flight;

return	Destination::addSelect(['last_flight'	=>	Flight::select('name')

				->whereColumn('destination_id',	'destinations.id')

				->orderBy('arrived_at',	'desc')

				->limit(1)

])->get();

Subquery	Ordering

In	addition,	the	query	builder's	orderBy	function	supports	subqueries.	We	may	use	this	functionality	to	sort	all
destinations	based	on	when	the	last	flight	arrived	at	that	destination.	Again,	this	may	be	done	while	executing	a
single	query	against	the	database:

return	Destination::orderByDesc(

				Flight::select('arrived_at')

								->whereColumn('destination_id',	'destinations.id')

								->orderBy('arrived_at',	'desc')

								->limit(1)

)->get();

Retrieving	Single	Models	/	Aggregates

In	addition	to	retrieving	all	of	the	records	for	a	given	table,	you	may	also	retrieve	single	records	using	find,	
first,	or	firstWhere.	Instead	of	returning	a	collection	of	models,	these	methods	return	a	single	model	instance:

//	Retrieve	a	model	by	its	primary	key...

$flight	=	App\Flight::find(1);

//	Retrieve	the	first	model	matching	the	query	constraints...

$flight	=	App\Flight::where('active',	1)->first();

//	Shorthand	for	retrieving	the	first	model	matching	the	query	constraints...

$flight	=	App\Flight::firstWhere('active',	1);

You	may	also	call	the	find	method	with	an	array	of	primary	keys,	which	will	return	a	collection	of	the	matching
records:

$flights	=	App\Flight::find([1,	2,	3]);

Sometimes	you	may	wish	to	retrieve	the	first	result	of	a	query	or	perform	some	other	action	if	no	results	are
found.	The	firstOr	method	will	return	the	first	result	that	is	found	or,	if	no	results	are	found,	execute	the	given
callback.	The	result	of	the	callback	will	be	considered	the	result	of	the	firstOr	method:

$model	=	App\Flight::where('legs',	'>',	100)->firstOr(function	()	{

								//	...

});

The	firstOr	method	also	accepts	an	array	of	columns	to	retrieve:

$model	=	App\Flight::where('legs',	'>',	100)

												->firstOr(['id',	'legs'],	function	()	{

																//	...

												});

Not	Found	Exceptions

Laravel	Documentation	-	7.x	/	Eloquent	ORM 421

Sometimes	you	may	wish	to	throw	an	exception	if	a	model	is	not	found.	This	is	particularly	useful	in	routes	or
controllers.	The	findOrFail	and	firstOrFail	methods	will	retrieve	the	first	result	of	the	query;	however,	if	no
result	is	found,	a	Illuminate\Database\Eloquent\ModelNotFoundException	will	be	thrown:

$model	=	App\Flight::findOrFail(1);

$model	=	App\Flight::where('legs',	'>',	100)->firstOrFail();

If	the	exception	is	not	caught,	a	404	HTTP	response	is	automatically	sent	back	to	the	user.	It	is	not	necessary	to
write	explicit	checks	to	return	404	responses	when	using	these	methods:

Route::get('/api/flights/{id}',	function	($id)	{

				return	App\Flight::findOrFail($id);

});

Retrieving	Aggregates

You	may	also	use	the	count,	sum,	max,	and	other	aggregate	methods	provided	by	the	query	builder.	These
methods	return	the	appropriate	scalar	value	instead	of	a	full	model	instance:

$count	=	App\Flight::where('active',	1)->count();

$max	=	App\Flight::where('active',	1)->max('price');

Inserting	&	Updating	Models

Inserts

To	create	a	new	record	in	the	database,	create	a	new	model	instance,	set	attributes	on	the	model,	then	call	the	
save	method:

<?php

namespace	App\Http\Controllers;

use	App\Http\Controllers\Controller;

use	App\Flight;

use	Illuminate\Http\Request;

class	FlightController	extends	Controller

{

				/**

					*	Create	a	new	flight	instance.

					*

					*	@param		Request		$request

					*	@return	Response

					*/

				public	function	store(Request	$request)

				{

								//	Validate	the	request...

								$flight	=	new	Flight;

								$flight->name	=	$request->name;

								$flight->save();

				}

}

In	this	example,	we	assign	the	name	parameter	from	the	incoming	HTTP	request	to	the	name	attribute	of	the	
App\Flight	model	instance.	When	we	call	the	save	method,	a	record	will	be	inserted	into	the	database.	The	
created_at	and	updated_at	timestamps	will	automatically	be	set	when	the	save	method	is	called,	so	there	is	no
need	to	set	them	manually.

Updates

The	save	method	may	also	be	used	to	update	models	that	already	exist	in	the	database.	To	update	a	model,	you
should	retrieve	it,	set	any	attributes	you	wish	to	update,	and	then	call	the	save	method.	Again,	the	updated_at

Laravel	Documentation	-	7.x	/	Eloquent	ORM 422

timestamp	will	automatically	be	updated,	so	there	is	no	need	to	manually	set	its	value:

$flight	=	App\Flight::find(1);

$flight->name	=	'New	Flight	Name';

$flight->save();

Mass	Updates

Updates	can	also	be	performed	against	any	number	of	models	that	match	a	given	query.	In	this	example,	all
flights	that	are	active	and	have	a	destination	of	San	Diego	will	be	marked	as	delayed:

App\Flight::where('active',	1)

										->where('destination',	'San	Diego')

										->update(['delayed'	=>	1]);

The	update	method	expects	an	array	of	column	and	value	pairs	representing	the	columns	that	should	be
updated.

NOTE	When	issuing	a	mass	update	via	Eloquent,	the	saving,	saved,	updating,	and	updated	model	events
will	not	be	fired	for	the	updated	models.	This	is	because	the	models	are	never	actually	retrieved	when
issuing	a	mass	update.

Examining	Attribute	Changes

Eloquent	provides	the	isDirty,	isClean,	and	wasChanged	methods	to	examine	the	internal	state	of	your	model	and
determine	how	its	attributes	have	changed	from	when	they	were	originally	loaded.

The	isDirty	method	determines	if	any	attributes	have	been	changed	since	the	model	was	loaded.	You	may	pass
a	specific	attribute	name	to	determine	if	a	particular	attribute	is	dirty.	The	isClean	method	is	the	opposite	of	
isDirty	and	also	accepts	an	optional	attribute	argument:

$user	=	User::create([

				'first_name'	=>	'Taylor',

				'last_name'	=>	'Otwell',

				'title'	=>	'Developer',

]);

$user->title	=	'Painter';

$user->isDirty();	//	true

$user->isDirty('title');	//	true

$user->isDirty('first_name');	//	false

$user->isClean();	//	false

$user->isClean('title');	//	false

$user->isClean('first_name');	//	true

$user->save();

$user->isDirty();	//	false

$user->isClean();	//	true

The	wasChanged	method	determines	if	any	attributes	were	changed	when	the	model	was	last	saved	within	the
current	request	cycle.	You	may	also	pass	an	attribute	name	to	see	if	a	particular	attribute	was	changed:

$user	=	User::create([

				'first_name'	=>	'Taylor',

				'last_name'	=>	'Otwell',

				'title'	=>	'Developer',

]);

$user->title	=	'Painter';

$user->save();

$user->wasChanged();	//	true

$user->wasChanged('title');	//	true

$user->wasChanged('first_name');	//	false

The	getOriginal	method	returns	an	array	containing	the	original	attributes	of	the	model	regardless	of	any

Laravel	Documentation	-	7.x	/	Eloquent	ORM 423

changes	since	the	model	was	loaded.	You	may	pass	a	specific	attribute	name	to	get	the	original	value	of	a
particular	attribute:

$user	=	User::find(1);

$user->name;	//	John

$user->email;	//	john@example.com

$user->name	=	"Jack";

$user->name;	//	Jack

$user->getOriginal('name');	//	John

$user->getOriginal();	//	Array	of	original	attributes...

Mass	Assignment

You	may	also	use	the	create	method	to	save	a	new	model	in	a	single	line.	The	inserted	model	instance	will	be
returned	to	you	from	the	method.	However,	before	doing	so,	you	will	need	to	specify	either	a	fillable	or	
guarded	attribute	on	the	model,	as	all	Eloquent	models	protect	against	mass-assignment	by	default.

A	mass-assignment	vulnerability	occurs	when	a	user	passes	an	unexpected	HTTP	parameter	through	a	request,
and	that	parameter	changes	a	column	in	your	database	you	did	not	expect.	For	example,	a	malicious	user	might
send	an	is_admin	parameter	through	an	HTTP	request,	which	is	then	passed	into	your	model's	create	method,
allowing	the	user	to	escalate	themselves	to	an	administrator.

So,	to	get	started,	you	should	define	which	model	attributes	you	want	to	make	mass	assignable.	You	may	do
this	using	the	$fillable	property	on	the	model.	For	example,	let's	make	the	name	attribute	of	our	Flight	model
mass	assignable:

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

class	Flight	extends	Model

{

				/**

					*	The	attributes	that	are	mass	assignable.

					*

					*	@var	array

					*/

				protected	$fillable	=	['name'];

}

Once	we	have	made	the	attributes	mass	assignable,	we	can	use	the	create	method	to	insert	a	new	record	in	the
database.	The	create	method	returns	the	saved	model	instance:

$flight	=	App\Flight::create(['name'	=>	'Flight	10']);

If	you	already	have	a	model	instance,	you	may	use	the	fill	method	to	populate	it	with	an	array	of	attributes:

$flight->fill(['name'	=>	'Flight	22']);

Allowing	Mass	Assignment

If	you	would	like	to	make	all	attributes	mass	assignable,	you	may	define	the	$guarded	property	as	an	empty
array:

/**

	*	The	attributes	that	aren't	mass	assignable.

	*

	*	@var	array

	*/

protected	$guarded	=	[];

Other	Creation	Methods

firstOrCreate/	firstOrNew

Laravel	Documentation	-	7.x	/	Eloquent	ORM 424

There	are	two	other	methods	you	may	use	to	create	models	by	mass	assigning	attributes:	firstOrCreate	and	
firstOrNew.	The	firstOrCreate	method	will	attempt	to	locate	a	database	record	using	the	given	column	/	value
pairs.	If	the	model	can	not	be	found	in	the	database,	a	record	will	be	inserted	with	the	attributes	from	the	first
parameter,	along	with	those	in	the	optional	second	parameter.

The	firstOrNew	method,	like	firstOrCreate	will	attempt	to	locate	a	record	in	the	database	matching	the	given
attributes.	However,	if	a	model	is	not	found,	a	new	model	instance	will	be	returned.	Note	that	the	model
returned	by	firstOrNew	has	not	yet	been	persisted	to	the	database.	You	will	need	to	call	save	manually	to	persist
it:

//	Retrieve	flight	by	name,	or	create	it	if	it	doesn't	exist...

$flight	=	App\Flight::firstOrCreate(['name'	=>	'Flight	10']);

//	Retrieve	flight	by	name,	or	create	it	with	the	name,	delayed,	and	arrival_time	attributes...

$flight	=	App\Flight::firstOrCreate(

				['name'	=>	'Flight	10'],

				['delayed'	=>	1,	'arrival_time'	=>	'11:30']

);

//	Retrieve	by	name,	or	instantiate...

$flight	=	App\Flight::firstOrNew(['name'	=>	'Flight	10']);

//	Retrieve	by	name,	or	instantiate	with	the	name,	delayed,	and	arrival_time	attributes...

$flight	=	App\Flight::firstOrNew(

				['name'	=>	'Flight	10'],

				['delayed'	=>	1,	'arrival_time'	=>	'11:30']

);

updateOrCreate

You	may	also	come	across	situations	where	you	want	to	update	an	existing	model	or	create	a	new	model	if	none
exists.	Laravel	provides	an	updateOrCreate	method	to	do	this	in	one	step.	Like	the	firstOrCreate	method,	
updateOrCreate	persists	the	model,	so	there's	no	need	to	call	save():

//	If	there's	a	flight	from	Oakland	to	San	Diego,	set	the	price	to	$99.

//	If	no	matching	model	exists,	create	one.

$flight	=	App\Flight::updateOrCreate(

				['departure'	=>	'Oakland',	'destination'	=>	'San	Diego'],

				['price'	=>	99,	'discounted'	=>	1]

);

Deleting	Models

To	delete	a	model,	call	the	delete	method	on	a	model	instance:

$flight	=	App\Flight::find(1);

$flight->delete();

Deleting	An	Existing	Model	By	Key

In	the	example	above,	we	are	retrieving	the	model	from	the	database	before	calling	the	delete	method.
However,	if	you	know	the	primary	key	of	the	model,	you	may	delete	the	model	without	explicitly	retrieving	it
by	calling	the	destroy	method.	In	addition	to	a	single	primary	key	as	its	argument,	the	destroy	method	will
accept	multiple	primary	keys,	an	array	of	primary	keys,	or	a	collection	of	primary	keys:

App\Flight::destroy(1);

App\Flight::destroy(1,	2,	3);

App\Flight::destroy([1,	2,	3]);

App\Flight::destroy(collect([1,	2,	3]));

NOTE	The	destroy	method	loads	each	model	individually	and	calls	the	delete	method	on	them	so	that	the	
deleting	and	deleted	events	are	fired.

Deleting	Models	By	Query

Laravel	Documentation	-	7.x	/	Eloquent	ORM 425

You	can	also	run	a	delete	statement	on	a	set	of	models.	In	this	example,	we	will	delete	all	flights	that	are
marked	as	inactive.	Like	mass	updates,	mass	deletes	will	not	fire	any	model	events	for	the	models	that	are
deleted:

$deletedRows	=	App\Flight::where('active',	0)->delete();

NOTE	When	executing	a	mass	delete	statement	via	Eloquent,	the	deleting	and	deleted	model	events	will
not	be	fired	for	the	deleted	models.	This	is	because	the	models	are	never	actually	retrieved	when	executing
the	delete	statement.

Soft	Deleting

In	addition	to	actually	removing	records	from	your	database,	Eloquent	can	also	"soft	delete"	models.	When
models	are	soft	deleted,	they	are	not	actually	removed	from	your	database.	Instead,	a	deleted_at	attribute	is	set
on	the	model	and	inserted	into	the	database.	If	a	model	has	a	non-null	deleted_at	value,	the	model	has	been	soft
deleted.	To	enable	soft	deletes	for	a	model,	use	the	Illuminate\Database\Eloquent\SoftDeletes	trait	on	the
model:

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

use	Illuminate\Database\Eloquent\SoftDeletes;

class	Flight	extends	Model

{

				use	SoftDeletes;

}

TIP	The	SoftDeletes	trait	will	automatically	cast	the	deleted_at	attribute	to	a	DateTime	/	Carbon	instance	for
you.

You	should	also	add	the	deleted_at	column	to	your	database	table.	The	Laravel	schema	builder	contains	a
helper	method	to	create	this	column:

public	function	up()

{

				Schema::table('flights',	function	(Blueprint	$table)	{

								$table->softDeletes();

				});

}

public	function	down()

{

				Schema::table('flights',	function	(Blueprint	$table)	{

								$table->dropSoftDeletes();

				});

}

Now,	when	you	call	the	delete	method	on	the	model,	the	deleted_at	column	will	be	set	to	the	current	date	and
time.	And,	when	querying	a	model	that	uses	soft	deletes,	the	soft	deleted	models	will	automatically	be	excluded
from	all	query	results.

To	determine	if	a	given	model	instance	has	been	soft	deleted,	use	the	trashed	method:

if	($flight->trashed())	{

				//

}

Querying	Soft	Deleted	Models

Including	Soft	Deleted	Models

As	noted	above,	soft	deleted	models	will	automatically	be	excluded	from	query	results.	However,	you	may
force	soft	deleted	models	to	appear	in	a	result	set	using	the	withTrashed	method	on	the	query:

$flights	=	App\Flight::withTrashed()

Laravel	Documentation	-	7.x	/	Eloquent	ORM 426

																->where('account_id',	1)

																->get();

The	withTrashed	method	may	also	be	used	on	a	relationship	query:

$flight->history()->withTrashed()->get();

Retrieving	Only	Soft	Deleted	Models

The	onlyTrashed	method	will	retrieve	only	soft	deleted	models:

$flights	=	App\Flight::onlyTrashed()

																->where('airline_id',	1)

																->get();

Restoring	Soft	Deleted	Models

Sometimes	you	may	wish	to	"un-delete"	a	soft	deleted	model.	To	restore	a	soft	deleted	model	into	an	active
state,	use	the	restore	method	on	a	model	instance:

$flight->restore();

You	may	also	use	the	restore	method	in	a	query	to	quickly	restore	multiple	models.	Again,	like	other	"mass"
operations,	this	will	not	fire	any	model	events	for	the	models	that	are	restored:

App\Flight::withTrashed()

								->where('airline_id',	1)

								->restore();

Like	the	withTrashed	method,	the	restore	method	may	also	be	used	on	relationships:

$flight->history()->restore();

Permanently	Deleting	Models

Sometimes	you	may	need	to	truly	remove	a	model	from	your	database.	To	permanently	remove	a	soft	deleted
model	from	the	database,	use	the	forceDelete	method:

//	Force	deleting	a	single	model	instance...

$flight->forceDelete();

//	Force	deleting	all	related	models...

$flight->history()->forceDelete();

Replicating	Models

You	may	create	an	unsaved	copy	of	a	model	instance	using	the	replicate	method.	This	is	particularly	useful
when	you	have	model	instances	that	share	many	of	the	same	attributes:

$shipping	=	App\Address::create([

				'type'	=>	'shipping',

				'line_1'	=>	'123	Example	Street',

				'city'	=>	'Victorville',

				'state'	=>	'CA',

				'postcode'	=>	'90001',

]);

$billing	=	$shipping->replicate()->fill([

				'type'	=>	'billing'

]);

$billing->save();

Query	Scopes

Global	Scopes

Laravel	Documentation	-	7.x	/	Eloquent	ORM 427

Global	scopes	allow	you	to	add	constraints	to	all	queries	for	a	given	model.	Laravel's	own	soft	delete
functionality	utilizes	global	scopes	to	only	pull	"non-deleted"	models	from	the	database.	Writing	your	own
global	scopes	can	provide	a	convenient,	easy	way	to	make	sure	every	query	for	a	given	model	receives	certain
constraints.

Writing	Global	Scopes

Writing	a	global	scope	is	simple.	Define	a	class	that	implements	the	Illuminate\Database\Eloquent\Scope
interface.	This	interface	requires	you	to	implement	one	method:	apply.	The	apply	method	may	add	where
constraints	to	the	query	as	needed:

<?php

namespace	App\Scopes;

use	Illuminate\Database\Eloquent\Builder;

use	Illuminate\Database\Eloquent\Model;

use	Illuminate\Database\Eloquent\Scope;

class	AgeScope	implements	Scope

{

				/**

					*	Apply	the	scope	to	a	given	Eloquent	query	builder.

					*

					*	@param		\Illuminate\Database\Eloquent\Builder		$builder

					*	@param		\Illuminate\Database\Eloquent\Model		$model

					*	@return	void

					*/

				public	function	apply(Builder	$builder,	Model	$model)

				{

								$builder->where('age',	'>',	200);

				}

}

TIP	If	your	global	scope	is	adding	columns	to	the	select	clause	of	the	query,	you	should	use	the	addSelect
method	instead	of	select.	This	will	prevent	the	unintentional	replacement	of	the	query's	existing	select
clause.

Applying	Global	Scopes

To	assign	a	global	scope	to	a	model,	you	should	override	a	given	model's	booted	method	and	use	the	
addGlobalScope	method:

<?php

namespace	App;

use	App\Scopes\AgeScope;

use	Illuminate\Database\Eloquent\Model;

class	User	extends	Model

{

				/**

					*	The	"booted"	method	of	the	model.

					*

					*	@return	void

					*/

				protected	static	function	booted()

				{

								static::addGlobalScope(new	AgeScope);

				}

}

After	adding	the	scope,	a	query	to	User::all()	will	produce	the	following	SQL:

select	*	from	`users`	where	`age`	>	200

Anonymous	Global	Scopes

Eloquent	also	allows	you	to	define	global	scopes	using	Closures,	which	is	particularly	useful	for	simple	scopes
that	do	not	warrant	a	separate	class:

Laravel	Documentation	-	7.x	/	Eloquent	ORM 428

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Builder;

use	Illuminate\Database\Eloquent\Model;

class	User	extends	Model

{

				/**

					*	The	"booted"	method	of	the	model.

					*

					*	@return	void

					*/

				protected	static	function	booted()

				{

								static::addGlobalScope('age',	function	(Builder	$builder)	{

												$builder->where('age',	'>',	200);

								});

				}

}

Removing	Global	Scopes

If	you	would	like	to	remove	a	global	scope	for	a	given	query,	you	may	use	the	withoutGlobalScope	method.	The
method	accepts	the	class	name	of	the	global	scope	as	its	only	argument:

User::withoutGlobalScope(AgeScope::class)->get();

Or,	if	you	defined	the	global	scope	using	a	Closure:

User::withoutGlobalScope('age')->get();

If	you	would	like	to	remove	several	or	even	all	of	the	global	scopes,	you	may	use	the	withoutGlobalScopes
method:

//	Remove	all	of	the	global	scopes...

User::withoutGlobalScopes()->get();

//	Remove	some	of	the	global	scopes...

User::withoutGlobalScopes([

				FirstScope::class,	SecondScope::class

])->get();

Local	Scopes

Local	scopes	allow	you	to	define	common	sets	of	constraints	that	you	may	easily	re-use	throughout	your
application.	For	example,	you	may	need	to	frequently	retrieve	all	users	that	are	considered	"popular".	To	define
a	scope,	prefix	an	Eloquent	model	method	with	scope.

Scopes	should	always	return	a	query	builder	instance:

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

class	User	extends	Model

{

				/**

					*	Scope	a	query	to	only	include	popular	users.

					*

					*	@param		\Illuminate\Database\Eloquent\Builder		$query

					*	@return	\Illuminate\Database\Eloquent\Builder

					*/

				public	function	scopePopular($query)

				{

								return	$query->where('votes',	'>',	100);

				}

				/**

					*	Scope	a	query	to	only	include	active	users.

					*

Laravel	Documentation	-	7.x	/	Eloquent	ORM 429

					*	@param		\Illuminate\Database\Eloquent\Builder		$query

					*	@return	\Illuminate\Database\Eloquent\Builder

					*/

				public	function	scopeActive($query)

				{

								return	$query->where('active',	1);

				}

}

Utilizing	A	Local	Scope

Once	the	scope	has	been	defined,	you	may	call	the	scope	methods	when	querying	the	model.	However,	you
should	not	include	the	scope	prefix	when	calling	the	method.	You	can	even	chain	calls	to	various	scopes,	for
example:

$users	=	App\User::popular()->active()->orderBy('created_at')->get();

Combining	multiple	Eloquent	model	scopes	via	an	or	query	operator	may	require	the	use	of	Closure	callbacks:

$users	=	App\User::popular()->orWhere(function	(Builder	$query)	{

				$query->active();

})->get();

However,	since	this	can	be	cumbersome,	Laravel	provides	a	"higher	order"	orWhere	method	that	allows	you	to
fluently	chain	these	scopes	together	without	the	use	of	Closures:

$users	=	App\User::popular()->orWhere->active()->get();

Dynamic	Scopes

Sometimes	you	may	wish	to	define	a	scope	that	accepts	parameters.	To	get	started,	just	add	your	additional
parameters	to	your	scope.	Scope	parameters	should	be	defined	after	the	$query	parameter:

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

class	User	extends	Model

{

				/**

					*	Scope	a	query	to	only	include	users	of	a	given	type.

					*

					*	@param		\Illuminate\Database\Eloquent\Builder		$query

					*	@param		mixed		$type

					*	@return	\Illuminate\Database\Eloquent\Builder

					*/

				public	function	scopeOfType($query,	$type)

				{

								return	$query->where('type',	$type);

				}

}

Now,	you	may	pass	the	parameters	when	calling	the	scope:

$users	=	App\User::ofType('admin')->get();

Comparing	Models

Sometimes	you	may	need	to	determine	if	two	models	are	the	"same".	The	is	method	may	be	used	to	quickly
verify	two	models	have	same	primary	key,	table,	and	database	connection:

if	($post->is($anotherPost))	{

				//

}

Events

Laravel	Documentation	-	7.x	/	Eloquent	ORM 430

Eloquent	models	fire	several	events,	allowing	you	to	hook	into	the	following	points	in	a	model's	lifecycle:	
retrieved,	creating,	created,	updating,	updated,	saving,	saved,	deleting,	deleted,	restoring,	restored.	Events
allow	you	to	easily	execute	code	each	time	a	specific	model	class	is	saved	or	updated	in	the	database.	Each
event	receives	the	instance	of	the	model	through	its	constructor.

The	retrieved	event	will	fire	when	an	existing	model	is	retrieved	from	the	database.	When	a	new	model	is
saved	for	the	first	time,	the	creating	and	created	events	will	fire.	The	updating	/	updated	events	will	fire	when
an	existing	model	is	modified	and	the	save	method	is	called.	The	saving	/	saved	events	will	fire	when	a	model	is
created	or	updated.

NOTE	When	issuing	a	mass	update	or	delete	via	Eloquent,	the	saved,	updated,	deleting,	and	deleted	model
events	will	not	be	fired	for	the	affected	models.	This	is	because	the	models	are	never	actually	retrieved
when	issuing	a	mass	update	or	delete.

To	get	started,	define	a	$dispatchesEvents	property	on	your	Eloquent	model	that	maps	various	points	of	the
Eloquent	model's	lifecycle	to	your	own	event	classes:

<?php

namespace	App;

use	App\Events\UserDeleted;

use	App\Events\UserSaved;

use	Illuminate\Foundation\Auth\User	as	Authenticatable;

class	User	extends	Authenticatable

{

				use	Notifiable;

				/**

					*	The	event	map	for	the	model.

					*

					*	@var	array

					*/

				protected	$dispatchesEvents	=	[

								'saved'	=>	UserSaved::class,

								'deleted'	=>	UserDeleted::class,

];

}

After	defining	and	mapping	your	Eloquent	events,	you	may	use	event	listeners	to	handle	the	events.

Using	Closures

Instead	of	using	custom	event	classes,	you	may	register	Closures	that	execute	when	various	model	events	are
fired.	Typically,	you	should	register	these	Closures	in	the	booted	method	of	your	model:

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

class	User	extends	Model

{

				/**

					*	The	"booted"	method	of	the	model.

					*

					*	@return	void

					*/

				protected	static	function	booted()

				{

								static::created(function	($user)	{

												//

								});

				}

}

Observers

Defining	Observers

Laravel	Documentation	-	7.x	/	Eloquent	ORM 431

https://laravel.comdigging_deeper-events.xhtml#defining-listeners

If	you	are	listening	for	many	events	on	a	given	model,	you	may	use	observers	to	group	all	of	your	listeners	into
a	single	class.	Observers	classes	have	method	names	which	reflect	the	Eloquent	events	you	wish	to	listen	for.
Each	of	these	methods	receives	the	model	as	their	only	argument.	The	make:observer	Artisan	command	is	the
easiest	way	to	create	a	new	observer	class:

php	artisan	make:observer	UserObserver	--model=User

This	command	will	place	the	new	observer	in	your	App/Observers	directory.	If	this	directory	does	not	exist,
Artisan	will	create	it	for	you.	Your	fresh	observer	will	look	like	the	following:

<?php

namespace	App\Observers;

use	App\User;

class	UserObserver

{

				/**

					*	Handle	the	User	"created"	event.

					*

					*	@param		\App\User		$user

					*	@return	void

					*/

				public	function	created(User	$user)

				{

								//

				}

				/**

					*	Handle	the	User	"updated"	event.

					*

					*	@param		\App\User		$user

					*	@return	void

					*/

				public	function	updated(User	$user)

				{

								//

				}

				/**

					*	Handle	the	User	"deleted"	event.

					*

					*	@param		\App\User		$user

					*	@return	void

					*/

				public	function	deleted(User	$user)

				{

								//

				}

				/**

					*	Handle	the	User	"forceDeleted"	event.

					*

					*	@param		\App\User		$user

					*	@return	void

					*/

				public	function	forceDeleted(User	$user)

				{

								//

				}

}

To	register	an	observer,	use	the	observe	method	on	the	model	you	wish	to	observe.	You	may	register	observers
in	the	boot	method	of	one	of	your	service	providers.	In	this	example,	we'll	register	the	observer	in	the	
AppServiceProvider:

<?php

namespace	App\Providers;

use	App\Observers\UserObserver;

use	App\User;

use	Illuminate\Support\ServiceProvider;

class	AppServiceProvider	extends	ServiceProvider

{

Laravel	Documentation	-	7.x	/	Eloquent	ORM 432

				/**

					*	Register	any	application	services.

					*

					*	@return	void

					*/

				public	function	register()

				{

								//

				}

				/**

					*	Bootstrap	any	application	services.

					*

					*	@return	void

					*/

				public	function	boot()

				{

								User::observe(UserObserver::class);

				}

}

Muting	Events

You	may	occasionally	wish	to	temporarily	"mute"	all	events	fired	by	a	model.	You	may	achieve	this	using	the	
withoutEvents	method.	The	withoutEvents	method	accepts	a	Closure	as	its	only	argument.	Any	code	executed
within	this	Closure	will	not	fire	model	events.	For	example,	the	following	will	fetch	and	delete	an	App\User
instance	without	firing	any	model	events.	Any	value	returned	by	the	given	Closure	will	be	returned	by	the	
withoutEvents	method:

use	App\User;

$user	=	User::withoutEvents(function	()	use	()	{

				User::findOrFail(1)->delete();

				return	User::find(2);

});

Laravel	Documentation	-	7.x	/	Eloquent	ORM 433

Eloquent	ORM

Eloquent:	Relationships
Introduction
Defining	Relationships

One	To	One
One	To	Many
One	To	Many	(Inverse)
Many	To	Many
Defining	Custom	Intermediate	Table	Models
Has	One	Through
Has	Many	Through

Polymorphic	Relationships
One	To	One
One	To	Many
Many	To	Many
Custom	Polymorphic	Types

Dynamic	Relationships
Querying	Relations

Relationship	Methods	Vs.	Dynamic	Properties
Querying	Relationship	Existence
Querying	Relationship	Absence
Querying	Polymorphic	Relationships
Counting	Related	Models
Counting	Related	Models	On	Polymorphic	Relationships

Eager	Loading
Constraining	Eager	Loads
Lazy	Eager	Loading

Inserting	&	Updating	Related	Models
The	save	Method
The	create	Method
Belongs	To	Relationships
Many	To	Many	Relationships

Touching	Parent	Timestamps

Introduction

Database	tables	are	often	related	to	one	another.	For	example,	a	blog	post	may	have	many	comments,	or	an
order	could	be	related	to	the	user	who	placed	it.	Eloquent	makes	managing	and	working	with	these
relationships	easy,	and	supports	several	different	types	of	relationships:

One	To	One
One	To	Many
Many	To	Many
Has	One	Through
Has	Many	Through
One	To	One	(Polymorphic)
One	To	Many	(Polymorphic)
Many	To	Many	(Polymorphic)

Defining	Relationships

Eloquent	relationships	are	defined	as	methods	on	your	Eloquent	model	classes.	Since,	like	Eloquent	models
themselves,	relationships	also	serve	as	powerful	query	builders,	defining	relationships	as	methods	provides
powerful	method	chaining	and	querying	capabilities.	For	example,	we	may	chain	additional	constraints	on	this	
posts	relationship:

$user->posts()->where('active',	1)->get();

Laravel	Documentation	-	7.x	/	Relationships 434

But,	before	diving	too	deep	into	using	relationships,	let's	learn	how	to	define	each	type.

NOTE	Relationship	names	cannot	collide	with	attribute	names	as	that	could	lead	to	your	model	not	being
able	to	know	which	one	to	resolve.

One	To	One

A	one-to-one	relationship	is	a	very	basic	relation.	For	example,	a	User	model	might	be	associated	with	one	
Phone.	To	define	this	relationship,	we	place	a	phone	method	on	the	User	model.	The	phone	method	should	call	the
hasOne	method	and	return	its	result:

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

class	User	extends	Model

{

				/**

					*	Get	the	phone	record	associated	with	the	user.

					*/

				public	function	phone()

				{

								return	$this->hasOne('App\Phone');

				}

}

The	first	argument	passed	to	the	hasOne	method	is	the	name	of	the	related	model.	Once	the	relationship	is
defined,	we	may	retrieve	the	related	record	using	Eloquent's	dynamic	properties.	Dynamic	properties	allow	you
to	access	relationship	methods	as	if	they	were	properties	defined	on	the	model:

$phone	=	User::find(1)->phone;

Eloquent	determines	the	foreign	key	of	the	relationship	based	on	the	model	name.	In	this	case,	the	Phone	model
is	automatically	assumed	to	have	a	user_id	foreign	key.	If	you	wish	to	override	this	convention,	you	may	pass	a
second	argument	to	the	hasOne	method:

return	$this->hasOne('App\Phone',	'foreign_key');

Additionally,	Eloquent	assumes	that	the	foreign	key	should	have	a	value	matching	the	id	(or	the	custom	
$primaryKey)	column	of	the	parent.	In	other	words,	Eloquent	will	look	for	the	value	of	the	user's	id	column	in
the	user_id	column	of	the	Phone	record.	If	you	would	like	the	relationship	to	use	a	value	other	than	id,	you	may
pass	a	third	argument	to	the	hasOne	method	specifying	your	custom	key:

return	$this->hasOne('App\Phone',	'foreign_key',	'local_key');

Defining	The	Inverse	Of	The	Relationship

So,	we	can	access	the	Phone	model	from	our	User.	Now,	let's	define	a	relationship	on	the	Phone	model	that	will
let	us	access	the	User	that	owns	the	phone.	We	can	define	the	inverse	of	a	hasOne	relationship	using	the	
belongsTo	method:

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

class	Phone	extends	Model

{

				/**

					*	Get	the	user	that	owns	the	phone.

					*/

				public	function	user()

				{

								return	$this->belongsTo('App\User');

				}

}

Laravel	Documentation	-	7.x	/	Relationships 435

In	the	example	above,	Eloquent	will	try	to	match	the	user_id	from	the	Phone	model	to	an	id	on	the	User	model.
Eloquent	determines	the	default	foreign	key	name	by	examining	the	name	of	the	relationship	method	and
suffixing	the	method	name	with	_id.	However,	if	the	foreign	key	on	the	Phone	model	is	not	user_id,	you	may
pass	a	custom	key	name	as	the	second	argument	to	the	belongsTo	method:

/**

	*	Get	the	user	that	owns	the	phone.

	*/

public	function	user()

{

				return	$this->belongsTo('App\User',	'foreign_key');

}

If	your	parent	model	does	not	use	id	as	its	primary	key,	or	you	wish	to	join	the	child	model	to	a	different
column,	you	may	pass	a	third	argument	to	the	belongsTo	method	specifying	your	parent	table's	custom	key:

/**

	*	Get	the	user	that	owns	the	phone.

	*/

public	function	user()

{

				return	$this->belongsTo('App\User',	'foreign_key',	'other_key');

}

One	To	Many

A	one-to-many	relationship	is	used	to	define	relationships	where	a	single	model	owns	any	amount	of	other
models.	For	example,	a	blog	post	may	have	an	infinite	number	of	comments.	Like	all	other	Eloquent
relationships,	one-to-many	relationships	are	defined	by	placing	a	function	on	your	Eloquent	model:

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

class	Post	extends	Model

{

				/**

					*	Get	the	comments	for	the	blog	post.

					*/

				public	function	comments()

				{

								return	$this->hasMany('App\Comment');

				}

}

Remember,	Eloquent	will	automatically	determine	the	proper	foreign	key	column	on	the	Comment	model.	By
convention,	Eloquent	will	take	the	"snake	case"	name	of	the	owning	model	and	suffix	it	with	_id.	So,	for	this
example,	Eloquent	will	assume	the	foreign	key	on	the	Comment	model	is	post_id.

Once	the	relationship	has	been	defined,	we	can	access	the	collection	of	comments	by	accessing	the	comments
property.	Remember,	since	Eloquent	provides	"dynamic	properties",	we	can	access	relationship	methods	as	if
they	were	defined	as	properties	on	the	model:

$comments	=	App\Post::find(1)->comments;

foreach	($comments	as	$comment)	{

				//

}

Since	all	relationships	also	serve	as	query	builders,	you	can	add	further	constraints	to	which	comments	are
retrieved	by	calling	the	comments	method	and	continuing	to	chain	conditions	onto	the	query:

$comment	=	App\Post::find(1)->comments()->where('title',	'foo')->first();

Like	the	hasOne	method,	you	may	also	override	the	foreign	and	local	keys	by	passing	additional	arguments	to
the	hasMany	method:

return	$this->hasMany('App\Comment',	'foreign_key');

Laravel	Documentation	-	7.x	/	Relationships 436

return	$this->hasMany('App\Comment',	'foreign_key',	'local_key');

One	To	Many	(Inverse)

Now	that	we	can	access	all	of	a	post's	comments,	let's	define	a	relationship	to	allow	a	comment	to	access	its
parent	post.	To	define	the	inverse	of	a	hasMany	relationship,	define	a	relationship	function	on	the	child	model
which	calls	the	belongsTo	method:

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

class	Comment	extends	Model

{

				/**

					*	Get	the	post	that	owns	the	comment.

					*/

				public	function	post()

				{

								return	$this->belongsTo('App\Post');

				}

}

Once	the	relationship	has	been	defined,	we	can	retrieve	the	Post	model	for	a	Comment	by	accessing	the	post
"dynamic	property":

$comment	=	App\Comment::find(1);

echo	$comment->post->title;

In	the	example	above,	Eloquent	will	try	to	match	the	post_id	from	the	Comment	model	to	an	id	on	the	Post
model.	Eloquent	determines	the	default	foreign	key	name	by	examining	the	name	of	the	relationship	method
and	suffixing	the	method	name	with	a	_	followed	by	the	name	of	the	primary	key	column.	However,	if	the
foreign	key	on	the	Comment	model	is	not	post_id,	you	may	pass	a	custom	key	name	as	the	second	argument	to
the	belongsTo	method:

/**

	*	Get	the	post	that	owns	the	comment.

	*/

public	function	post()

{

				return	$this->belongsTo('App\Post',	'foreign_key');

}

If	your	parent	model	does	not	use	id	as	its	primary	key,	or	you	wish	to	join	the	child	model	to	a	different
column,	you	may	pass	a	third	argument	to	the	belongsTo	method	specifying	your	parent	table's	custom	key:

/**

	*	Get	the	post	that	owns	the	comment.

	*/

public	function	post()

{

				return	$this->belongsTo('App\Post',	'foreign_key',	'other_key');

}

Many	To	Many

Many-to-many	relations	are	slightly	more	complicated	than	hasOne	and	hasMany	relationships.	An	example	of
such	a	relationship	is	a	user	with	many	roles,	where	the	roles	are	also	shared	by	other	users.	For	example,	many
users	may	have	the	role	of	"Admin".

Table	Structure

To	define	this	relationship,	three	database	tables	are	needed:	users,	roles,	and	role_user.	The	role_user	table	is
derived	from	the	alphabetical	order	of	the	related	model	names,	and	contains	the	user_id	and	role_id	columns:

users

Laravel	Documentation	-	7.x	/	Relationships 437

				id	-	integer

				name	-	string

roles

				id	-	integer

				name	-	string

role_user

				user_id	-	integer

				role_id	-	integer

Model	Structure

Many-to-many	relationships	are	defined	by	writing	a	method	that	returns	the	result	of	the	belongsToMany
method.	For	example,	let's	define	the	roles	method	on	our	User	model:

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

class	User	extends	Model

{

				/**

					*	The	roles	that	belong	to	the	user.

					*/

				public	function	roles()

				{

								return	$this->belongsToMany('App\Role');

				}

}

Once	the	relationship	is	defined,	you	may	access	the	user's	roles	using	the	roles	dynamic	property:

$user	=	App\User::find(1);

foreach	($user->roles	as	$role)	{

				//

}

Like	all	other	relationship	types,	you	may	call	the	roles	method	to	continue	chaining	query	constraints	onto	the
relationship:

$roles	=	App\User::find(1)->roles()->orderBy('name')->get();

As	mentioned	previously,	to	determine	the	table	name	of	the	relationship's	joining	table,	Eloquent	will	join	the
two	related	model	names	in	alphabetical	order.	However,	you	are	free	to	override	this	convention.	You	may	do
so	by	passing	a	second	argument	to	the	belongsToMany	method:

return	$this->belongsToMany('App\Role',	'role_user');

In	addition	to	customizing	the	name	of	the	joining	table,	you	may	also	customize	the	column	names	of	the	keys
on	the	table	by	passing	additional	arguments	to	the	belongsToMany	method.	The	third	argument	is	the	foreign	key
name	of	the	model	on	which	you	are	defining	the	relationship,	while	the	fourth	argument	is	the	foreign	key
name	of	the	model	that	you	are	joining	to:

return	$this->belongsToMany('App\Role',	'role_user',	'user_id',	'role_id');

Defining	The	Inverse	Of	The	Relationship

To	define	the	inverse	of	a	many-to-many	relationship,	you	place	another	call	to	belongsToMany	on	your	related
model.	To	continue	our	user	roles	example,	let's	define	the	users	method	on	the	Role	model:

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

class	Role	extends	Model

{

Laravel	Documentation	-	7.x	/	Relationships 438

				/**

					*	The	users	that	belong	to	the	role.

					*/

				public	function	users()

				{

								return	$this->belongsToMany('App\User');

				}

}

As	you	can	see,	the	relationship	is	defined	exactly	the	same	as	its	User	counterpart,	with	the	exception	of
referencing	the	App\User	model.	Since	we're	reusing	the	belongsToMany	method,	all	of	the	usual	table	and	key
customization	options	are	available	when	defining	the	inverse	of	many-to-many	relationships.

Retrieving	Intermediate	Table	Columns

As	you	have	already	learned,	working	with	many-to-many	relations	requires	the	presence	of	an	intermediate
table.	Eloquent	provides	some	very	helpful	ways	of	interacting	with	this	table.	For	example,	let's	assume	our	
User	object	has	many	Role	objects	that	it	is	related	to.	After	accessing	this	relationship,	we	may	access	the
intermediate	table	using	the	pivot	attribute	on	the	models:

$user	=	App\User::find(1);

foreach	($user->roles	as	$role)	{

				echo	$role->pivot->created_at;

}

Notice	that	each	Role	model	we	retrieve	is	automatically	assigned	a	pivot	attribute.	This	attribute	contains	a
model	representing	the	intermediate	table,	and	may	be	used	like	any	other	Eloquent	model.

By	default,	only	the	model	keys	will	be	present	on	the	pivot	object.	If	your	pivot	table	contains	extra	attributes,
you	must	specify	them	when	defining	the	relationship:

return	$this->belongsToMany('App\Role')->withPivot('column1',	'column2');

If	you	want	your	pivot	table	to	have	automatically	maintained	created_at	and	updated_at	timestamps,	use	the	
withTimestamps	method	on	the	relationship	definition:

return	$this->belongsToMany('App\Role')->withTimestamps();

Customizing	The	pivot	Attribute	Name

As	noted	earlier,	attributes	from	the	intermediate	table	may	be	accessed	on	models	using	the	pivot	attribute.
However,	you	are	free	to	customize	the	name	of	this	attribute	to	better	reflect	its	purpose	within	your
application.

For	example,	if	your	application	contains	users	that	may	subscribe	to	podcasts,	you	probably	have	a	many-to-
many	relationship	between	users	and	podcasts.	If	this	is	the	case,	you	may	wish	to	rename	your	intermediate
table	accessor	to	subscription	instead	of	pivot.	This	can	be	done	using	the	as	method	when	defining	the
relationship:

return	$this->belongsToMany('App\Podcast')

																->as('subscription')

																->withTimestamps();

Once	this	is	done,	you	may	access	the	intermediate	table	data	using	the	customized	name:

$users	=	User::with('podcasts')->get();

foreach	($users->flatMap->podcasts	as	$podcast)	{

				echo	$podcast->subscription->created_at;

}

Filtering	Relationships	Via	Intermediate	Table	Columns

You	can	also	filter	the	results	returned	by	belongsToMany	using	the	wherePivot,	wherePivotIn,	and	
wherePivotNotIn	methods	when	defining	the	relationship:

Laravel	Documentation	-	7.x	/	Relationships 439

return	$this->belongsToMany('App\Role')->wherePivot('approved',	1);

return	$this->belongsToMany('App\Role')->wherePivotIn('priority',	[1,	2]);

return	$this->belongsToMany('App\Role')->wherePivotNotIn('priority',	[1,	2]);

Defining	Custom	Intermediate	Table	Models

If	you	would	like	to	define	a	custom	model	to	represent	the	intermediate	table	of	your	relationship,	you	may
call	the	using	method	when	defining	the	relationship.	Custom	many-to-many	pivot	models	should	extend	the	
Illuminate\Database\Eloquent\Relations\Pivot	class	while	custom	polymorphic	many-to-many	pivot	models
should	extend	the	Illuminate\Database\Eloquent\Relations\MorphPivot	class.	For	example,	we	may	define	a	
Role	which	uses	a	custom	RoleUser	pivot	model:

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

class	Role	extends	Model

{

				/**

					*	The	users	that	belong	to	the	role.

					*/

				public	function	users()

				{

								return	$this->belongsToMany('App\User')->using('App\RoleUser');

				}

}

When	defining	the	RoleUser	model,	we	will	extend	the	Pivot	class:

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Relations\Pivot;

class	RoleUser	extends	Pivot

{

				//

}

You	can	combine	using	and	withPivot	in	order	to	retrieve	columns	from	the	intermediate	table.	For	example,
you	may	retrieve	the	created_by	and	updated_by	columns	from	the	RoleUser	pivot	table	by	passing	the	column
names	to	the	withPivot	method:

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

class	Role	extends	Model

{

				/**

					*	The	users	that	belong	to	the	role.

					*/

				public	function	users()

				{

								return	$this->belongsToMany('App\User')

																								->using('App\RoleUser')

																								->withPivot([

																												'created_by',

																												'updated_by',

]);

				}

}

Note:	Pivot	models	may	not	use	the	SoftDeletes	trait.	If	you	need	to	soft	delete	pivot	records	consider
converting	your	pivot	model	to	an	actual	Eloquent	model.

Custom	Pivot	Models	And	Incrementing	IDs

Laravel	Documentation	-	7.x	/	Relationships 440

If	you	have	defined	a	many-to-many	relationship	that	uses	a	custom	pivot	model,	and	that	pivot	model	has	an
auto-incrementing	primary	key,	you	should	ensure	your	custom	pivot	model	class	defines	an	incrementing
property	that	is	set	to	true.

/**

	*	Indicates	if	the	IDs	are	auto-incrementing.

	*

	*	@var	bool

	*/

public	$incrementing	=	true;

Has	One	Through

The	"has-one-through"	relationship	links	models	through	a	single	intermediate	relation.

For	example,	in	a	vehicle	repair	shop	application,	each	Mechanic	may	have	one	Car,	and	each	Car	may	have	one	
Owner.	While	the	Mechanic	and	the	Owner	have	no	direct	connection,	the	Mechanic	can	access	the	Owner	through
the	Car	itself.	Let's	look	at	the	tables	necessary	to	define	this	relationship:

mechanics

				id	-	integer

				name	-	string

cars

				id	-	integer

				model	-	string

				mechanic_id	-	integer

owners

				id	-	integer

				name	-	string

				car_id	-	integer

Now	that	we	have	examined	the	table	structure	for	the	relationship,	let's	define	the	relationship	on	the	Mechanic
model:

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

class	Mechanic	extends	Model

{

				/**

					*	Get	the	car's	owner.

					*/

				public	function	carOwner()

				{

								return	$this->hasOneThrough('App\Owner',	'App\Car');

				}

}

The	first	argument	passed	to	the	hasOneThrough	method	is	the	name	of	the	final	model	we	wish	to	access,	while
the	second	argument	is	the	name	of	the	intermediate	model.

Typical	Eloquent	foreign	key	conventions	will	be	used	when	performing	the	relationship's	queries.	If	you	would
like	to	customize	the	keys	of	the	relationship,	you	may	pass	them	as	the	third	and	fourth	arguments	to	the	
hasOneThrough	method.	The	third	argument	is	the	name	of	the	foreign	key	on	the	intermediate	model.	The	fourth
argument	is	the	name	of	the	foreign	key	on	the	final	model.	The	fifth	argument	is	the	local	key,	while	the	sixth
argument	is	the	local	key	of	the	intermediate	model:

class	Mechanic	extends	Model

{

				/**

					*	Get	the	car's	owner.

					*/

				public	function	carOwner()

				{

								return	$this->hasOneThrough(

												'App\Owner',

												'App\Car',

												'mechanic_id',	//	Foreign	key	on	cars	table...

Laravel	Documentation	-	7.x	/	Relationships 441

												'car_id',	//	Foreign	key	on	owners	table...

												'id',	//	Local	key	on	mechanics	table...

												'id'	//	Local	key	on	cars	table...

);

				}

}

Has	Many	Through

The	"has-many-through"	relationship	provides	a	convenient	shortcut	for	accessing	distant	relations	via	an
intermediate	relation.	For	example,	a	Country	model	might	have	many	Post	models	through	an	intermediate	
User	model.	In	this	example,	you	could	easily	gather	all	blog	posts	for	a	given	country.	Let's	look	at	the	tables
required	to	define	this	relationship:

countries

				id	-	integer

				name	-	string

users

				id	-	integer

				country_id	-	integer

				name	-	string

posts

				id	-	integer

				user_id	-	integer

				title	-	string

Though	posts	does	not	contain	a	country_id	column,	the	hasManyThrough	relation	provides	access	to	a	country's
posts	via	$country->posts.	To	perform	this	query,	Eloquent	inspects	the	country_id	on	the	intermediate	users
table.	After	finding	the	matching	user	IDs,	they	are	used	to	query	the	posts	table.

Now	that	we	have	examined	the	table	structure	for	the	relationship,	let's	define	it	on	the	Country	model:

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

class	Country	extends	Model

{

				/**

					*	Get	all	of	the	posts	for	the	country.

					*/

				public	function	posts()

				{

								return	$this->hasManyThrough('App\Post',	'App\User');

				}

}

The	first	argument	passed	to	the	hasManyThrough	method	is	the	name	of	the	final	model	we	wish	to	access,	while
the	second	argument	is	the	name	of	the	intermediate	model.

Typical	Eloquent	foreign	key	conventions	will	be	used	when	performing	the	relationship's	queries.	If	you	would
like	to	customize	the	keys	of	the	relationship,	you	may	pass	them	as	the	third	and	fourth	arguments	to	the	
hasManyThrough	method.	The	third	argument	is	the	name	of	the	foreign	key	on	the	intermediate	model.	The
fourth	argument	is	the	name	of	the	foreign	key	on	the	final	model.	The	fifth	argument	is	the	local	key,	while	the
sixth	argument	is	the	local	key	of	the	intermediate	model:

class	Country	extends	Model

{

				public	function	posts()

				{

								return	$this->hasManyThrough(

												'App\Post',

												'App\User',

												'country_id',	//	Foreign	key	on	users	table...

												'user_id',	//	Foreign	key	on	posts	table...

												'id',	//	Local	key	on	countries	table...

												'id'	//	Local	key	on	users	table...

);

				}

Laravel	Documentation	-	7.x	/	Relationships 442

}

Polymorphic	Relationships

A	polymorphic	relationship	allows	the	target	model	to	belong	to	more	than	one	type	of	model	using	a	single
association.

One	To	One	(Polymorphic)

Table	Structure

A	one-to-one	polymorphic	relation	is	similar	to	a	simple	one-to-one	relation;	however,	the	target	model	can
belong	to	more	than	one	type	of	model	on	a	single	association.	For	example,	a	blog	Post	and	a	User	may	share	a
polymorphic	relation	to	an	Image	model.	Using	a	one-to-one	polymorphic	relation	allows	you	to	have	a	single
list	of	unique	images	that	are	used	for	both	blog	posts	and	user	accounts.	First,	let's	examine	the	table	structure:

posts

				id	-	integer

				name	-	string

users

				id	-	integer

				name	-	string

images

				id	-	integer

				url	-	string

				imageable_id	-	integer

				imageable_type	-	string

Take	note	of	the	imageable_id	and	imageable_type	columns	on	the	images	table.	The	imageable_id	column	will
contain	the	ID	value	of	the	post	or	user,	while	the	imageable_type	column	will	contain	the	class	name	of	the
parent	model.	The	imageable_type	column	is	used	by	Eloquent	to	determine	which	"type"	of	parent	model	to
return	when	accessing	the	imageable	relation.

Model	Structure

Next,	let's	examine	the	model	definitions	needed	to	build	this	relationship:

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

class	Image	extends	Model

{

				/**

					*	Get	the	owning	imageable	model.

					*/

				public	function	imageable()

				{

								return	$this->morphTo();

				}

}

class	Post	extends	Model

{

				/**

					*	Get	the	post's	image.

					*/

				public	function	image()

				{

								return	$this->morphOne('App\Image',	'imageable');

				}

}

class	User	extends	Model

{

				/**

					*	Get	the	user's	image.

Laravel	Documentation	-	7.x	/	Relationships 443

					*/

				public	function	image()

				{

								return	$this->morphOne('App\Image',	'imageable');

				}

}

Retrieving	The	Relationship

Once	your	database	table	and	models	are	defined,	you	may	access	the	relationships	via	your	models.	For
example,	to	retrieve	the	image	for	a	post,	we	can	use	the	image	dynamic	property:

$post	=	App\Post::find(1);

$image	=	$post->image;

You	may	also	retrieve	the	parent	from	the	polymorphic	model	by	accessing	the	name	of	the	method	that
performs	the	call	to	morphTo.	In	our	case,	that	is	the	imageable	method	on	the	Image	model.	So,	we	will	access
that	method	as	a	dynamic	property:

$image	=	App\Image::find(1);

$imageable	=	$image->imageable;

The	imageable	relation	on	the	Image	model	will	return	either	a	Post	or	User	instance,	depending	on	which	type	of
model	owns	the	image.	If	you	need	to	specify	custom	type	and	id	columns	for	the	morphTo	relation,	always
ensure	you	pass	the	relationship	name	(which	should	exactly	match	the	method	name)	as	the	first	parameter:

/**

	*	Get	the	model	that	the	image	belongs	to.

	*/

public	function	imageable()

{

				return	$this->morphTo(__FUNCTION__,	'imageable_type',	'imageable_id');

}

One	To	Many	(Polymorphic)

Table	Structure

A	one-to-many	polymorphic	relation	is	similar	to	a	simple	one-to-many	relation;	however,	the	target	model	can
belong	to	more	than	one	type	of	model	on	a	single	association.	For	example,	imagine	users	of	your	application
can	"comment"	on	both	posts	and	videos.	Using	polymorphic	relationships,	you	may	use	a	single	comments	table
for	both	of	these	scenarios.	First,	let's	examine	the	table	structure	required	to	build	this	relationship:

posts

				id	-	integer

				title	-	string

				body	-	text

videos

				id	-	integer

				title	-	string

				url	-	string

comments

				id	-	integer

				body	-	text

				commentable_id	-	integer

				commentable_type	-	string

Model	Structure

Next,	let's	examine	the	model	definitions	needed	to	build	this	relationship:

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

Laravel	Documentation	-	7.x	/	Relationships 444

class	Comment	extends	Model

{

				/**

					*	Get	the	owning	commentable	model.

					*/

				public	function	commentable()

				{

								return	$this->morphTo();

				}

}

class	Post	extends	Model

{

				/**

					*	Get	all	of	the	post's	comments.

					*/

				public	function	comments()

				{

								return	$this->morphMany('App\Comment',	'commentable');

				}

}

class	Video	extends	Model

{

				/**

					*	Get	all	of	the	video's	comments.

					*/

				public	function	comments()

				{

								return	$this->morphMany('App\Comment',	'commentable');

				}

}

Retrieving	The	Relationship

Once	your	database	table	and	models	are	defined,	you	may	access	the	relationships	via	your	models.	For
example,	to	access	all	of	the	comments	for	a	post,	we	can	use	the	comments	dynamic	property:

$post	=	App\Post::find(1);

foreach	($post->comments	as	$comment)	{

				//

}

You	may	also	retrieve	the	owner	of	a	polymorphic	relation	from	the	polymorphic	model	by	accessing	the	name
of	the	method	that	performs	the	call	to	morphTo.	In	our	case,	that	is	the	commentable	method	on	the	Comment
model.	So,	we	will	access	that	method	as	a	dynamic	property:

$comment	=	App\Comment::find(1);

$commentable	=	$comment->commentable;

The	commentable	relation	on	the	Comment	model	will	return	either	a	Post	or	Video	instance,	depending	on	which
type	of	model	owns	the	comment.

Many	To	Many	(Polymorphic)

Table	Structure

Many-to-many	polymorphic	relations	are	slightly	more	complicated	than	morphOne	and	morphMany	relationships.
For	example,	a	blog	Post	and	Video	model	could	share	a	polymorphic	relation	to	a	Tag	model.	Using	a	many-to-
many	polymorphic	relation	allows	you	to	have	a	single	list	of	unique	tags	that	are	shared	across	blog	posts	and
videos.	First,	let's	examine	the	table	structure:

posts

				id	-	integer

				name	-	string

videos

				id	-	integer

				name	-	string

Laravel	Documentation	-	7.x	/	Relationships 445

tags

				id	-	integer

				name	-	string

taggables

				tag_id	-	integer

				taggable_id	-	integer

				taggable_type	-	string

Model	Structure

Next,	we're	ready	to	define	the	relationships	on	the	model.	The	Post	and	Video	models	will	both	have	a	tags
method	that	calls	the	morphToMany	method	on	the	base	Eloquent	class:

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

class	Post	extends	Model

{

				/**

					*	Get	all	of	the	tags	for	the	post.

					*/

				public	function	tags()

				{

								return	$this->morphToMany('App\Tag',	'taggable');

				}

}

Defining	The	Inverse	Of	The	Relationship

Next,	on	the	Tag	model,	you	should	define	a	method	for	each	of	its	related	models.	So,	for	this	example,	we	will
define	a	posts	method	and	a	videos	method:

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

class	Tag	extends	Model

{

				/**

					*	Get	all	of	the	posts	that	are	assigned	this	tag.

					*/

				public	function	posts()

				{

								return	$this->morphedByMany('App\Post',	'taggable');

				}

				/**

					*	Get	all	of	the	videos	that	are	assigned	this	tag.

					*/

				public	function	videos()

				{

								return	$this->morphedByMany('App\Video',	'taggable');

				}

}

Retrieving	The	Relationship

Once	your	database	table	and	models	are	defined,	you	may	access	the	relationships	via	your	models.	For
example,	to	access	all	of	the	tags	for	a	post,	you	can	use	the	tags	dynamic	property:

$post	=	App\Post::find(1);

foreach	($post->tags	as	$tag)	{

				//

}

You	may	also	retrieve	the	owner	of	a	polymorphic	relation	from	the	polymorphic	model	by	accessing	the	name

Laravel	Documentation	-	7.x	/	Relationships 446

of	the	method	that	performs	the	call	to	morphedByMany.	In	our	case,	that	is	the	posts	or	videos	methods	on	the	Tag
model.	So,	you	will	access	those	methods	as	dynamic	properties:

$tag	=	App\Tag::find(1);

foreach	($tag->videos	as	$video)	{

				//

}

Custom	Polymorphic	Types

By	default,	Laravel	will	use	the	fully	qualified	class	name	to	store	the	type	of	the	related	model.	For	instance,
given	the	one-to-many	example	above	where	a	Comment	may	belong	to	a	Post	or	a	Video,	the	default	
commentable_type	would	be	either	App\Post	or	App\Video,	respectively.	However,	you	may	wish	to	decouple	your
database	from	your	application's	internal	structure.	In	that	case,	you	may	define	a	"morph	map"	to	instruct
Eloquent	to	use	a	custom	name	for	each	model	instead	of	the	class	name:

use	Illuminate\Database\Eloquent\Relations\Relation;

Relation::morphMap([

				'posts'	=>	'App\Post',

				'videos'	=>	'App\Video',

]);

You	may	register	the	morphMap	in	the	boot	function	of	your	AppServiceProvider	or	create	a	separate	service
provider	if	you	wish.

NOTE	When	adding	a	"morph	map"	to	your	existing	application,	every	morphable	*_type	column	value	in
your	database	that	still	contains	a	fully-qualified	class	will	need	to	be	converted	to	its	"map"	name.

You	may	determine	the	morph	alias	of	a	given	model	at	runtime	using	the	getMorphClass	method.	Conversely,
you	may	determine	the	fully-qualified	class	name	associated	with	a	morph	alias	using	the	
Relation::getMorphedModel	method:

use	Illuminate\Database\Eloquent\Relations\Relation;

$alias	=	$post->getMorphClass();

$class	=	Relation::getMorphedModel($alias);

Dynamic	Relationships

You	may	use	the	resolveRelationUsing	method	to	define	relations	between	Eloquent	models	at	runtime.	While
not	typically	recommended	for	normal	application	development,	this	may	occasionally	be	useful	when
developing	Laravel	packages:

use	App\Order;

use	App\Customer;

Order::resolveRelationUsing('customer',	function	($orderModel)	{

				return	$orderModel->belongsTo(Customer::class,	'customer_id');

});

NOTE	When	defining	dynamic	relationships,	always	provide	explicit	key	name	arguments	to	the	Eloquent
relationship	methods.

Querying	Relations

Since	all	types	of	Eloquent	relationships	are	defined	via	methods,	you	may	call	those	methods	to	obtain	an
instance	of	the	relationship	without	actually	executing	the	relationship	queries.	In	addition,	all	types	of
Eloquent	relationships	also	serve	as	query	builders,	allowing	you	to	continue	to	chain	constraints	onto	the
relationship	query	before	finally	executing	the	SQL	against	your	database.

For	example,	imagine	a	blog	system	in	which	a	User	model	has	many	associated	Post	models:

<?php

Laravel	Documentation	-	7.x	/	Relationships 447

namespace	App;

use	Illuminate\Database\Eloquent\Model;

class	User	extends	Model

{

				/**

					*	Get	all	of	the	posts	for	the	user.

					*/

				public	function	posts()

				{

								return	$this->hasMany('App\Post');

				}

}

You	may	query	the	posts	relationship	and	add	additional	constraints	to	the	relationship	like	so:

$user	=	App\User::find(1);

$user->posts()->where('active',	1)->get();

You	are	able	to	use	any	of	the	query	builder	methods	on	the	relationship,	so	be	sure	to	explore	the	query	builder
documentation	to	learn	about	all	of	the	methods	that	are	available	to	you.

Chaining	orWhere	Clauses	After	Relationships

As	demonstrated	in	the	example	above,	you	are	free	to	add	additional	constraints	to	relationships	when
querying	them.	However,	use	caution	when	chaining	orWhere	clauses	onto	a	relationship,	as	the	orWhere	clauses
will	be	logically	grouped	at	the	same	level	as	the	relationship	constraint:

$user->posts()

								->where('active',	1)

								->orWhere('votes',	'>=',	100)

								->get();

//	select	*	from	posts

//	where	user_id	=	?	and	active	=	1	or	votes	>=	100

In	most	situations,	you	likely	intend	to	use	constraint	groups	to	logically	group	the	conditional	checks	between
parentheses:

use	Illuminate\Database\Eloquent\Builder;

$user->posts()

								->where(function	(Builder	$query)	{

												return	$query->where('active',	1)

																									->orWhere('votes',	'>=',	100);

								})

								->get();

//	select	*	from	posts

//	where	user_id	=	?	and	(active	=	1	or	votes	>=	100)

Relationship	Methods	Vs.	Dynamic	Properties

If	you	do	not	need	to	add	additional	constraints	to	an	Eloquent	relationship	query,	you	may	access	the
relationship	as	if	it	were	a	property.	For	example,	continuing	to	use	our	User	and	Post	example	models,	we	may
access	all	of	a	user's	posts	like	so:

$user	=	App\User::find(1);

foreach	($user->posts	as	$post)	{

				//

}

Dynamic	properties	are	"lazy	loading",	meaning	they	will	only	load	their	relationship	data	when	you	actually
access	them.	Because	of	this,	developers	often	use	eager	loading	to	pre-load	relationships	they	know	will	be
accessed	after	loading	the	model.	Eager	loading	provides	a	significant	reduction	in	SQL	queries	that	must	be
executed	to	load	a	model's	relations.

Laravel	Documentation	-	7.x	/	Relationships 448

Querying	Relationship	Existence

When	accessing	the	records	for	a	model,	you	may	wish	to	limit	your	results	based	on	the	existence	of	a
relationship.	For	example,	imagine	you	want	to	retrieve	all	blog	posts	that	have	at	least	one	comment.	To	do	so,
you	may	pass	the	name	of	the	relationship	to	the	has	and	orHas	methods:

//	Retrieve	all	posts	that	have	at	least	one	comment...

$posts	=	App\Post::has('comments')->get();

You	may	also	specify	an	operator	and	count	to	further	customize	the	query:

//	Retrieve	all	posts	that	have	three	or	more	comments...

$posts	=	App\Post::has('comments',	'>=',	3)->get();

Nested	has	statements	may	also	be	constructed	using	"dot"	notation.	For	example,	you	may	retrieve	all	posts
that	have	at	least	one	comment	and	vote:

//	Retrieve	posts	that	have	at	least	one	comment	with	votes...

$posts	=	App\Post::has('comments.votes')->get();

If	you	need	even	more	power,	you	may	use	the	whereHas	and	orWhereHas	methods	to	put	"where"	conditions	on
your	has	queries.	These	methods	allow	you	to	add	customized	constraints	to	a	relationship	constraint,	such	as
checking	the	content	of	a	comment:

use	Illuminate\Database\Eloquent\Builder;

//	Retrieve	posts	with	at	least	one	comment	containing	words	like	foo%...

$posts	=	App\Post::whereHas('comments',	function	(Builder	$query)	{

				$query->where('content',	'like',	'foo%');

})->get();

//	Retrieve	posts	with	at	least	ten	comments	containing	words	like	foo%...

$posts	=	App\Post::whereHas('comments',	function	(Builder	$query)	{

				$query->where('content',	'like',	'foo%');

},	'>=',	10)->get();

Querying	Relationship	Absence

When	accessing	the	records	for	a	model,	you	may	wish	to	limit	your	results	based	on	the	absence	of	a
relationship.	For	example,	imagine	you	want	to	retrieve	all	blog	posts	that	don't	have	any	comments.	To	do	so,
you	may	pass	the	name	of	the	relationship	to	the	doesntHave	and	orDoesntHave	methods:

$posts	=	App\Post::doesntHave('comments')->get();

If	you	need	even	more	power,	you	may	use	the	whereDoesntHave	and	orWhereDoesntHave	methods	to	put	"where"
conditions	on	your	doesntHave	queries.	These	methods	allows	you	to	add	customized	constraints	to	a
relationship	constraint,	such	as	checking	the	content	of	a	comment:

use	Illuminate\Database\Eloquent\Builder;

$posts	=	App\Post::whereDoesntHave('comments',	function	(Builder	$query)	{

				$query->where('content',	'like',	'foo%');

})->get();

You	may	use	"dot"	notation	to	execute	a	query	against	a	nested	relationship.	For	example,	the	following	query
will	retrieve	all	posts	that	do	not	have	comments	and	posts	that	have	comments	from	authors	that	are	not
banned:

use	Illuminate\Database\Eloquent\Builder;

$posts	=	App\Post::whereDoesntHave('comments.author',	function	(Builder	$query)	{

				$query->where('banned',	0);

})->get();

Querying	Polymorphic	Relationships

To	query	the	existence	of	MorphTo	relationships,	you	may	use	the	whereHasMorph	method	and	its	corresponding
methods:

Laravel	Documentation	-	7.x	/	Relationships 449

use	Illuminate\Database\Eloquent\Builder;

//	Retrieve	comments	associated	to	posts	or	videos	with	a	title	like	foo%...

$comments	=	App\Comment::whereHasMorph(

				'commentable',

				['App\Post',	'App\Video'],

				function	(Builder	$query)	{

								$query->where('title',	'like',	'foo%');

				}

)->get();

//	Retrieve	comments	associated	to	posts	with	a	title	not	like	foo%...

$comments	=	App\Comment::whereDoesntHaveMorph(

				'commentable',

				'App\Post',

				function	(Builder	$query)	{

								$query->where('title',	'like',	'foo%');

				}

)->get();

You	may	use	the	$type	parameter	to	add	different	constraints	depending	on	the	related	model:

use	Illuminate\Database\Eloquent\Builder;

$comments	=	App\Comment::whereHasMorph(

				'commentable',

				['App\Post',	'App\Video'],

				function	(Builder	$query,	$type)	{

								$query->where('title',	'like',	'foo%');

								if	($type	===	'App\Post')	{

												$query->orWhere('content',	'like',	'foo%');

								}

				}

)->get();

Instead	of	passing	an	array	of	possible	polymorphic	models,	you	may	provide	*	as	a	wildcard	and	let	Laravel
retrieve	all	the	possible	polymorphic	types	from	the	database.	Laravel	will	execute	an	additional	query	in	order
to	perform	this	operation:

use	Illuminate\Database\Eloquent\Builder;

$comments	=	App\Comment::whereHasMorph('commentable',	'*',	function	(Builder	$query)	{

				$query->where('title',	'like',	'foo%');

})->get();

Counting	Related	Models

If	you	want	to	count	the	number	of	results	from	a	relationship	without	actually	loading	them	you	may	use	the	
withCount	method,	which	will	place	a	{relation}_count	column	on	your	resulting	models.	For	example:

$posts	=	App\Post::withCount('comments')->get();

foreach	($posts	as	$post)	{

				echo	$post->comments_count;

}

You	may	add	the	"counts"	for	multiple	relations	as	well	as	add	constraints	to	the	queries:

use	Illuminate\Database\Eloquent\Builder;

$posts	=	App\Post::withCount(['votes',	'comments'	=>	function	(Builder	$query)	{

				$query->where('content',	'like',	'foo%');

}])->get();

echo	$posts[0]->votes_count;

echo	$posts[0]->comments_count;

You	may	also	alias	the	relationship	count	result,	allowing	multiple	counts	on	the	same	relationship:

use	Illuminate\Database\Eloquent\Builder;

$posts	=	App\Post::withCount([

				'comments',

				'comments	as	pending_comments_count'	=>	function	(Builder	$query)	{

Laravel	Documentation	-	7.x	/	Relationships 450

								$query->where('approved',	false);

				},

])->get();

echo	$posts[0]->comments_count;

echo	$posts[0]->pending_comments_count;

If	you're	combining	withCount	with	a	select	statement,	ensure	that	you	call	withCount	after	the	select	method:

$posts	=	App\Post::select(['title',	'body'])->withCount('comments')->get();

echo	$posts[0]->title;

echo	$posts[0]->body;

echo	$posts[0]->comments_count;

In	addition,	using	the	loadCount	method,	you	may	load	a	relationship	count	after	the	parent	model	has	already
been	retrieved:

$book	=	App\Book::first();

$book->loadCount('genres');

If	you	need	to	set	additional	query	constraints	on	the	eager	loading	query,	you	may	pass	an	array	keyed	by	the
relationships	you	wish	to	load.	The	array	values	should	be	Closure	instances	which	receive	the	query	builder
instance:

$book->loadCount(['reviews'	=>	function	($query)	{

				$query->where('rating',	5);

}])

Counting	Related	Models	On	Polymorphic	Relationships

If	you	would	like	to	eager	load	a	morphTo	relationship,	as	well	as	nested	relationship	counts	on	the	various
entities	that	may	be	returned	by	that	relationship,	you	may	use	the	with	method	in	combination	with	the	morphTo
relationship's	morphWithCount	method.

In	this	example,	let's	assume	Photo	and	Post	models	may	create	ActivityFeed	models.	Additionally,	let's	assume
that	Photo	models	are	associated	with	Tag	models,	and	Post	models	are	associated	with	Comment	models.

Using	these	model	definitions	and	relationships,	we	may	retrieve	ActivityFeed	model	instances	and	eager	load
all	parentable	models	and	their	respective	nested	relationship	counts:

use	Illuminate\Database\Eloquent\Relations\MorphTo;

$activities	=	ActivityFeed::query()

				->with(['parentable'	=>	function	(MorphTo	$morphTo)	{

								$morphTo->morphWithCount([

												Photo::class	=>	['tags'],

												Post::class	=>	['comments'],

]);

				}])->get();

In	addition,	you	may	use	the	loadMorphCount	method	to	eager	load	all	nested	relationship	counts	on	the	various
entities	of	the	polymorphic	relation	if	the	ActivityFeed	models	have	already	been	retrieved:

$activities	=	ActivityFeed::with('parentable')

				->get()

				->loadMorphCount('parentable',	[

								Photo::class	=>	['tags'],

								Post::class	=>	['comments'],

]);

Eager	Loading

When	accessing	Eloquent	relationships	as	properties,	the	relationship	data	is	"lazy	loaded".	This	means	the
relationship	data	is	not	actually	loaded	until	you	first	access	the	property.	However,	Eloquent	can	"eager	load"
relationships	at	the	time	you	query	the	parent	model.	Eager	loading	alleviates	the	N	+	1	query	problem.	To
illustrate	the	N	+	1	query	problem,	consider	a	Book	model	that	is	related	to	Author:

Laravel	Documentation	-	7.x	/	Relationships 451

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

class	Book	extends	Model

{

				/**

					*	Get	the	author	that	wrote	the	book.

					*/

				public	function	author()

				{

								return	$this->belongsTo('App\Author');

				}

}

Now,	let's	retrieve	all	books	and	their	authors:

$books	=	App\Book::all();

foreach	($books	as	$book)	{

				echo	$book->author->name;

}

This	loop	will	execute	1	query	to	retrieve	all	of	the	books	on	the	table,	then	another	query	for	each	book	to
retrieve	the	author.	So,	if	we	have	25	books,	this	loop	would	run	26	queries:	1	for	the	original	book,	and	25
additional	queries	to	retrieve	the	author	of	each	book.

Thankfully,	we	can	use	eager	loading	to	reduce	this	operation	to	just	2	queries.	When	querying,	you	may
specify	which	relationships	should	be	eager	loaded	using	the	with	method:

$books	=	App\Book::with('author')->get();

foreach	($books	as	$book)	{

				echo	$book->author->name;

}

For	this	operation,	only	two	queries	will	be	executed:

select	*	from	books

select	*	from	authors	where	id	in	(1,	2,	3,	4,	5,	...)

Eager	Loading	Multiple	Relationships

Sometimes	you	may	need	to	eager	load	several	different	relationships	in	a	single	operation.	To	do	so,	just	pass
additional	arguments	to	the	with	method:

$books	=	App\Book::with(['author',	'publisher'])->get();

Nested	Eager	Loading

To	eager	load	nested	relationships,	you	may	use	"dot"	syntax.	For	example,	let's	eager	load	all	of	the	book's
authors	and	all	of	the	author's	personal	contacts	in	one	Eloquent	statement:

$books	=	App\Book::with('author.contacts')->get();

Nested	Eager	Loading	morphTo	Relationships

If	you	would	like	to	eager	load	a	morphTo	relationship,	as	well	as	nested	relationships	on	the	various	entities	that
may	be	returned	by	that	relationship,	you	may	use	the	with	method	in	combination	with	the	morphTo
relationship's	morphWith	method.	To	help	illustrate	this	method,	let's	consider	the	following	model:

<?php

use	Illuminate\Database\Eloquent\Model;

class	ActivityFeed	extends	Model

{

				/**

Laravel	Documentation	-	7.x	/	Relationships 452

					*	Get	the	parent	of	the	activity	feed	record.

					*/

				public	function	parentable()

				{

								return	$this->morphTo();

				}

}

In	this	example,	let's	assume	Event,	Photo,	and	Post	models	may	create	ActivityFeed	models.	Additionally,	let's
assume	that	Event	models	belong	to	a	Calendar	model,	Photo	models	are	associated	with	Tag	models,	and	Post
models	belong	to	an	Author	model.

Using	these	model	definitions	and	relationships,	we	may	retrieve	ActivityFeed	model	instances	and	eager	load
all	parentable	models	and	their	respective	nested	relationships:

use	Illuminate\Database\Eloquent\Relations\MorphTo;

$activities	=	ActivityFeed::query()

				->with(['parentable'	=>	function	(MorphTo	$morphTo)	{

								$morphTo->morphWith([

												Event::class	=>	['calendar'],

												Photo::class	=>	['tags'],

												Post::class	=>	['author'],

]);

				}])->get();

Eager	Loading	Specific	Columns

You	may	not	always	need	every	column	from	the	relationships	you	are	retrieving.	For	this	reason,	Eloquent
allows	you	to	specify	which	columns	of	the	relationship	you	would	like	to	retrieve:

$books	=	App\Book::with('author:id,name')->get();

NOTE	When	using	this	feature,	you	should	always	include	the	id	column	and	any	relevant	foreign	key
columns	in	the	list	of	columns	you	wish	to	retrieve.

Eager	Loading	By	Default

Sometimes	you	might	want	to	always	load	some	relationships	when	retrieving	a	model.	To	accomplish	this,	you
may	define	a	$with	property	on	the	model:

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

class	Book	extends	Model

{

				/**

					*	The	relationships	that	should	always	be	loaded.

					*

					*	@var	array

					*/

				protected	$with	=	['author'];

				/**

					*	Get	the	author	that	wrote	the	book.

					*/

				public	function	author()

				{

								return	$this->belongsTo('App\Author');

				}

}

If	you	would	like	to	remove	an	item	from	the	$with	property	for	a	single	query,	you	may	use	the	without
method:

$books	=	App\Book::without('author')->get();

Constraining	Eager	Loads

Laravel	Documentation	-	7.x	/	Relationships 453

Sometimes	you	may	wish	to	eager	load	a	relationship,	but	also	specify	additional	query	conditions	for	the	eager
loading	query.	Here's	an	example:

$users	=	App\User::with(['posts'	=>	function	($query)	{

				$query->where('title',	'like',	'%first%');

}])->get();

In	this	example,	Eloquent	will	only	eager	load	posts	where	the	post's	title	column	contains	the	word	first.
You	may	call	other	query	builder	methods	to	further	customize	the	eager	loading	operation:

$users	=	App\User::with(['posts'	=>	function	($query)	{

				$query->orderBy('created_at',	'desc');

}])->get();

NOTE	The	limit	and	take	query	builder	methods	may	not	be	used	when	constraining	eager	loads.

Lazy	Eager	Loading

Sometimes	you	may	need	to	eager	load	a	relationship	after	the	parent	model	has	already	been	retrieved.	For
example,	this	may	be	useful	if	you	need	to	dynamically	decide	whether	to	load	related	models:

$books	=	App\Book::all();

if	($someCondition)	{

				$books->load('author',	'publisher');

}

If	you	need	to	set	additional	query	constraints	on	the	eager	loading	query,	you	may	pass	an	array	keyed	by	the
relationships	you	wish	to	load.	The	array	values	should	be	Closure	instances	which	receive	the	query	instance:

$author->load(['books'	=>	function	($query)	{

				$query->orderBy('published_date',	'asc');

}]);

To	load	a	relationship	only	when	it	has	not	already	been	loaded,	use	the	loadMissing	method:

public	function	format(Book	$book)

{

				$book->loadMissing('author');

				return	[

								'name'	=>	$book->name,

								'author'	=>	$book->author->name,

];

}

Nested	Lazy	Eager	Loading	&	morphTo

If	you	would	like	to	eager	load	a	morphTo	relationship,	as	well	as	nested	relationships	on	the	various	entities	that
may	be	returned	by	that	relationship,	you	may	use	the	loadMorph	method.

This	method	accepts	the	name	of	the	morphTo	relationship	as	its	first	argument,	and	an	array	of	model	/
relationship	pairs	as	its	second	argument.	To	help	illustrate	this	method,	let's	consider	the	following	model:

<?php

use	Illuminate\Database\Eloquent\Model;

class	ActivityFeed	extends	Model

{

				/**

					*	Get	the	parent	of	the	activity	feed	record.

					*/

				public	function	parentable()

				{

								return	$this->morphTo();

				}

}

In	this	example,	let's	assume	Event,	Photo,	and	Post	models	may	create	ActivityFeed	models.	Additionally,	let's
assume	that	Event	models	belong	to	a	Calendar	model,	Photo	models	are	associated	with	Tag	models,	and	Post

Laravel	Documentation	-	7.x	/	Relationships 454

models	belong	to	an	Author	model.

Using	these	model	definitions	and	relationships,	we	may	retrieve	ActivityFeed	model	instances	and	eager	load
all	parentable	models	and	their	respective	nested	relationships:

$activities	=	ActivityFeed::with('parentable')

				->get()

				->loadMorph('parentable',	[

								Event::class	=>	['calendar'],

								Photo::class	=>	['tags'],

								Post::class	=>	['author'],

]);

Inserting	&	Updating	Related	Models

The	Save	Method

Eloquent	provides	convenient	methods	for	adding	new	models	to	relationships.	For	example,	perhaps	you	need
to	insert	a	new	Comment	for	a	Post	model.	Instead	of	manually	setting	the	post_id	attribute	on	the	Comment,	you
may	insert	the	Comment	directly	from	the	relationship's	save	method:

$comment	=	new	App\Comment(['message'	=>	'A	new	comment.']);

$post	=	App\Post::find(1);

$post->comments()->save($comment);

Notice	that	we	did	not	access	the	comments	relationship	as	a	dynamic	property.	Instead,	we	called	the	comments
method	to	obtain	an	instance	of	the	relationship.	The	save	method	will	automatically	add	the	appropriate	
post_id	value	to	the	new	Comment	model.

If	you	need	to	save	multiple	related	models,	you	may	use	the	saveMany	method:

$post	=	App\Post::find(1);

$post->comments()->saveMany([

				new	App\Comment(['message'	=>	'A	new	comment.']),

				new	App\Comment(['message'	=>	'Another	comment.']),

]);

The	save	and	saveMany	methods	will	not	add	the	new	models	to	any	in-memory	relationships	that	are	already
loaded	onto	the	parent	model.	If	you	plan	on	accessing	the	relationship	after	using	the	save	or	saveMany
methods,	you	may	wish	to	use	the	refresh	method	to	reload	the	model	and	its	relationships:

$post->comments()->save($comment);

$post->refresh();

//	All	comments,	including	the	newly	saved	comment...

$post->comments;

Recursively	Saving	Models	&	Relationships

If	you	would	like	to	save	your	model	and	all	of	its	associated	relationships,	you	may	use	the	push	method:

$post	=	App\Post::find(1);

$post->comments[0]->message	=	'Message';

$post->comments[0]->author->name	=	'Author	Name';

$post->push();

The	Create	Method

In	addition	to	the	save	and	saveMany	methods,	you	may	also	use	the	create	method,	which	accepts	an	array	of
attributes,	creates	a	model,	and	inserts	it	into	the	database.	Again,	the	difference	between	save	and	create	is	that
save	accepts	a	full	Eloquent	model	instance	while	create	accepts	a	plain	PHP	array:

Laravel	Documentation	-	7.x	/	Relationships 455

$post	=	App\Post::find(1);

$comment	=	$post->comments()->create([

				'message'	=>	'A	new	comment.',

]);

TIP	Before	using	the	create	method,	be	sure	to	review	the	documentation	on	attribute	mass	assignment.

You	may	use	the	createMany	method	to	create	multiple	related	models:

$post	=	App\Post::find(1);

$post->comments()->createMany([

				[

								'message'	=>	'A	new	comment.',

],

				[

								'message'	=>	'Another	new	comment.',

],

]);

You	may	also	use	the	findOrNew,	firstOrNew,	firstOrCreate	and	updateOrCreate	methods	to	create	and	update
models	on	relationships.

Belongs	To	Relationships

When	updating	a	belongsTo	relationship,	you	may	use	the	associate	method.	This	method	will	set	the	foreign
key	on	the	child	model:

$account	=	App\Account::find(10);

$user->account()->associate($account);

$user->save();

When	removing	a	belongsTo	relationship,	you	may	use	the	dissociate	method.	This	method	will	set	the
relationship's	foreign	key	to	null:

$user->account()->dissociate();

$user->save();

Default	Models

The	belongsTo,	hasOne,	hasOneThrough,	and	morphOne	relationships	allow	you	to	define	a	default	model	that	will
be	returned	if	the	given	relationship	is	null.	This	pattern	is	often	referred	to	as	the	Null	Object	pattern	and	can
help	remove	conditional	checks	in	your	code.	In	the	following	example,	the	user	relation	will	return	an	empty	
App\User	model	if	no	user	is	attached	to	the	post:

/**

	*	Get	the	author	of	the	post.

	*/

public	function	user()

{

				return	$this->belongsTo('App\User')->withDefault();

}

To	populate	the	default	model	with	attributes,	you	may	pass	an	array	or	Closure	to	the	withDefault	method:

/**

	*	Get	the	author	of	the	post.

	*/

public	function	user()

{

				return	$this->belongsTo('App\User')->withDefault([

								'name'	=>	'Guest	Author',

]);

}

/**

	*	Get	the	author	of	the	post.

	*/

Laravel	Documentation	-	7.x	/	Relationships 456

https://laravel.com/docs/{{version}}/eloquent#other-creation-methods
https://en.wikipedia.org/wiki/Null_Object_pattern

public	function	user()

{

				return	$this->belongsTo('App\User')->withDefault(function	($user,	$post)	{

								$user->name	=	'Guest	Author';

				});

}

Many	To	Many	Relationships

Attaching	/	Detaching

Eloquent	also	provides	a	few	additional	helper	methods	to	make	working	with	related	models	more	convenient.
For	example,	let's	imagine	a	user	can	have	many	roles	and	a	role	can	have	many	users.	To	attach	a	role	to	a	user
by	inserting	a	record	in	the	intermediate	table	that	joins	the	models,	use	the	attach	method:

$user	=	App\User::find(1);

$user->roles()->attach($roleId);

When	attaching	a	relationship	to	a	model,	you	may	also	pass	an	array	of	additional	data	to	be	inserted	into	the
intermediate	table:

$user->roles()->attach($roleId,	['expires'	=>	$expires]);

Sometimes	it	may	be	necessary	to	remove	a	role	from	a	user.	To	remove	a	many-to-many	relationship	record,
use	the	detach	method.	The	detach	method	will	delete	the	appropriate	record	out	of	the	intermediate	table;
however,	both	models	will	remain	in	the	database:

//	Detach	a	single	role	from	the	user...

$user->roles()->detach($roleId);

//	Detach	all	roles	from	the	user...

$user->roles()->detach();

For	convenience,	attach	and	detach	also	accept	arrays	of	IDs	as	input:

$user	=	App\User::find(1);

$user->roles()->detach([1,	2,	3]);

$user->roles()->attach([

				1	=>	['expires'	=>	$expires],

				2	=>	['expires'	=>	$expires],

]);

Syncing	Associations

You	may	also	use	the	sync	method	to	construct	many-to-many	associations.	The	sync	method	accepts	an	array
of	IDs	to	place	on	the	intermediate	table.	Any	IDs	that	are	not	in	the	given	array	will	be	removed	from	the
intermediate	table.	So,	after	this	operation	is	complete,	only	the	IDs	in	the	given	array	will	exist	in	the
intermediate	table:

$user->roles()->sync([1,	2,	3]);

You	may	also	pass	additional	intermediate	table	values	with	the	IDs:

$user->roles()->sync([1	=>	['expires'	=>	true],	2,	3]);

If	you	do	not	want	to	detach	existing	IDs,	you	may	use	the	syncWithoutDetaching	method:

$user->roles()->syncWithoutDetaching([1,	2,	3]);

Toggling	Associations

The	many-to-many	relationship	also	provides	a	toggle	method	which	"toggles"	the	attachment	status	of	the
given	IDs.	If	the	given	ID	is	currently	attached,	it	will	be	detached.	Likewise,	if	it	is	currently	detached,	it	will
be	attached:

Laravel	Documentation	-	7.x	/	Relationships 457

$user->roles()->toggle([1,	2,	3]);

Saving	Additional	Data	On	A	Pivot	Table

When	working	with	a	many-to-many	relationship,	the	save	method	accepts	an	array	of	additional	intermediate
table	attributes	as	its	second	argument:

App\User::find(1)->roles()->save($role,	['expires'	=>	$expires]);

Updating	A	Record	On	A	Pivot	Table

If	you	need	to	update	an	existing	row	in	your	pivot	table,	you	may	use	updateExistingPivot	method.	This
method	accepts	the	pivot	record	foreign	key	and	an	array	of	attributes	to	update:

$user	=	App\User::find(1);

$user->roles()->updateExistingPivot($roleId,	$attributes);

Touching	Parent	Timestamps

When	a	model	belongsTo	or	belongsToMany	another	model,	such	as	a	Comment	which	belongs	to	a	Post,	it	is
sometimes	helpful	to	update	the	parent's	timestamp	when	the	child	model	is	updated.	For	example,	when	a	
Comment	model	is	updated,	you	may	want	to	automatically	"touch"	the	updated_at	timestamp	of	the	owning	Post.
Eloquent	makes	it	easy.	Just	add	a	touches	property	containing	the	names	of	the	relationships	to	the	child
model:

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

class	Comment	extends	Model

{

				/**

					*	All	of	the	relationships	to	be	touched.

					*

					*	@var	array

					*/

				protected	$touches	=	['post'];

				/**

					*	Get	the	post	that	the	comment	belongs	to.

					*/

				public	function	post()

				{

								return	$this->belongsTo('App\Post');

				}

}

Now,	when	you	update	a	Comment,	the	owning	Post	will	have	its	updated_at	column	updated	as	well,	making	it
more	convenient	to	know	when	to	invalidate	a	cache	of	the	Post	model:

$comment	=	App\Comment::find(1);

$comment->text	=	'Edit	to	this	comment!';

$comment->save();

Laravel	Documentation	-	7.x	/	Relationships 458

Eloquent	ORM

Eloquent:	Collections
Introduction
Available	Methods
Custom	Collections

Introduction

All	multi-result	sets	returned	by	Eloquent	are	instances	of	the	Illuminate\Database\Eloquent\Collection	object,
including	results	retrieved	via	the	get	method	or	accessed	via	a	relationship.	The	Eloquent	collection	object
extends	the	Laravel	base	collection,	so	it	naturally	inherits	dozens	of	methods	used	to	fluently	work	with	the
underlying	array	of	Eloquent	models.

All	collections	also	serve	as	iterators,	allowing	you	to	loop	over	them	as	if	they	were	simple	PHP	arrays:

$users	=	App\User::where('active',	1)->get();

foreach	($users	as	$user)	{

				echo	$user->name;

}

However,	collections	are	much	more	powerful	than	arrays	and	expose	a	variety	of	map	/	reduce	operations	that
may	be	chained	using	an	intuitive	interface.	For	example,	let's	remove	all	inactive	models	and	gather	the	first
name	for	each	remaining	user:

$users	=	App\User::all();

$names	=	$users->reject(function	($user)	{

				return	$user->active	===	false;

})

->map(function	($user)	{

				return	$user->name;

});

NOTE	While	most	Eloquent	collection	methods	return	a	new	instance	of	an	Eloquent	collection,	the	pluck,
keys,	zip,	collapse,	flatten	and	flip	methods	return	a	base	collection	instance.	Likewise,	if	a	map	operation
returns	a	collection	that	does	not	contain	any	Eloquent	models,	it	will	be	automatically	cast	to	a	base
collection.

Available	Methods

All	Eloquent	collections	extend	the	base	Laravel	collection	object;	therefore,	they	inherit	all	of	the	powerful
methods	provided	by	the	base	collection	class.

In	addition,	the	Illuminate\Database\Eloquent\Collection	class	provides	a	superset	of	methods	to	aid	with
managing	your	model	collections.	Most	methods	return	Illuminate\Database\Eloquent\Collection	instances;
however,	some	methods	return	a	base	Illuminate\Support\Collection	instance.

contains	diff	except	find	fresh	intersect	load	loadMissing	modelKeys	makeVisible	makeHidden	only	toQuery
unique

contains($key,	$operator	=	null,	$value	=	null)

The	contains	method	may	be	used	to	determine	if	a	given	model	instance	is	contained	by	the	collection.	This
method	accepts	a	primary	key	or	a	model	instance:

$users->contains(1);

$users->contains(User::find(1));

diff($items)

Laravel	Documentation	-	7.x	/	Collections 459

The	diff	method	returns	all	of	the	models	that	are	not	present	in	the	given	collection:

use	App\User;

$users	=	$users->diff(User::whereIn('id',	[1,	2,	3])->get());

except($keys)

The	except	method	returns	all	of	the	models	that	do	not	have	the	given	primary	keys:

$users	=	$users->except([1,	2,	3]);

find($key)

The	find	method	finds	a	model	that	has	a	given	primary	key.	If	$key	is	a	model	instance,	find	will	attempt	to
return	a	model	matching	the	primary	key.	If	$key	is	an	array	of	keys,	find	will	return	all	models	which	match
the	$keys	using	whereIn():

$users	=	User::all();

$user	=	$users->find(1);

fresh($with	=	[])

The	fresh	method	retrieves	a	fresh	instance	of	each	model	in	the	collection	from	the	database.	In	addition,	any
specified	relationships	will	be	eager	loaded:

$users	=	$users->fresh();

$users	=	$users->fresh('comments');

intersect($items)

The	intersect	method	returns	all	of	the	models	that	are	also	present	in	the	given	collection:

use	App\User;

$users	=	$users->intersect(User::whereIn('id',	[1,	2,	3])->get());

load($relations)

The	load	method	eager	loads	the	given	relationships	for	all	models	in	the	collection:

$users->load('comments',	'posts');

$users->load('comments.author');

loadMissing($relations)

The	loadMissing	method	eager	loads	the	given	relationships	for	all	models	in	the	collection	if	the	relationships
are	not	already	loaded:

$users->loadMissing('comments',	'posts');

$users->loadMissing('comments.author');

modelKeys()

The	modelKeys	method	returns	the	primary	keys	for	all	models	in	the	collection:

$users->modelKeys();

//	[1,	2,	3,	4,	5]

makeVisible($attributes)

The	makeVisible	method	makes	attributes	visible	that	are	typically	"hidden"	on	each	model	in	the	collection:

Laravel	Documentation	-	7.x	/	Collections 460

$users	=	$users->makeVisible(['address',	'phone_number']);

makeHidden($attributes)

The	makeHidden	method	hides	attributes	that	are	typically	"visible"	on	each	model	in	the	collection:

$users	=	$users->makeHidden(['address',	'phone_number']);

only($keys)

The	only	method	returns	all	of	the	models	that	have	the	given	primary	keys:

$users	=	$users->only([1,	2,	3]);

toQuery()

The	toQuery	method	returns	an	Eloquent	query	builder	instance	containing	a	whereIn	constraint	on	the	collection
model's	primary	keys:

$users	=	App\User::where('status',	'VIP')->get();

$users->toQuery()->update([

				'status'	=>	'Administrator',

]);

unique($key	=	null,	$strict	=	false)

The	unique	method	returns	all	of	the	unique	models	in	the	collection.	Any	models	of	the	same	type	with	the
same	primary	key	as	another	model	in	the	collection	are	removed.

$users	=	$users->unique();

Custom	Collections

If	you	need	to	use	a	custom	Collection	object	with	your	own	extension	methods,	you	may	override	the	
newCollection	method	on	your	model:

<?php

namespace	App;

use	App\CustomCollection;

use	Illuminate\Database\Eloquent\Model;

class	User	extends	Model

{

				/**

					*	Create	a	new	Eloquent	Collection	instance.

					*

					*	@param		array		$models

					*	@return	\Illuminate\Database\Eloquent\Collection

					*/

				public	function	newCollection(array	$models	=	[])

				{

								return	new	CustomCollection($models);

				}

}

Once	you	have	defined	a	newCollection	method,	you	will	receive	an	instance	of	your	custom	collection	anytime
Eloquent	returns	a	Collection	instance	of	that	model.	If	you	would	like	to	use	a	custom	collection	for	every
model	in	your	application,	you	should	override	the	newCollection	method	on	a	base	model	class	that	is	extended
by	all	of	your	models.

Laravel	Documentation	-	7.x	/	Collections 461

Eloquent	ORM

Eloquent:	Mutators
Introduction
Accessors	&	Mutators

Defining	An	Accessor
Defining	A	Mutator

Date	Mutators
Attribute	Casting

Custom	Casts
Array	&	JSON	Casting
Date	Casting
Query	Time	Casting

Introduction

Accessors	and	mutators	allow	you	to	format	Eloquent	attribute	values	when	you	retrieve	or	set	them	on	model
instances.	For	example,	you	may	want	to	use	the	Laravel	encrypter	to	encrypt	a	value	while	it	is	stored	in	the
database,	and	then	automatically	decrypt	the	attribute	when	you	access	it	on	an	Eloquent	model.

In	addition	to	custom	accessors	and	mutators,	Eloquent	can	also	automatically	cast	date	fields	to	Carbon
instances	or	even	cast	text	fields	to	JSON.

Accessors	&	Mutators

Defining	An	Accessor

To	define	an	accessor,	create	a	getFooAttribute	method	on	your	model	where	Foo	is	the	"studly"	cased	name	of
the	column	you	wish	to	access.	In	this	example,	we'll	define	an	accessor	for	the	first_name	attribute.	The
accessor	will	automatically	be	called	by	Eloquent	when	attempting	to	retrieve	the	value	of	the	first_name
attribute:

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

class	User	extends	Model

{

				/**

					*	Get	the	user's	first	name.

					*

					*	@param		string		$value

					*	@return	string

					*/

				public	function	getFirstNameAttribute($value)

				{

								return	ucfirst($value);

				}

}

As	you	can	see,	the	original	value	of	the	column	is	passed	to	the	accessor,	allowing	you	to	manipulate	and
return	the	value.	To	access	the	value	of	the	accessor,	you	may	access	the	first_name	attribute	on	a	model
instance:

$user	=	App\User::find(1);

$firstName	=	$user->first_name;

You	may	also	use	accessors	to	return	new,	computed	values	from	existing	attributes:

/**

	*	Get	the	user's	full	name.

Laravel	Documentation	-	7.x	/	Mutators 462

https://github.com/briannesbitt/Carbon

	*

	*	@return	string

	*/

public	function	getFullNameAttribute()

{

				return	"{$this->first_name}	{$this->last_name}";

}

TIP	If	you	would	like	these	computed	values	to	be	added	to	the	array	/	JSON	representations	of	your
model,	you	will	need	to	append	them.

Defining	A	Mutator

To	define	a	mutator,	define	a	setFooAttribute	method	on	your	model	where	Foo	is	the	"studly"	cased	name	of
the	column	you	wish	to	access.	So,	again,	let's	define	a	mutator	for	the	first_name	attribute.	This	mutator	will
be	automatically	called	when	we	attempt	to	set	the	value	of	the	first_name	attribute	on	the	model:

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

class	User	extends	Model

{

				/**

					*	Set	the	user's	first	name.

					*

					*	@param		string		$value

					*	@return	void

					*/

				public	function	setFirstNameAttribute($value)

				{

								$this->attributes['first_name']	=	strtolower($value);

				}

}

The	mutator	will	receive	the	value	that	is	being	set	on	the	attribute,	allowing	you	to	manipulate	the	value	and
set	the	manipulated	value	on	the	Eloquent	model's	internal	$attributes	property.	So,	for	example,	if	we	attempt
to	set	the	first_name	attribute	to	Sally:

$user	=	App\User::find(1);

$user->first_name	=	'Sally';

In	this	example,	the	setFirstNameAttribute	function	will	be	called	with	the	value	Sally.	The	mutator	will	then
apply	the	strtolower	function	to	the	name	and	set	its	resulting	value	in	the	internal	$attributes	array.

Date	Mutators

By	default,	Eloquent	will	convert	the	created_at	and	updated_at	columns	to	instances	of	Carbon,	which	extends
the	PHP	DateTime	class	and	provides	an	assortment	of	helpful	methods.	You	may	add	additional	date	attributes
by	setting	the	$dates	property	of	your	model:

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

class	User	extends	Model

{

				/**

					*	The	attributes	that	should	be	mutated	to	dates.

					*

					*	@var	array

					*/

				protected	$dates	=	[

								'seen_at',

];

}

Laravel	Documentation	-	7.x	/	Mutators 463

https://laravel.comeloquent_orm-serialization.xhtml#appending-values-to-json
https://github.com/briannesbitt/Carbon

TIP	You	may	disable	the	default	created_at	and	updated_at	timestamps	by	setting	the	public	$timestamps
property	of	your	model	to	false.

When	a	column	is	considered	a	date,	you	may	set	its	value	to	a	UNIX	timestamp,	date	string	(Y-m-d),	date-time
string,	or	a	DateTime	/	Carbon	instance.	The	date's	value	will	be	correctly	converted	and	stored	in	your	database:

$user	=	App\User::find(1);

$user->deleted_at	=	now();

$user->save();

As	noted	above,	when	retrieving	attributes	that	are	listed	in	your	$dates	property,	they	will	automatically	be
cast	to	Carbon	instances,	allowing	you	to	use	any	of	Carbon's	methods	on	your	attributes:

$user	=	App\User::find(1);

return	$user->deleted_at->getTimestamp();

Date	Formats

By	default,	timestamps	are	formatted	as	'Y-m-d	H:i:s'.	If	you	need	to	customize	the	timestamp	format,	set	the	
$dateFormat	property	on	your	model.	This	property	determines	how	date	attributes	are	stored	in	the	database:

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

class	Flight	extends	Model

{

				/**

					*	The	storage	format	of	the	model's	date	columns.

					*

					*	@var	string

					*/

				protected	$dateFormat	=	'U';

}

Attribute	Casting

The	$casts	property	on	your	model	provides	a	convenient	method	of	converting	attributes	to	common	data
types.	The	$casts	property	should	be	an	array	where	the	key	is	the	name	of	the	attribute	being	cast	and	the
value	is	the	type	you	wish	to	cast	the	column	to.	The	supported	cast	types	are:	integer,	real,	float,	double,	
decimal:<digits>,	string,	boolean,	object,	array,	collection,	date,	datetime,	and	timestamp.	When	casting	to	
decimal,	you	must	define	the	number	of	digits	(decimal:2).

To	demonstrate	attribute	casting,	let's	cast	the	is_admin	attribute,	which	is	stored	in	our	database	as	an	integer	(0
or	1)	to	a	boolean	value:

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

class	User	extends	Model

{

				/**

					*	The	attributes	that	should	be	cast.

					*

					*	@var	array

					*/

				protected	$casts	=	[

								'is_admin'	=>	'boolean',

];

}

Now	the	is_admin	attribute	will	always	be	cast	to	a	boolean	when	you	access	it,	even	if	the	underlying	value	is
stored	in	the	database	as	an	integer:

Laravel	Documentation	-	7.x	/	Mutators 464

https://github.com/briannesbitt/Carbon

$user	=	App\User::find(1);

if	($user->is_admin)	{

				//

}

NOTE	Attributes	that	are	null	will	not	be	cast.	In	addition,	you	should	never	define	a	cast	(or	an	attribute)
that	has	the	same	name	as	a	relationship.

Custom	Casts

Laravel	has	a	variety	of	built-in,	helpful	cast	types;	however,	you	may	occasionally	need	to	define	your	own
cast	types.	You	may	accomplish	this	by	defining	a	class	that	implements	the	CastsAttributes	interface.

Classes	that	implement	this	interface	must	define	a	get	and	set	method.	The	get	method	is	responsible	for
transforming	a	raw	value	from	the	database	into	a	cast	value,	while	the	set	method	should	transform	a	cast
value	into	a	raw	value	that	can	be	stored	in	the	database.	As	an	example,	we	will	re-implement	the	built-in	json
cast	type	as	a	custom	cast	type:

<?php

namespace	App\Casts;

use	Illuminate\Contracts\Database\Eloquent\CastsAttributes;

class	Json	implements	CastsAttributes

{

				/**

					*	Cast	the	given	value.

					*

					*	@param		\Illuminate\Database\Eloquent\Model		$model

					*	@param		string		$key

					*	@param		mixed		$value

					*	@param		array		$attributes

					*	@return	array

					*/

				public	function	get($model,	$key,	$value,	$attributes)

				{

								return	json_decode($value,	true);

				}

				/**

					*	Prepare	the	given	value	for	storage.

					*

					*	@param		\Illuminate\Database\Eloquent\Model		$model

					*	@param		string		$key

					*	@param		array		$value

					*	@param		array		$attributes

					*	@return	string

					*/

				public	function	set($model,	$key,	$value,	$attributes)

				{

								return	json_encode($value);

				}

}

Once	you	have	defined	a	custom	cast	type,	you	may	attach	it	to	a	model	attribute	using	its	class	name:

<?php

namespace	App;

use	App\Casts\Json;

use	Illuminate\Database\Eloquent\Model;

class	User	extends	Model

{

				/**

					*	The	attributes	that	should	be	cast.

					*

					*	@var	array

					*/

				protected	$casts	=	[

								'options'	=>	Json::class,

];

Laravel	Documentation	-	7.x	/	Mutators 465

}

Value	Object	Casting

You	are	not	limited	to	casting	values	to	primitive	types.	You	may	also	cast	values	to	objects.	Defining	custom
casts	that	cast	values	to	objects	is	very	similar	to	casting	to	primitive	types;	however,	the	set	method	should
return	an	array	of	key	/	value	pairs	that	will	be	used	to	set	raw,	storable	values	on	the	model.

As	an	example,	we	will	define	a	custom	cast	class	that	casts	multiple	model	values	into	a	single	Address	value
object.	We	will	assume	the	Address	value	has	two	public	properties:	lineOne	and	lineTwo:

<?php

namespace	App\Casts;

use	App\Address;

use	Illuminate\Contracts\Database\Eloquent\CastsAttributes;

use	InvalidArgumentException;

class	Address	implements	CastsAttributes

{

				/**

					*	Cast	the	given	value.

					*

					*	@param		\Illuminate\Database\Eloquent\Model		$model

					*	@param		string		$key

					*	@param		mixed		$value

					*	@param		array		$attributes

					*	@return	\App\Address

					*/

				public	function	get($model,	$key,	$value,	$attributes)

				{

								return	new	Address(

												$attributes['address_line_one'],

												$attributes['address_line_two']

);

				}

				/**

					*	Prepare	the	given	value	for	storage.

					*

					*	@param		\Illuminate\Database\Eloquent\Model		$model

					*	@param		string		$key

					*	@param		\App\Address		$value

					*	@param		array		$attributes

					*	@return	array

					*/

				public	function	set($model,	$key,	$value,	$attributes)

				{

								if	(!	$value	instanceof	Address)	{

												throw	new	InvalidArgumentException('The	given	value	is	not	an	Address	instance.');

								}

								return	[

												'address_line_one'	=>	$value->lineOne,

												'address_line_two'	=>	$value->lineTwo,

];

				}

}

When	casting	to	value	objects,	any	changes	made	to	the	value	object	will	automatically	be	synced	back	to	the
model	before	the	model	is	saved:

$user	=	App\User::find(1);

$user->address->lineOne	=	'Updated	Address	Value';

$user->save();

TIP	If	you	plan	to	serialize	your	Eloquent	models	containing	value	objects	to	JSON	or	arrays,	you	should
implement	the	Illuminate\Contracts\Support\Arrayable	and	JsonSerializable	interfaces	on	the	value
object.

Inbound	Casting

Laravel	Documentation	-	7.x	/	Mutators 466

Occasionally,	you	may	need	to	write	a	custom	cast	that	only	transforms	values	that	are	being	set	on	the	model
and	does	not	perform	any	operations	when	attributes	are	being	retrieved	from	the	model.	A	classic	example	of
an	inbound	only	cast	is	a	"hashing"	cast.	Inbound	only	custom	casts	should	implement	the	
CastsInboundAttributes	interface,	which	only	requires	a	set	method	to	be	defined.

<?php

namespace	App\Casts;

use	Illuminate\Contracts\Database\Eloquent\CastsInboundAttributes;

class	Hash	implements	CastsInboundAttributes

{

				/**

					*	The	hashing	algorithm.

					*

					*	@var	string

					*/

				protected	$algorithm;

				/**

					*	Create	a	new	cast	class	instance.

					*

					*	@param		string|null		$algorithm

					*	@return	void

					*/

				public	function	__construct($algorithm	=	null)

				{

								$this->algorithm	=	$algorithm;

				}

				/**

					*	Prepare	the	given	value	for	storage.

					*

					*	@param		\Illuminate\Database\Eloquent\Model		$model

					*	@param		string		$key

					*	@param		array		$value

					*	@param		array		$attributes

					*	@return	string

					*/

				public	function	set($model,	$key,	$value,	$attributes)

				{

								return	is_null($this->algorithm)

																				?	bcrypt($value)

																				:	hash($this->algorithm,	$value);

				}

}

Cast	Parameters

When	attaching	a	custom	cast	to	a	model,	cast	parameters	may	be	specified	by	separating	them	from	the	class
name	using	a	:	character	and	comma-delimiting	multiple	parameters.	The	parameters	will	be	passed	to	the
constructor	of	the	cast	class:

/**

	*	The	attributes	that	should	be	cast.

	*

	*	@var	array

	*/

protected	$casts	=	[

				'secret'	=>	Hash::class.':sha256',

];

Castables

Instead	of	attaching	the	custom	cast	to	your	model,	you	may	alternatively	attach	a	class	that	implements	the	
Illuminate\Contracts\Database\Eloquent\Castable	interface:

protected	$casts	=	[

				'address'	=>	\App\Address::class,

];

Objects	that	implement	the	Castable	interface	must	define	a	castUsing	method	that	returns	the	class	name	of	the
custom	caster	class	that	is	responsible	for	casting	to	and	from	the	Castable	class:

Laravel	Documentation	-	7.x	/	Mutators 467

<?php

namespace	App;

use	Illuminate\Contracts\Database\Eloquent\Castable;

use	App\Casts\Address	as	AddressCast;

class	Address	implements	Castable

{

				/**

					*	Get	the	name	of	the	caster	class	to	use	when	casting	from	/	to	this	cast	target.

					*

					*	@return	string

					*/

				public	static	function	castUsing()

				{

								return	AddressCast::class;

				}

}

When	using	Castable	classes,	you	may	still	provide	arguments	in	the	$casts	definition.	The	arguments	will	be
passed	directly	to	the	caster	class:

protected	$casts	=	[

				'address'	=>	\App\Address::class.':argument',

];

Array	&	JSON	Casting

The	array	cast	type	is	particularly	useful	when	working	with	columns	that	are	stored	as	serialized	JSON.	For
example,	if	your	database	has	a	JSON	or	TEXT	field	type	that	contains	serialized	JSON,	adding	the	array	cast	to
that	attribute	will	automatically	deserialize	the	attribute	to	a	PHP	array	when	you	access	it	on	your	Eloquent
model:

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

class	User	extends	Model

{

				/**

					*	The	attributes	that	should	be	cast.

					*

					*	@var	array

					*/

				protected	$casts	=	[

								'options'	=>	'array',

];

}

Once	the	cast	is	defined,	you	may	access	the	options	attribute	and	it	will	automatically	be	deserialized	from
JSON	into	a	PHP	array.	When	you	set	the	value	of	the	options	attribute,	the	given	array	will	automatically	be
serialized	back	into	JSON	for	storage:

$user	=	App\User::find(1);

$options	=	$user->options;

$options['key']	=	'value';

$user->options	=	$options;

$user->save();

Date	Casting

When	using	the	date	or	datetime	cast	type,	you	may	specify	the	date's	format.	This	format	will	be	used	when
the	model	is	serialized	to	an	array	or	JSON:

/**

	*	The	attributes	that	should	be	cast.

Laravel	Documentation	-	7.x	/	Mutators 468

	*

	*	@var	array

	*/

protected	$casts	=	[

				'created_at'	=>	'datetime:Y-m-d',

];

Query	Time	Casting

Sometimes	you	may	need	to	apply	casts	while	executing	a	query,	such	as	when	selecting	a	raw	value	from	a
table.	For	example,	consider	the	following	query:

use	App\Post;

use	App\User;

$users	=	User::select([

				'users.*',

				'last_posted_at'	=>	Post::selectRaw('MAX(created_at)')

												->whereColumn('user_id',	'users.id')

])->get();

The	last_posted_at	attribute	on	the	results	of	this	query	will	be	a	raw	string.	It	would	be	convenient	if	we	could
apply	a	date	cast	to	this	attribute	when	executing	the	query.	To	accomplish	this,	we	may	use	the	withCasts
method:

$users	=	User::select([

				'users.*',

				'last_posted_at'	=>	Post::selectRaw('MAX(created_at)')

												->whereColumn('user_id',	'users.id')

])->withCasts([

				'last_posted_at'	=>	'datetime'

])->get();

Laravel	Documentation	-	7.x	/	Mutators 469

Eloquent	ORM

Eloquent:	API	Resources
Introduction
Generating	Resources
Concept	Overview

Resource	Collections
Writing	Resources

Data	Wrapping
Pagination
Conditional	Attributes
Conditional	Relationships
Adding	Meta	Data

Resource	Responses

Introduction

When	building	an	API,	you	may	need	a	transformation	layer	that	sits	between	your	Eloquent	models	and	the
JSON	responses	that	are	actually	returned	to	your	application's	users.	Laravel's	resource	classes	allow	you	to
expressively	and	easily	transform	your	models	and	model	collections	into	JSON.

Generating	Resources

To	generate	a	resource	class,	you	may	use	the	make:resource	Artisan	command.	By	default,	resources	will	be
placed	in	the	app/Http/Resources	directory	of	your	application.	Resources	extend	the	
Illuminate\Http\Resources\Json\JsonResource	class:

php	artisan	make:resource	User

Resource	Collections

In	addition	to	generating	resources	that	transform	individual	models,	you	may	generate	resources	that	are
responsible	for	transforming	collections	of	models.	This	allows	your	response	to	include	links	and	other	meta
information	that	is	relevant	to	an	entire	collection	of	a	given	resource.

To	create	a	resource	collection,	you	should	use	the	--collection	flag	when	creating	the	resource.	Or,	including
the	word	Collection	in	the	resource	name	will	indicate	to	Laravel	that	it	should	create	a	collection	resource.
Collection	resources	extend	the	Illuminate\Http\Resources\Json\ResourceCollection	class:

php	artisan	make:resource	Users	--collection

php	artisan	make:resource	UserCollection

Concept	Overview

TIP	This	is	a	high-level	overview	of	resources	and	resource	collections.	You	are	highly	encouraged	to	read
the	other	sections	of	this	documentation	to	gain	a	deeper	understanding	of	the	customization	and	power
offered	to	you	by	resources.

Before	diving	into	all	of	the	options	available	to	you	when	writing	resources,	let's	first	take	a	high-level	look	at
how	resources	are	used	within	Laravel.	A	resource	class	represents	a	single	model	that	needs	to	be	transformed
into	a	JSON	structure.	For	example,	here	is	a	simple	User	resource	class:

<?php

namespace	App\Http\Resources;

use	Illuminate\Http\Resources\Json\JsonResource;

class	User	extends	JsonResource

Laravel	Documentation	-	7.x	/	API	Resources 470

{

				/**

					*	Transform	the	resource	into	an	array.

					*

					*	@param		\Illuminate\Http\Request		$request

					*	@return	array

					*/

				public	function	toArray($request)

				{

								return	[

												'id'	=>	$this->id,

												'name'	=>	$this->name,

												'email'	=>	$this->email,

												'created_at'	=>	$this->created_at,

												'updated_at'	=>	$this->updated_at,

];

				}

}

Every	resource	class	defines	a	toArray	method	which	returns	the	array	of	attributes	that	should	be	converted	to
JSON	when	sending	the	response.	Notice	that	we	can	access	model	properties	directly	from	the	$this	variable.
This	is	because	a	resource	class	will	automatically	proxy	property	and	method	access	down	to	the	underlying
model	for	convenient	access.	Once	the	resource	is	defined,	it	may	be	returned	from	a	route	or	controller:

use	App\Http\Resources\User	as	UserResource;

use	App\User;

Route::get('/user',	function	()	{

				return	new	UserResource(User::find(1));

});

Resource	Collections

If	you	are	returning	a	collection	of	resources	or	a	paginated	response,	you	may	use	the	collection	method	when
creating	the	resource	instance	in	your	route	or	controller:

use	App\Http\Resources\User	as	UserResource;

use	App\User;

Route::get('/user',	function	()	{

				return	UserResource::collection(User::all());

});

Note	that	this	does	not	allow	any	addition	of	meta	data	that	may	need	to	be	returned	with	the	collection.	If	you
would	like	to	customize	the	resource	collection	response,	you	may	create	a	dedicated	resource	to	represent	the
collection:

php	artisan	make:resource	UserCollection

Once	the	resource	collection	class	has	been	generated,	you	may	easily	define	any	meta	data	that	should	be
included	with	the	response:

<?php

namespace	App\Http\Resources;

use	Illuminate\Http\Resources\Json\ResourceCollection;

class	UserCollection	extends	ResourceCollection

{

				/**

					*	Transform	the	resource	collection	into	an	array.

					*

					*	@param		\Illuminate\Http\Request		$request

					*	@return	array

					*/

				public	function	toArray($request)

				{

								return	[

												'data'	=>	$this->collection,

												'links'	=>	[

																'self'	=>	'link-value',

],

];

Laravel	Documentation	-	7.x	/	API	Resources 471

				}

}

After	defining	your	resource	collection,	it	may	be	returned	from	a	route	or	controller:

use	App\Http\Resources\UserCollection;

use	App\User;

Route::get('/users',	function	()	{

				return	new	UserCollection(User::all());

});

Preserving	Collection	Keys

When	returning	a	resource	collection	from	a	route,	Laravel	resets	the	collection's	keys	so	that	they	are	in	simple
numerical	order.	However,	you	may	add	a	preserveKeys	property	to	your	resource	class	indicating	if	collection
keys	should	be	preserved:

<?php

namespace	App\Http\Resources;

use	Illuminate\Http\Resources\Json\JsonResource;

class	User	extends	JsonResource

{

				/**

					*	Indicates	if	the	resource's	collection	keys	should	be	preserved.

					*

					*	@var	bool

					*/

				public	$preserveKeys	=	true;

}

When	the	preserveKeys	property	is	set	to	true,	collection	keys	will	be	preserved:

use	App\Http\Resources\User	as	UserResource;

use	App\User;

Route::get('/user',	function	()	{

				return	UserResource::collection(User::all()->keyBy->id);

});

Customizing	The	Underlying	Resource	Class

Typically,	the	$this->collection	property	of	a	resource	collection	is	automatically	populated	with	the	result	of
mapping	each	item	of	the	collection	to	its	singular	resource	class.	The	singular	resource	class	is	assumed	to	be
the	collection's	class	name	without	the	trailing	Collection	string.

For	example,	UserCollection	will	attempt	to	map	the	given	user	instances	into	the	User	resource.	To	customize
this	behavior,	you	may	override	the	$collects	property	of	your	resource	collection:

<?php

namespace	App\Http\Resources;

use	Illuminate\Http\Resources\Json\ResourceCollection;

class	UserCollection	extends	ResourceCollection

{

				/**

					*	The	resource	that	this	resource	collects.

					*

					*	@var	string

					*/

				public	$collects	=	'App\Http\Resources\Member';

}

Writing	Resources

TIP	If	you	have	not	read	the	concept	overview,	you	are	highly	encouraged	to	do	so	before	proceeding	with

Laravel	Documentation	-	7.x	/	API	Resources 472

this	documentation.

In	essence,	resources	are	simple.	They	only	need	to	transform	a	given	model	into	an	array.	So,	each	resource
contains	a	toArray	method	which	translates	your	model's	attributes	into	an	API	friendly	array	that	can	be
returned	to	your	users:

<?php

namespace	App\Http\Resources;

use	Illuminate\Http\Resources\Json\JsonResource;

class	User	extends	JsonResource

{

				/**

					*	Transform	the	resource	into	an	array.

					*

					*	@param		\Illuminate\Http\Request		$request

					*	@return	array

					*/

				public	function	toArray($request)

				{

								return	[

												'id'	=>	$this->id,

												'name'	=>	$this->name,

												'email'	=>	$this->email,

												'created_at'	=>	$this->created_at,

												'updated_at'	=>	$this->updated_at,

];

				}

}

Once	a	resource	has	been	defined,	it	may	be	returned	directly	from	a	route	or	controller:

use	App\Http\Resources\User	as	UserResource;

use	App\User;

Route::get('/user',	function	()	{

				return	new	UserResource(User::find(1));

});

Relationships

If	you	would	like	to	include	related	resources	in	your	response,	you	may	add	them	to	the	array	returned	by	your
toArray	method.	In	this	example,	we	will	use	the	Post	resource's	collection	method	to	add	the	user's	blog	posts
to	the	resource	response:

/**

	*	Transform	the	resource	into	an	array.

	*

	*	@param		\Illuminate\Http\Request		$request

	*	@return	array

	*/

public	function	toArray($request)

{

				return	[

								'id'	=>	$this->id,

								'name'	=>	$this->name,

								'email'	=>	$this->email,

								'posts'	=>	PostResource::collection($this->posts),

								'created_at'	=>	$this->created_at,

								'updated_at'	=>	$this->updated_at,

];

}

TIP	If	you	would	like	to	include	relationships	only	when	they	have	already	been	loaded,	check	out	the
documentation	on	conditional	relationships.

Resource	Collections

While	resources	translate	a	single	model	into	an	array,	resource	collections	translate	a	collection	of	models	into
an	array.	It	is	not	absolutely	necessary	to	define	a	resource	collection	class	for	each	one	of	your	model	types
since	all	resources	provide	a	collection	method	to	generate	an	"ad-hoc"	resource	collection	on	the	fly:

Laravel	Documentation	-	7.x	/	API	Resources 473

use	App\Http\Resources\User	as	UserResource;

use	App\User;

Route::get('/user',	function	()	{

				return	UserResource::collection(User::all());

});

However,	if	you	need	to	customize	the	meta	data	returned	with	the	collection,	it	will	be	necessary	to	define	a
resource	collection:

<?php

namespace	App\Http\Resources;

use	Illuminate\Http\Resources\Json\ResourceCollection;

class	UserCollection	extends	ResourceCollection

{

				/**

					*	Transform	the	resource	collection	into	an	array.

					*

					*	@param		\Illuminate\Http\Request		$request

					*	@return	array

					*/

				public	function	toArray($request)

				{

								return	[

												'data'	=>	$this->collection,

												'links'	=>	[

																'self'	=>	'link-value',

],

];

				}

}

Like	singular	resources,	resource	collections	may	be	returned	directly	from	routes	or	controllers:

use	App\Http\Resources\UserCollection;

use	App\User;

Route::get('/users',	function	()	{

				return	new	UserCollection(User::all());

});

Data	Wrapping

By	default,	your	outermost	resource	is	wrapped	in	a	data	key	when	the	resource	response	is	converted	to	JSON.
So,	for	example,	a	typical	resource	collection	response	looks	like	the	following:

{

				"data":	[

								{

												"id":	1,

												"name":	"Eladio	Schroeder	Sr.",

												"email":	"therese28@example.com",

								},

								{

												"id":	2,

												"name":	"Liliana	Mayert",

												"email":	"evandervort@example.com",

								}

]

}

If	you	would	like	to	use	a	custom	key	instead	of	data,	you	may	define	a	$wrap	attribute	on	the	resource	class:

<?php

namespace	App\Http\Resources;

use	Illuminate\Http\Resources\Json\JsonResource;

class	User	extends	JsonResource

{

				/**

					*	The	"data"	wrapper	that	should	be	applied.

Laravel	Documentation	-	7.x	/	API	Resources 474

					*

					*	@var	string

					*/

				public	static	$wrap	=	'user';

}

If	you	would	like	to	disable	the	wrapping	of	the	outermost	resource,	you	may	use	the	withoutWrapping	method
on	the	base	resource	class.	Typically,	you	should	call	this	method	from	your	AppServiceProvider	or	another
service	provider	that	is	loaded	on	every	request	to	your	application:

<?php

namespace	App\Providers;

use	Illuminate\Http\Resources\Json\JsonResource;

use	Illuminate\Support\ServiceProvider;

class	AppServiceProvider	extends	ServiceProvider

{

				/**

					*	Register	any	application	services.

					*

					*	@return	void

					*/

				public	function	register()

				{

								//

				}

				/**

					*	Bootstrap	any	application	services.

					*

					*	@return	void

					*/

				public	function	boot()

				{

								JsonResource::withoutWrapping();

				}

}

NOTE	The	withoutWrapping	method	only	affects	the	outermost	response	and	will	not	remove	data	keys	that
you	manually	add	to	your	own	resource	collections.

Wrapping	Nested	Resources

You	have	total	freedom	to	determine	how	your	resource's	relationships	are	wrapped.	If	you	would	like	all
resource	collections	to	be	wrapped	in	a	data	key,	regardless	of	their	nesting,	you	should	define	a	resource
collection	class	for	each	resource	and	return	the	collection	within	a	data	key.

You	may	be	wondering	if	this	will	cause	your	outermost	resource	to	be	wrapped	in	two	data	keys.	Don't	worry,
Laravel	will	never	let	your	resources	be	accidentally	double-wrapped,	so	you	don't	have	to	be	concerned	about
the	nesting	level	of	the	resource	collection	you	are	transforming:

<?php

namespace	App\Http\Resources;

use	Illuminate\Http\Resources\Json\ResourceCollection;

class	CommentsCollection	extends	ResourceCollection

{

				/**

					*	Transform	the	resource	collection	into	an	array.

					*

					*	@param		\Illuminate\Http\Request		$request

					*	@return	array

					*/

				public	function	toArray($request)

				{

								return	['data'	=>	$this->collection];

				}

}

Data	Wrapping	And	Pagination

Laravel	Documentation	-	7.x	/	API	Resources 475

When	returning	paginated	collections	in	a	resource	response,	Laravel	will	wrap	your	resource	data	in	a	data	key
even	if	the	withoutWrapping	method	has	been	called.	This	is	because	paginated	responses	always	contain	meta
and	links	keys	with	information	about	the	paginator's	state:

{

				"data":	[

								{

												"id":	1,

												"name":	"Eladio	Schroeder	Sr.",

												"email":	"therese28@example.com",

								},

								{

												"id":	2,

												"name":	"Liliana	Mayert",

												"email":	"evandervort@example.com",

								}

],

				"links":{

								"first":	"http://example.com/pagination?page=1",

								"last":	"http://example.com/pagination?page=1",

								"prev":	null,

								"next":	null

				},

				"meta":{

								"current_page":	1,

								"from":	1,

								"last_page":	1,

								"path":	"http://example.com/pagination",

								"per_page":	15,

								"to":	10,

								"total":	10

				}

}

Pagination

You	may	always	pass	a	paginator	instance	to	the	collection	method	of	a	resource	or	to	a	custom	resource
collection:

use	App\Http\Resources\UserCollection;

use	App\User;

Route::get('/users',	function	()	{

				return	new	UserCollection(User::paginate());

});

Paginated	responses	always	contain	meta	and	links	keys	with	information	about	the	paginator's	state:

{

				"data":	[

								{

												"id":	1,

												"name":	"Eladio	Schroeder	Sr.",

												"email":	"therese28@example.com",

								},

								{

												"id":	2,

												"name":	"Liliana	Mayert",

												"email":	"evandervort@example.com",

								}

],

				"links":{

								"first":	"http://example.com/pagination?page=1",

								"last":	"http://example.com/pagination?page=1",

								"prev":	null,

								"next":	null

				},

				"meta":{

								"current_page":	1,

								"from":	1,

								"last_page":	1,

								"path":	"http://example.com/pagination",

								"per_page":	15,

								"to":	10,

								"total":	10

				}

Laravel	Documentation	-	7.x	/	API	Resources 476

}

Conditional	Attributes

Sometimes	you	may	wish	to	only	include	an	attribute	in	a	resource	response	if	a	given	condition	is	met.	For
example,	you	may	wish	to	only	include	a	value	if	the	current	user	is	an	"administrator".	Laravel	provides	a
variety	of	helper	methods	to	assist	you	in	this	situation.	The	when	method	may	be	used	to	conditionally	add	an
attribute	to	a	resource	response:

/**

	*	Transform	the	resource	into	an	array.

	*

	*	@param		\Illuminate\Http\Request		$request

	*	@return	array

	*/

public	function	toArray($request)

{

				return	[

								'id'	=>	$this->id,

								'name'	=>	$this->name,

								'email'	=>	$this->email,

								'secret'	=>	$this->when(Auth::user()->isAdmin(),	'secret-value'),

								'created_at'	=>	$this->created_at,

								'updated_at'	=>	$this->updated_at,

];

}

In	this	example,	the	secret	key	will	only	be	returned	in	the	final	resource	response	if	the	authenticated	user's	
isAdmin	method	returns	true.	If	the	method	returns	false,	the	secret	key	will	be	removed	from	the	resource
response	entirely	before	it	is	sent	back	to	the	client.	The	when	method	allows	you	to	expressively	define	your
resources	without	resorting	to	conditional	statements	when	building	the	array.

The	when	method	also	accepts	a	Closure	as	its	second	argument,	allowing	you	to	calculate	the	resulting	value
only	if	the	given	condition	is	true:

'secret'	=>	$this->when(Auth::user()->isAdmin(),	function	()	{

				return	'secret-value';

}),

Merging	Conditional	Attributes

Sometimes	you	may	have	several	attributes	that	should	only	be	included	in	the	resource	response	based	on	the
same	condition.	In	this	case,	you	may	use	the	mergeWhen	method	to	include	the	attributes	in	the	response	only
when	the	given	condition	is	true:

/**

	*	Transform	the	resource	into	an	array.

	*

	*	@param		\Illuminate\Http\Request		$request

	*	@return	array

	*/

public	function	toArray($request)

{

				return	[

								'id'	=>	$this->id,

								'name'	=>	$this->name,

								'email'	=>	$this->email,

								$this->mergeWhen(Auth::user()->isAdmin(),	[

												'first-secret'	=>	'value',

												'second-secret'	=>	'value',

]),

								'created_at'	=>	$this->created_at,

								'updated_at'	=>	$this->updated_at,

];

}

Again,	if	the	given	condition	is	false,	these	attributes	will	be	removed	from	the	resource	response	entirely
before	it	is	sent	to	the	client.

NOTE	The	mergeWhen	method	should	not	be	used	within	arrays	that	mix	string	and	numeric	keys.
Furthermore,	it	should	not	be	used	within	arrays	with	numeric	keys	that	are	not	ordered	sequentially.

Laravel	Documentation	-	7.x	/	API	Resources 477

Conditional	Relationships

In	addition	to	conditionally	loading	attributes,	you	may	conditionally	include	relationships	on	your	resource
responses	based	on	if	the	relationship	has	already	been	loaded	on	the	model.	This	allows	your	controller	to
decide	which	relationships	should	be	loaded	on	the	model	and	your	resource	can	easily	include	them	only	when
they	have	actually	been	loaded.

Ultimately,	this	makes	it	easier	to	avoid	"N+1"	query	problems	within	your	resources.	The	whenLoaded	method
may	be	used	to	conditionally	load	a	relationship.	In	order	to	avoid	unnecessarily	loading	relationships,	this
method	accepts	the	name	of	the	relationship	instead	of	the	relationship	itself:

/**

	*	Transform	the	resource	into	an	array.

	*

	*	@param		\Illuminate\Http\Request		$request

	*	@return	array

	*/

public	function	toArray($request)

{

				return	[

								'id'	=>	$this->id,

								'name'	=>	$this->name,

								'email'	=>	$this->email,

								'posts'	=>	PostResource::collection($this->whenLoaded('posts')),

								'created_at'	=>	$this->created_at,

								'updated_at'	=>	$this->updated_at,

];

}

In	this	example,	if	the	relationship	has	not	been	loaded,	the	posts	key	will	be	removed	from	the	resource
response	entirely	before	it	is	sent	to	the	client.

Conditional	Pivot	Information

In	addition	to	conditionally	including	relationship	information	in	your	resource	responses,	you	may
conditionally	include	data	from	the	intermediate	tables	of	many-to-many	relationships	using	the	
whenPivotLoaded	method.	The	whenPivotLoaded	method	accepts	the	name	of	the	pivot	table	as	its	first	argument.
The	second	argument	should	be	a	Closure	that	defines	the	value	to	be	returned	if	the	pivot	information	is
available	on	the	model:

/**

	*	Transform	the	resource	into	an	array.

	*

	*	@param		\Illuminate\Http\Request		$request

	*	@return	array

	*/

public	function	toArray($request)

{

				return	[

								'id'	=>	$this->id,

								'name'	=>	$this->name,

								'expires_at'	=>	$this->whenPivotLoaded('role_user',	function	()	{

												return	$this->pivot->expires_at;

								}),

];

}

If	your	intermediate	table	is	using	an	accessor	other	than	pivot,	you	may	use	the	whenPivotLoadedAs	method:

/**

	*	Transform	the	resource	into	an	array.

	*

	*	@param		\Illuminate\Http\Request		$request

	*	@return	array

	*/

public	function	toArray($request)

{

				return	[

								'id'	=>	$this->id,

								'name'	=>	$this->name,

								'expires_at'	=>	$this->whenPivotLoadedAs('subscription',	'role_user',	function	()	{

												return	$this->subscription->expires_at;

Laravel	Documentation	-	7.x	/	API	Resources 478

								}),

];

}

Adding	Meta	Data

Some	JSON	API	standards	require	the	addition	of	meta	data	to	your	resource	and	resource	collections
responses.	This	often	includes	things	like	links	to	the	resource	or	related	resources,	or	meta	data	about	the
resource	itself.	If	you	need	to	return	additional	meta	data	about	a	resource,	include	it	in	your	toArray	method.
For	example,	you	might	include	link	information	when	transforming	a	resource	collection:

/**

	*	Transform	the	resource	into	an	array.

	*

	*	@param		\Illuminate\Http\Request		$request

	*	@return	array

	*/

public	function	toArray($request)

{

				return	[

								'data'	=>	$this->collection,

								'links'	=>	[

												'self'	=>	'link-value',

],

];

}

When	returning	additional	meta	data	from	your	resources,	you	never	have	to	worry	about	accidentally
overriding	the	links	or	meta	keys	that	are	automatically	added	by	Laravel	when	returning	paginated	responses.
Any	additional	links	you	define	will	be	merged	with	the	links	provided	by	the	paginator.

Top	Level	Meta	Data

Sometimes	you	may	wish	to	only	include	certain	meta	data	with	a	resource	response	if	the	resource	is	the
outermost	resource	being	returned.	Typically,	this	includes	meta	information	about	the	response	as	a	whole.	To
define	this	meta	data,	add	a	with	method	to	your	resource	class.	This	method	should	return	an	array	of	meta
data	to	be	included	with	the	resource	response	only	when	the	resource	is	the	outermost	resource	being	rendered:

<?php

namespace	App\Http\Resources;

use	Illuminate\Http\Resources\Json\ResourceCollection;

class	UserCollection	extends	ResourceCollection

{

				/**

					*	Transform	the	resource	collection	into	an	array.

					*

					*	@param		\Illuminate\Http\Request		$request

					*	@return	array

					*/

				public	function	toArray($request)

				{

								return	parent::toArray($request);

				}

				/**

					*	Get	additional	data	that	should	be	returned	with	the	resource	array.

					*

					*	@param		\Illuminate\Http\Request		$request

					*	@return	array

					*/

				public	function	with($request)

				{

								return	[

												'meta'	=>	[

																'key'	=>	'value',

],

];

				}

}

Laravel	Documentation	-	7.x	/	API	Resources 479

Adding	Meta	Data	When	Constructing	Resources

You	may	also	add	top-level	data	when	constructing	resource	instances	in	your	route	or	controller.	The	
additional	method,	which	is	available	on	all	resources,	accepts	an	array	of	data	that	should	be	added	to	the
resource	response:

return	(new	UserCollection(User::all()->load('roles')))

																->additional(['meta'	=>	[

																				'key'	=>	'value',

]]);

Resource	Responses

As	you	have	already	read,	resources	may	be	returned	directly	from	routes	and	controllers:

use	App\Http\Resources\User	as	UserResource;

use	App\User;

Route::get('/user',	function	()	{

				return	new	UserResource(User::find(1));

});

However,	sometimes	you	may	need	to	customize	the	outgoing	HTTP	response	before	it	is	sent	to	the	client.
There	are	two	ways	to	accomplish	this.	First,	you	may	chain	the	response	method	onto	the	resource.	This
method	will	return	an	Illuminate\Http\JsonResponse	instance,	allowing	you	full	control	of	the	response's
headers:

use	App\Http\Resources\User	as	UserResource;

use	App\User;

Route::get('/user',	function	()	{

				return	(new	UserResource(User::find(1)))

																->response()

																->header('X-Value',	'True');

});

Alternatively,	you	may	define	a	withResponse	method	within	the	resource	itself.	This	method	will	be	called
when	the	resource	is	returned	as	the	outermost	resource	in	a	response:

<?php

namespace	App\Http\Resources;

use	Illuminate\Http\Resources\Json\JsonResource;

class	User	extends	JsonResource

{

				/**

					*	Transform	the	resource	into	an	array.

					*

					*	@param		\Illuminate\Http\Request		$request

					*	@return	array

					*/

				public	function	toArray($request)

				{

								return	[

												'id'	=>	$this->id,

];

				}

				/**

					*	Customize	the	outgoing	response	for	the	resource.

					*

					*	@param		\Illuminate\Http\Request		$request

					*	@param		\Illuminate\Http\Response		$response

					*	@return	void

					*/

				public	function	withResponse($request,	$response)

				{

								$response->header('X-Value',	'True');

				}

}

Laravel	Documentation	-	7.x	/	API	Resources 480

Eloquent	ORM

Eloquent:	Serialization
Introduction
Serializing	Models	&	Collections

Serializing	To	Arrays
Serializing	To	JSON

Hiding	Attributes	From	JSON
Appending	Values	To	JSON
Date	Serialization

Introduction

When	building	JSON	APIs,	you	will	often	need	to	convert	your	models	and	relationships	to	arrays	or	JSON.
Eloquent	includes	convenient	methods	for	making	these	conversions,	as	well	as	controlling	which	attributes	are
included	in	your	serializations.

Serializing	Models	&	Collections

Serializing	To	Arrays

To	convert	a	model	and	its	loaded	relationships	to	an	array,	you	should	use	the	toArray	method.	This	method	is
recursive,	so	all	attributes	and	all	relations	(including	the	relations	of	relations)	will	be	converted	to	arrays:

$user	=	App\User::with('roles')->first();

return	$user->toArray();

To	convert	only	a	model's	attributes	to	an	array,	use	the	attributesToArray	method:

$user	=	App\User::first();

return	$user->attributesToArray();

You	may	also	convert	entire	collections	of	models	to	arrays:

$users	=	App\User::all();

return	$users->toArray();

Serializing	To	JSON

To	convert	a	model	to	JSON,	you	should	use	the	toJson	method.	Like	toArray,	the	toJson	method	is	recursive,
so	all	attributes	and	relations	will	be	converted	to	JSON.	You	may	also	specify	JSON	encoding	options
supported	by	PHP:

$user	=	App\User::find(1);

return	$user->toJson();

return	$user->toJson(JSON_PRETTY_PRINT);

Alternatively,	you	may	cast	a	model	or	collection	to	a	string,	which	will	automatically	call	the	toJson	method
on	the	model	or	collection:

$user	=	App\User::find(1);

return	(string)	$user;

Since	models	and	collections	are	converted	to	JSON	when	cast	to	a	string,	you	can	return	Eloquent	objects
directly	from	your	application's	routes	or	controllers:

Route::get('users',	function	()	{

Laravel	Documentation	-	7.x	/	Serialization 481

https://secure.php.net/manual/en/function.json-encode.php

				return	App\User::all();

});

Relationships

When	an	Eloquent	model	is	converted	to	JSON,	its	loaded	relationships	will	automatically	be	included	as
attributes	on	the	JSON	object.	Also,	though	Eloquent	relationship	methods	are	defined	using	"camel	case",	a
relationship's	JSON	attribute	will	be	"snake	case".

Hiding	Attributes	From	JSON

Sometimes	you	may	wish	to	limit	the	attributes,	such	as	passwords,	that	are	included	in	your	model's	array	or
JSON	representation.	To	do	so,	add	a	$hidden	property	to	your	model:

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

class	User	extends	Model

{

				/**

					*	The	attributes	that	should	be	hidden	for	arrays.

					*

					*	@var	array

					*/

				protected	$hidden	=	['password'];

}

NOTE	When	hiding	relationships,	use	the	relationship's	method	name.

Alternatively,	you	may	use	the	visible	property	to	define	a	white-list	of	attributes	that	should	be	included	in
your	model's	array	and	JSON	representation.	All	other	attributes	will	be	hidden	when	the	model	is	converted	to
an	array	or	JSON:

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

class	User	extends	Model

{

				/**

					*	The	attributes	that	should	be	visible	in	arrays.

					*

					*	@var	array

					*/

				protected	$visible	=	['first_name',	'last_name'];

}

Temporarily	Modifying	Attribute	Visibility

If	you	would	like	to	make	some	typically	hidden	attributes	visible	on	a	given	model	instance,	you	may	use	the	
makeVisible	method.	The	makeVisible	method	returns	the	model	instance	for	convenient	method	chaining:

return	$user->makeVisible('attribute')->toArray();

Likewise,	if	you	would	like	to	make	some	typically	visible	attributes	hidden	on	a	given	model	instance,	you
may	use	the	makeHidden	method.

return	$user->makeHidden('attribute')->toArray();

Appending	Values	To	JSON

Occasionally,	when	casting	models	to	an	array	or	JSON,	you	may	wish	to	add	attributes	that	do	not	have	a
corresponding	column	in	your	database.	To	do	so,	first	define	an	accessor	for	the	value:

Laravel	Documentation	-	7.x	/	Serialization 482

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

class	User	extends	Model

{

				/**

					*	Get	the	administrator	flag	for	the	user.

					*

					*	@return	bool

					*/

				public	function	getIsAdminAttribute()

				{

								return	$this->attributes['admin']	===	'yes';

				}

}

After	creating	the	accessor,	add	the	attribute	name	to	the	appends	property	on	the	model.	Note	that	attribute
names	are	typically	referenced	in	"snake	case",	even	though	the	accessor	is	defined	using	"camel	case":

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

class	User	extends	Model

{

				/**

					*	The	accessors	to	append	to	the	model's	array	form.

					*

					*	@var	array

					*/

				protected	$appends	=	['is_admin'];

}

Once	the	attribute	has	been	added	to	the	appends	list,	it	will	be	included	in	both	the	model's	array	and	JSON
representations.	Attributes	in	the	appends	array	will	also	respect	the	visible	and	hidden	settings	configured	on
the	model.

Appending	At	Run	Time

You	may	instruct	a	single	model	instance	to	append	attributes	using	the	append	method.	Or,	you	may	use	the	
setAppends	method	to	override	the	entire	array	of	appended	properties	for	a	given	model	instance:

return	$user->append('is_admin')->toArray();

return	$user->setAppends(['is_admin'])->toArray();

Date	Serialization

Customizing	The	Default	Date	Format

You	may	customize	the	default	serialization	format	by	overriding	the	serializeDate	method:

/**

	*	Prepare	a	date	for	array	/	JSON	serialization.

	*

	*	@param		\DateTimeInterface		$date

	*	@return	string

	*/

protected	function	serializeDate(DateTimeInterface	$date)

{

				return	$date->format('Y-m-d');

}

Customizing	The	Date	Format	Per	Attribute

You	may	customize	the	serialization	format	of	individual	Eloquent	date	attributes	by	specifying	the	date	format

Laravel	Documentation	-	7.x	/	Serialization 483

in	the	cast	declaration:

protected	$casts	=	[

				'birthday'	=>	'date:Y-m-d',

				'joined_at'	=>	'datetime:Y-m-d	H:00',

];

Laravel	Documentation	-	7.x	/	Serialization 484

Testing

Testing:	Getting	Started
Introduction
Environment
Creating	&	Running	Tests

Artisan	Test	Runner

Introduction

Laravel	is	built	with	testing	in	mind.	In	fact,	support	for	testing	with	PHPUnit	is	included	out	of	the	box	and	a	
phpunit.xml	file	is	already	set	up	for	your	application.	The	framework	also	ships	with	convenient	helper
methods	that	allow	you	to	expressively	test	your	applications.

By	default,	your	application's	tests	directory	contains	two	directories:	Feature	and	Unit.	Unit	tests	are	tests	that
focus	on	a	very	small,	isolated	portion	of	your	code.	In	fact,	most	unit	tests	probably	focus	on	a	single	method.
Feature	tests	may	test	a	larger	portion	of	your	code,	including	how	several	objects	interact	with	each	other	or
even	a	full	HTTP	request	to	a	JSON	endpoint.

An	ExampleTest.php	file	is	provided	in	both	the	Feature	and	Unit	test	directories.	After	installing	a	new	Laravel
application,	run	vendor/bin/phpunit	on	the	command	line	to	run	your	tests.

Environment

When	running	tests	via	vendor/bin/phpunit,	Laravel	will	automatically	set	the	configuration	environment	to	
testing	because	of	the	environment	variables	defined	in	the	phpunit.xml	file.	Laravel	also	automatically
configures	the	session	and	cache	to	the	array	driver	while	testing,	meaning	no	session	or	cache	data	will	be
persisted	while	testing.

You	are	free	to	define	other	testing	environment	configuration	values	as	necessary.	The	testing	environment
variables	may	be	configured	in	the	phpunit.xml	file,	but	make	sure	to	clear	your	configuration	cache	using	the	
config:clear	Artisan	command	before	running	your	tests!

In	addition,	you	may	create	a	.env.testing	file	in	the	root	of	your	project.	This	file	will	override	the	.env	file
when	running	PHPUnit	tests	or	executing	Artisan	commands	with	the	--env=testing	option.

Creating	&	Running	Tests

To	create	a	new	test	case,	use	the	make:test	Artisan	command:

//	Create	a	test	in	the	Feature	directory...

php	artisan	make:test	UserTest

//	Create	a	test	in	the	Unit	directory...

php	artisan	make:test	UserTest	--unit

TIP	Test	stubs	may	be	customized	using	stub	publishing

Once	the	test	has	been	generated,	you	may	define	test	methods	as	you	normally	would	using	PHPUnit.	To	run
your	tests,	execute	the	phpunit	or	artisan	test	command	from	your	terminal:

<?php

namespace	Tests\Unit;

use	PHPUnit\Framework\TestCase;

class	ExampleTest	extends	TestCase

{

				/**

					*	A	basic	test	example.

					*

Laravel	Documentation	-	7.x	/	Testing 485

					*	@return	void

					*/

				public	function	testBasicTest()

				{

								$this->assertTrue(true);

				}

}

NOTE	If	you	define	your	own	setUp	/	tearDown	methods	within	a	test	class,	be	sure	to	call	the	respective	
parent::setUp()	/	parent::tearDown()	methods	on	the	parent	class.

Artisan	Test	Runner

In	addition	to	the	phpunit	command,	you	may	use	the	test	Artisan	command	to	run	your	tests.	The	Artisan	test
runner	provides	more	information	regarding	the	test	that	is	currently	running	and	will	automatically	stop	on	the
first	test	failure:

php	artisan	test

Any	arguments	that	can	be	passed	to	the	phpunit	command	may	also	be	passed	to	the	Artisan	test	command:

php	artisan	test	--group=feature

Laravel	Documentation	-	7.x	/	Testing 486

Testing

HTTP	Tests
Introduction

Customizing	Request	Headers
Cookies
Debugging	Responses

Session	/	Authentication
Testing	JSON	APIs
Testing	File	Uploads
Available	Assertions

Response	Assertions
Authentication	Assertions

Introduction

Laravel	provides	a	very	fluent	API	for	making	HTTP	requests	to	your	application	and	examining	the	output.
For	example,	take	a	look	at	the	feature	test	defined	below:

<?php

namespace	Tests\Feature;

use	Illuminate\Foundation\Testing\RefreshDatabase;

use	Illuminate\Foundation\Testing\WithoutMiddleware;

use	Tests\TestCase;

class	ExampleTest	extends	TestCase

{

				/**

					*	A	basic	test	example.

					*

					*	@return	void

					*/

				public	function	testBasicTest()

				{

								$response	=	$this->get('/');

								$response->assertStatus(200);

				}

}

The	get	method	makes	a	GET	request	into	the	application,	while	the	assertStatus	method	asserts	that	the
returned	response	should	have	the	given	HTTP	status	code.	In	addition	to	this	simple	assertion,	Laravel	also
contains	a	variety	of	assertions	for	inspecting	the	response	headers,	content,	JSON	structure,	and	more.

Customizing	Request	Headers

You	may	use	the	withHeaders	method	to	customize	the	request's	headers	before	it	is	sent	to	the	application.	This
allows	you	to	add	any	custom	headers	you	would	like	to	the	request:

<?php

class	ExampleTest	extends	TestCase

{

				/**

					*	A	basic	functional	test	example.

					*

					*	@return	void

					*/

				public	function	testBasicExample()

				{

								$response	=	$this->withHeaders([

												'X-Header'	=>	'Value',

])->json('POST',	'/user',	['name'	=>	'Sally']);

								$response

												->assertStatus(201)

Laravel	Documentation	-	7.x	/	HTTP	Tests 487

												->assertJson([

																'created'	=>	true,

]);

				}

}

TIP	The	CSRF	middleware	is	automatically	disabled	when	running	tests.

Cookies

You	may	use	the	withCookie	or	withCookies	methods	to	set	cookie	values	before	making	a	request.	The	
withCookie	method	accepts	a	cookie	name	and	value	as	its	two	arguments,	while	the	withCookies	method
accepts	an	array	of	name	/	value	pairs:

<?php

class	ExampleTest	extends	TestCase

{

				public	function	testCookies()

				{

								$response	=	$this->withCookie('color',	'blue')->get('/');

								$response	=	$this->withCookies([

												'color'	=>	'blue',

												'name'	=>	'Taylor',

])->get('/');

				}

}

Debugging	Responses

After	making	a	test	request	to	your	application,	the	dump,	dumpHeaders,	and	dumpSession	methods	may	be	used	to
examine	and	debug	the	response	contents:

<?php

namespace	Tests\Feature;

use	Illuminate\Foundation\Testing\RefreshDatabase;

use	Illuminate\Foundation\Testing\WithoutMiddleware;

use	Tests\TestCase;

class	ExampleTest	extends	TestCase

{

				/**

					*	A	basic	test	example.

					*

					*	@return	void

					*/

				public	function	testBasicTest()

				{

								$response	=	$this->get('/');

								$response->dumpHeaders();

								$response->dumpSession();

								$response->dump();

				}

}

Session	/	Authentication

Laravel	provides	several	helpers	for	working	with	the	session	during	HTTP	testing.	First,	you	may	set	the
session	data	to	a	given	array	using	the	withSession	method.	This	is	useful	for	loading	the	session	with	data
before	issuing	a	request	to	your	application:

<?php

class	ExampleTest	extends	TestCase

{

				public	function	testApplication()

Laravel	Documentation	-	7.x	/	HTTP	Tests 488

				{

								$response	=	$this->withSession(['foo'	=>	'bar'])

																									->get('/');

				}

}

One	common	use	of	the	session	is	for	maintaining	state	for	the	authenticated	user.	The	actingAs	helper	method
provides	a	simple	way	to	authenticate	a	given	user	as	the	current	user.	For	example,	we	may	use	a	model
factory	to	generate	and	authenticate	a	user:

<?php

use	App\User;

class	ExampleTest	extends	TestCase

{

				public	function	testApplication()

				{

								$user	=	factory(User::class)->create();

								$response	=	$this->actingAs($user)

																									->withSession(['foo'	=>	'bar'])

																									->get('/');

				}

}

You	may	also	specify	which	guard	should	be	used	to	authenticate	the	given	user	by	passing	the	guard	name	as
the	second	argument	to	the	actingAs	method:

$this->actingAs($user,	'api')

Testing	JSON	APIs

Laravel	also	provides	several	helpers	for	testing	JSON	APIs	and	their	responses.	For	example,	the	json,	
getJson,	postJson,	putJson,	patchJson,	deleteJson,	and	optionsJson	methods	may	be	used	to	issue	JSON
requests	with	various	HTTP	verbs.	You	may	also	easily	pass	data	and	headers	to	these	methods.	To	get	started,
let's	write	a	test	to	make	a	POST	request	to	/user	and	assert	that	the	expected	data	was	returned:

<?php

class	ExampleTest	extends	TestCase

{

				/**

					*	A	basic	functional	test	example.

					*

					*	@return	void

					*/

				public	function	testBasicExample()

				{

								$response	=	$this->postJson('/user',	['name'	=>	'Sally']);

								$response

												->assertStatus(201)

												->assertJson([

																'created'	=>	true,

]);

				}

}

TIP	The	assertJson	method	converts	the	response	to	an	array	and	utilizes	PHPUnit::assertArraySubset	to
verify	that	the	given	array	exists	within	the	JSON	response	returned	by	the	application.	So,	if	there	are
other	properties	in	the	JSON	response,	this	test	will	still	pass	as	long	as	the	given	fragment	is	present.

In	addition,	JSON	response	data	may	be	accessed	as	array	variables	on	the	response:

$this->assertTrue($response['created']);

Verifying	An	Exact	JSON	Match

If	you	would	like	to	verify	that	the	given	array	is	an	exact	match	for	the	JSON	returned	by	the	application,	you
should	use	the	assertExactJson	method:

Laravel	Documentation	-	7.x	/	HTTP	Tests 489

<?php

class	ExampleTest	extends	TestCase

{

				/**

					*	A	basic	functional	test	example.

					*

					*	@return	void

					*/

				public	function	testBasicExample()

				{

								$response	=	$this->json('POST',	'/user',	['name'	=>	'Sally']);

								$response

												->assertStatus(201)

												->assertExactJson([

																'created'	=>	true,

]);

				}

}

Verifying	JSON	Paths

If	you	would	like	to	verify	that	the	JSON	response	contains	some	given	data	at	a	specified	path,	you	should	use
the	assertJsonPath	method:

<?php

class	ExampleTest	extends	TestCase

{

				/**

					*	A	basic	functional	test	example.

					*

					*	@return	void

					*/

				public	function	testBasicExample()

				{

								$response	=	$this->json('POST',	'/user',	['name'	=>	'Sally']);

								$response

												->assertStatus(201)

												->assertJsonPath('team.owner.name',	'foo')

				}

}

Testing	File	Uploads

The	Illuminate\Http\UploadedFile	class	provides	a	fake	method	which	may	be	used	to	generate	dummy	files	or
images	for	testing.	This,	combined	with	the	Storage	facade's	fake	method	greatly	simplifies	the	testing	of	file
uploads.	For	example,	you	may	combine	these	two	features	to	easily	test	an	avatar	upload	form:

<?php

namespace	Tests\Feature;

use	Illuminate\Foundation\Testing\RefreshDatabase;

use	Illuminate\Foundation\Testing\WithoutMiddleware;

use	Illuminate\Http\UploadedFile;

use	Illuminate\Support\Facades\Storage;

use	Tests\TestCase;

class	ExampleTest	extends	TestCase

{

				public	function	testAvatarUpload()

				{

								Storage::fake('avatars');

								$file	=	UploadedFile::fake()->image('avatar.jpg');

								$response	=	$this->json('POST',	'/avatar',	[

												'avatar'	=>	$file,

]);

								//	Assert	the	file	was	stored...

								Storage::disk('avatars')->assertExists($file->hashName());

Laravel	Documentation	-	7.x	/	HTTP	Tests 490

								//	Assert	a	file	does	not	exist...

								Storage::disk('avatars')->assertMissing('missing.jpg');

				}

}

Fake	File	Customization

When	creating	files	using	the	fake	method,	you	may	specify	the	width,	height,	and	size	of	the	image	in	order	to
better	test	your	validation	rules:

UploadedFile::fake()->image('avatar.jpg',	$width,	$height)->size(100);

In	addition	to	creating	images,	you	may	create	files	of	any	other	type	using	the	create	method:

UploadedFile::fake()->create('document.pdf',	$sizeInKilobytes);

If	needed,	you	may	pass	a	$mimeType	argument	to	the	method	to	explicitly	define	the	MIME	type	that	should	be
returned	by	the	file:

UploadedFile::fake()->create('document.pdf',	$sizeInKilobytes,	'application/pdf');

Available	Assertions

Response	Assertions

Laravel	provides	a	variety	of	custom	assertion	methods	for	your	PHPUnit	feature	tests.	These	assertions	may	be
accessed	on	the	response	that	is	returned	from	the	json,	get,	post,	put,	and	delete	test	methods:

assertCookie	assertCookieExpired	assertCookieNotExpired	assertCookieMissing	assertCreated	assertDontSee
assertDontSeeText	assertExactJson	assertForbidden	assertHeader	assertHeaderMissing	assertJson
assertJsonCount	assertJsonFragment	assertJsonMissing	assertJsonMissingExact
assertJsonMissingValidationErrors	assertJsonPath	assertJsonStructure	assertJsonValidationErrors
assertLocation	assertNoContent	assertNotFound	assertOk	assertPlainCookie	assertRedirect	assertSee
assertSeeInOrder	assertSeeText	assertSeeTextInOrder	assertSessionHas	assertSessionHasInput
assertSessionHasAll	assertSessionHasErrors	assertSessionHasErrorsIn	assertSessionHasNoErrors
assertSessionDoesntHaveErrors	assertSessionMissing	assertStatus	assertSuccessful	assertUnauthorized
assertViewHas	assertViewHasAll	assertViewIs	assertViewMissing

assertCookie

Assert	that	the	response	contains	the	given	cookie:

$response->assertCookie($cookieName,	$value	=	null);

assertCookieExpired

Assert	that	the	response	contains	the	given	cookie	and	it	is	expired:

$response->assertCookieExpired($cookieName);

assertCookieNotExpired

Assert	that	the	response	contains	the	given	cookie	and	it	is	not	expired:

$response->assertCookieNotExpired($cookieName);

assertCookieMissing

Assert	that	the	response	does	not	contains	the	given	cookie:

$response->assertCookieMissing($cookieName);

Laravel	Documentation	-	7.x	/	HTTP	Tests 491

https://phpunit.de/

assertCreated

Assert	that	the	response	has	a	201	status	code:

$response->assertCreated();

assertDontSee

Assert	that	the	given	string	is	not	contained	within	the	response.	This	assertion	will	automatically	escape	the
given	string	unless	you	pass	a	second	argument	of	false:

$response->assertDontSee($value,	$escaped	=	true);

assertDontSeeText

Assert	that	the	given	string	is	not	contained	within	the	response	text.	This	assertion	will	automatically	escape
the	given	string	unless	you	pass	a	second	argument	of	false:

$response->assertDontSeeText($value,	$escaped	=	true);

assertExactJson

Assert	that	the	response	contains	an	exact	match	of	the	given	JSON	data:

$response->assertExactJson(array	$data);

assertForbidden

Assert	that	the	response	has	a	forbidden	(403)	status	code:

$response->assertForbidden();

assertHeader

Assert	that	the	given	header	is	present	on	the	response:

$response->assertHeader($headerName,	$value	=	null);

assertHeaderMissing

Assert	that	the	given	header	is	not	present	on	the	response:

$response->assertHeaderMissing($headerName);

assertJson

Assert	that	the	response	contains	the	given	JSON	data:

$response->assertJson(array	$data,	$strict	=	false);

assertJsonCount

Assert	that	the	response	JSON	has	an	array	with	the	expected	number	of	items	at	the	given	key:

$response->assertJsonCount($count,	$key	=	null);

assertJsonFragment

Assert	that	the	response	contains	the	given	JSON	fragment:

$response->assertJsonFragment(array	$data);

Laravel	Documentation	-	7.x	/	HTTP	Tests 492

assertJsonMissing

Assert	that	the	response	does	not	contain	the	given	JSON	fragment:

$response->assertJsonMissing(array	$data);

assertJsonMissingExact

Assert	that	the	response	does	not	contain	the	exact	JSON	fragment:

$response->assertJsonMissingExact(array	$data);

assertJsonMissingValidationErrors

Assert	that	the	response	has	no	JSON	validation	errors	for	the	given	keys:

$response->assertJsonMissingValidationErrors($keys);

assertJsonPath

Assert	that	the	response	contains	the	given	data	at	the	specified	path:

$response->assertJsonPath($path,	array	$data,	$strict	=	false);

assertJsonStructure

Assert	that	the	response	has	a	given	JSON	structure:

$response->assertJsonStructure(array	$structure);

assertJsonValidationErrors

Assert	that	the	response	has	the	given	JSON	validation	errors:

$response->assertJsonValidationErrors(array	$data);

assertLocation

Assert	that	the	response	has	the	given	URI	value	in	the	Location	header:

$response->assertLocation($uri);

assertNoContent

Assert	that	the	response	has	the	given	status	code	and	no	content.

$response->assertNoContent($status	=	204);

assertNotFound

Assert	that	the	response	has	a	not	found	status	code:

$response->assertNotFound();

assertOk

Assert	that	the	response	has	a	200	status	code:

$response->assertOk();

assertPlainCookie

Laravel	Documentation	-	7.x	/	HTTP	Tests 493

Assert	that	the	response	contains	the	given	cookie	(unencrypted):

$response->assertPlainCookie($cookieName,	$value	=	null);

assertRedirect

Assert	that	the	response	is	a	redirect	to	a	given	URI:

$response->assertRedirect($uri);

assertSee

Assert	that	the	given	string	is	contained	within	the	response.	This	assertion	will	automatically	escape	the	given
string	unless	you	pass	a	second	argument	of	false:

$response->assertSee($value,	$escaped	=	true);

assertSeeInOrder

Assert	that	the	given	strings	are	contained	in	order	within	the	response.	This	assertion	will	automatically	escape
the	given	strings	unless	you	pass	a	second	argument	of	false:

$response->assertSeeInOrder(array	$values,	$escaped	=	true);

assertSeeText

Assert	that	the	given	string	is	contained	within	the	response	text.	This	assertion	will	automatically	escape	the
given	string	unless	you	pass	a	second	argument	of	false:

$response->assertSeeText($value,	$escaped	=	true);

assertSeeTextInOrder

Assert	that	the	given	strings	are	contained	in	order	within	the	response	text.	This	assertion	will	automatically
escape	the	given	strings	unless	you	pass	a	second	argument	of	false:

$response->assertSeeTextInOrder(array	$values,	$escaped	=	true);

assertSessionHas

Assert	that	the	session	contains	the	given	piece	of	data:

$response->assertSessionHas($key,	$value	=	null);

assertSessionHasInput

Assert	that	the	session	has	a	given	value	in	the	flashed	input	array:

$response->assertSessionHasInput($key,	$value	=	null);

assertSessionHasAll

Assert	that	the	session	has	a	given	list	of	values:

$response->assertSessionHasAll(array	$data);

assertSessionHasErrors

Assert	that	the	session	contains	an	error	for	the	given	$keys.	If	$keys	is	an	associative	array,	assert	that	the
session	contains	a	specific	error	message	(value)	for	each	field	(key):

$response->assertSessionHasErrors(array	$keys,	$format	=	null,	$errorBag	=	'default');

Laravel	Documentation	-	7.x	/	HTTP	Tests 494

assertSessionHasErrorsIn

Assert	that	the	session	contains	an	error	for	the	given	$keys,	within	a	specific	error	bag.	If	$keys	is	an
associative	array,	assert	that	the	session	contains	a	specific	error	message	(value)	for	each	field	(key),	within	the
error	bag:

$response->assertSessionHasErrorsIn($errorBag,	$keys	=	[],	$format	=	null);

assertSessionHasNoErrors

Assert	that	the	session	has	no	errors:

$response->assertSessionHasNoErrors();

assertSessionDoesntHaveErrors

Assert	that	the	session	has	no	errors	for	the	given	keys:

$response->assertSessionDoesntHaveErrors($keys	=	[],	$format	=	null,	$errorBag	=	'default');

assertSessionMissing

Assert	that	the	session	does	not	contain	the	given	key:

$response->assertSessionMissing($key);

assertStatus

Assert	that	the	response	has	a	given	code:

$response->assertStatus($code);

assertSuccessful

Assert	that	the	response	has	a	successful	(>=	200	and	<	300)	status	code:

$response->assertSuccessful();

assertUnauthorized

Assert	that	the	response	has	an	unauthorized	(401)	status	code:

$response->assertUnauthorized();

assertViewHas

Assert	that	the	response	view	was	given	a	piece	of	data:

$response->assertViewHas($key,	$value	=	null);

In	addition,	view	data	may	be	accessed	as	array	variables	on	the	response:

$this->assertEquals('Taylor',	$response['name']);

assertViewHasAll

Assert	that	the	response	view	has	a	given	list	of	data:

$response->assertViewHasAll(array	$data);

assertViewIs

Laravel	Documentation	-	7.x	/	HTTP	Tests 495

Assert	that	the	given	view	was	returned	by	the	route:

$response->assertViewIs($value);

assertViewMissing

Assert	that	the	response	view	is	missing	a	piece	of	bound	data:

$response->assertViewMissing($key);

Authentication	Assertions

Laravel	also	provides	a	variety	of	authentication	related	assertions	for	your	PHPUnit	feature	tests:

Method Description
$this->assertAuthenticated($guard	=	null); Assert	that	the	user	is	authenticated.
$this->assertGuest($guard	=	null); Assert	that	the	user	is	not	authenticated.
$this->assertAuthenticatedAs($user,	$guard	=	null); Assert	that	the	given	user	is	authenticated.
$this->assertCredentials(array	$credentials,	$guard	=	null); Assert	that	the	given	credentials	are	valid.
$this->assertInvalidCredentials(array	$credentials,	$guard	=	null); Assert	that	the	given	credentials	are	invalid.

Laravel	Documentation	-	7.x	/	HTTP	Tests 496

https://phpunit.de/

Testing

Console	Tests
Introduction
Expecting	Input	/	Output

Introduction

In	addition	to	simplifying	HTTP	testing,	Laravel	provides	a	simple	API	for	testing	console	applications	that	ask
for	user	input.

Expecting	Input	/	Output

Laravel	allows	you	to	easily	"mock"	user	input	for	your	console	commands	using	the	expectsQuestion	method.
In	addition,	you	may	specify	the	exit	code	and	text	that	you	expect	to	be	output	by	the	console	command	using
the	assertExitCode	and	expectsOutput	methods.	For	example,	consider	the	following	console	command:

Artisan::command('question',	function	()	{

				$name	=	$this->ask('What	is	your	name?');

				$language	=	$this->choice('Which	language	do	you	program	in?',	[

								'PHP',

								'Ruby',

								'Python',

]);

				$this->line('Your	name	is	'.$name.'	and	you	program	in	'.$language.'.');

});

You	may	test	this	command	with	the	following	test	which	utilizes	the	expectsQuestion,	expectsOutput,	and	
assertExitCode	methods:

/**

	*	Test	a	console	command.

	*

	*	@return	void

	*/

public	function	testConsoleCommand()

{

				$this->artisan('question')

									->expectsQuestion('What	is	your	name?',	'Taylor	Otwell')

									->expectsQuestion('Which	language	do	you	program	in?',	'PHP')

									->expectsOutput('Your	name	is	Taylor	Otwell	and	you	program	in	PHP.')

									->assertExitCode(0);

}

When	writing	a	command	which	expects	a	confirmation	in	the	form	of	a	"yes"	or	"no"	answer,	you	may	utilize
the	expectsConfirmation	method:

$this->artisan('module:import')

				->expectsConfirmation('Do	you	really	wish	to	run	this	command?',	'no')

				->assertExitCode(1);

Laravel	Documentation	-	7.x	/	Console	Tests 497

Testing

Laravel	Dusk
Introduction
Installation

Managing	ChromeDriver	Installations
Using	Other	Browsers

Getting	Started
Generating	Tests
Running	Tests
Environment	Handling
Creating	Browsers
Browser	Macros
Authentication
Database	Migrations
Cookies
Taking	A	Screenshot
Storing	Console	Output	To	Disk
Storing	Page	Source	To	Disk

Interacting	With	Elements
Dusk	Selectors
Clicking	Links
Text,	Values,	&	Attributes
Using	Forms
Attaching	Files
Using	The	Keyboard
Using	The	Mouse
JavaScript	Dialogs
Scoping	Selectors
Waiting	For	Elements
Scrolling	An	Element	Into	View
Making	Vue	Assertions

Available	Assertions
Pages

Generating	Pages
Configuring	Pages
Navigating	To	Pages
Shorthand	Selectors
Page	Methods

Components
Generating	Components
Using	Components

Continuous	Integration
CircleCI
Codeship
Heroku	CI
Travis	CI
GitHub	Actions

Introduction

Laravel	Dusk	provides	an	expressive,	easy-to-use	browser	automation	and	testing	API.	By	default,	Dusk	does
not	require	you	to	install	JDK	or	Selenium	on	your	machine.	Instead,	Dusk	uses	a	standalone	ChromeDriver
installation.	However,	you	are	free	to	utilize	any	other	Selenium	compatible	driver	you	wish.

Installation

Laravel	Documentation	-	7.x	/	Browser	Tests 498

https://sites.google.com/a/chromium.org/chromedriver/home

To	get	started,	you	should	add	the	laravel/dusk	Composer	dependency	to	your	project:

composer	require	--dev	laravel/dusk

NOTE	If	you	are	manually	registering	Dusk's	service	provider,	you	should	never	register	it	in	your
production	environment,	as	doing	so	could	lead	to	arbitrary	users	being	able	to	authenticate	with	your
application.

After	installing	the	Dusk	package,	run	the	dusk:install	Artisan	command:

php	artisan	dusk:install

A	Browser	directory	will	be	created	within	your	tests	directory	and	will	contain	an	example	test.	Next,	set	the	
APP_URL	environment	variable	in	your	.env	file.	This	value	should	match	the	URL	you	use	to	access	your
application	in	a	browser.

To	run	your	tests,	use	the	dusk	Artisan	command.	The	dusk	command	accepts	any	argument	that	is	also	accepted
by	the	phpunit	command:

php	artisan	dusk

If	you	had	test	failures	the	last	time	you	ran	the	dusk	command,	you	may	save	time	by	re-running	the	failing
tests	first	using	the	dusk:fails	command:

php	artisan	dusk:fails

Managing	ChromeDriver	Installations

If	you	would	like	to	install	a	different	version	of	ChromeDriver	than	what	is	included	with	Laravel	Dusk,	you
may	use	the	dusk:chrome-driver	command:

#	Install	the	latest	version	of	ChromeDriver	for	your	OS...

php	artisan	dusk:chrome-driver

#	Install	a	given	version	of	ChromeDriver	for	your	OS...

php	artisan	dusk:chrome-driver	74

#	Install	a	given	version	of	ChromeDriver	for	all	supported	OSs...

php	artisan	dusk:chrome-driver	--all

NOTE	Dusk	requires	the	chromedriver	binaries	to	be	executable.	If	you're	having	problems	running	Dusk,
you	should	ensure	the	binaries	are	executable	using	the	following	command:	chmod	-R	0755	
vendor/laravel/dusk/bin/.

Using	Other	Browsers

By	default,	Dusk	uses	Google	Chrome	and	a	standalone	ChromeDriver	installation	to	run	your	browser	tests.
However,	you	may	start	your	own	Selenium	server	and	run	your	tests	against	any	browser	you	wish.

To	get	started,	open	your	tests/DuskTestCase.php	file,	which	is	the	base	Dusk	test	case	for	your	application.
Within	this	file,	you	can	remove	the	call	to	the	startChromeDriver	method.	This	will	stop	Dusk	from
automatically	starting	the	ChromeDriver:

/**

	*	Prepare	for	Dusk	test	execution.

	*

	*	@beforeClass

	*	@return	void

	*/

public	static	function	prepare()

{

				//	static::startChromeDriver();

}

Next,	you	may	modify	the	driver	method	to	connect	to	the	URL	and	port	of	your	choice.	In	addition,	you	may
modify	the	"desired	capabilities"	that	should	be	passed	to	the	WebDriver:

/**

Laravel	Documentation	-	7.x	/	Browser	Tests 499

https://sites.google.com/a/chromium.org/chromedriver/home

	*	Create	the	RemoteWebDriver	instance.

	*

	*	@return	\Facebook\WebDriver\Remote\RemoteWebDriver

	*/

protected	function	driver()

{

				return	RemoteWebDriver::create(

								'http://localhost:4444/wd/hub',	DesiredCapabilities::phantomjs()

);

}

Getting	Started

Generating	Tests

To	generate	a	Dusk	test,	use	the	dusk:make	Artisan	command.	The	generated	test	will	be	placed	in	the	
tests/Browser	directory:

php	artisan	dusk:make	LoginTest

Running	Tests

To	run	your	browser	tests,	use	the	dusk	Artisan	command:

php	artisan	dusk

If	you	had	test	failures	the	last	time	you	ran	the	dusk	command,	you	may	save	time	by	re-running	the	failing
tests	first	using	the	dusk:fails	command:

php	artisan	dusk:fails

The	dusk	command	accepts	any	argument	that	is	normally	accepted	by	the	PHPUnit	test	runner,	allowing	you	to
only	run	the	tests	for	a	given	group,	etc:

php	artisan	dusk	--group=foo

Manually	Starting	ChromeDriver

By	default,	Dusk	will	automatically	attempt	to	start	ChromeDriver.	If	this	does	not	work	for	your	particular
system,	you	may	manually	start	ChromeDriver	before	running	the	dusk	command.	If	you	choose	to	start
ChromeDriver	manually,	you	should	comment	out	the	following	line	of	your	tests/DuskTestCase.php	file:

/**

	*	Prepare	for	Dusk	test	execution.

	*

	*	@beforeClass

	*	@return	void

	*/

public	static	function	prepare()

{

				//	static::startChromeDriver();

}

In	addition,	if	you	start	ChromeDriver	on	a	port	other	than	9515,	you	should	modify	the	driver	method	of	the
same	class:

/**

	*	Create	the	RemoteWebDriver	instance.

	*

	*	@return	\Facebook\WebDriver\Remote\RemoteWebDriver

	*/

protected	function	driver()

{

				return	RemoteWebDriver::create(

								'http://localhost:9515',	DesiredCapabilities::chrome()

);

}

Environment	Handling

Laravel	Documentation	-	7.x	/	Browser	Tests 500

https://phpunit.de/manual/current/en/appendixes.annotations.html#appendixes.annotations.group

To	force	Dusk	to	use	its	own	environment	file	when	running	tests,	create	a	.env.dusk.{environment}	file	in	the
root	of	your	project.	For	example,	if	you	will	be	initiating	the	dusk	command	from	your	local	environment,	you
should	create	a	.env.dusk.local	file.

When	running	tests,	Dusk	will	back-up	your	.env	file	and	rename	your	Dusk	environment	to	.env.	Once	the
tests	have	completed,	your	.env	file	will	be	restored.

Creating	Browsers

To	get	started,	let's	write	a	test	that	verifies	we	can	log	into	our	application.	After	generating	a	test,	we	can
modify	it	to	navigate	to	the	login	page,	enter	some	credentials,	and	click	the	"Login"	button.	To	create	a
browser	instance,	call	the	browse	method:

<?php

namespace	Tests\Browser;

use	App\User;

use	Illuminate\Foundation\Testing\DatabaseMigrations;

use	Laravel\Dusk\Chrome;

use	Tests\DuskTestCase;

class	ExampleTest	extends	DuskTestCase

{

				use	DatabaseMigrations;

				/**

					*	A	basic	browser	test	example.

					*

					*	@return	void

					*/

				public	function	testBasicExample()

				{

								$user	=	factory(User::class)->create([

												'email'	=>	'taylor@laravel.com',

]);

								$this->browse(function	($browser)	use	($user)	{

												$browser->visit('/login')

																				->type('email',	$user->email)

																				->type('password',	'password')

																				->press('Login')

																				->assertPathIs('/home');

								});

				}

}

As	you	can	see	in	the	example	above,	the	browse	method	accepts	a	callback.	A	browser	instance	will
automatically	be	passed	to	this	callback	by	Dusk	and	is	the	main	object	used	to	interact	with	and	make
assertions	against	your	application.

Creating	Multiple	Browsers

Sometimes	you	may	need	multiple	browsers	in	order	to	properly	carry	out	a	test.	For	example,	multiple
browsers	may	be	needed	to	test	a	chat	screen	that	interacts	with	websockets.	To	create	multiple	browsers,	"ask"
for	more	than	one	browser	in	the	signature	of	the	callback	given	to	the	browse	method:

$this->browse(function	($first,	$second)	{

				$first->loginAs(User::find(1))

										->visit('/home')

										->waitForText('Message');

				$second->loginAs(User::find(2))

											->visit('/home')

											->waitForText('Message')

											->type('message',	'Hey	Taylor')

											->press('Send');

				$first->waitForText('Hey	Taylor')

										->assertSee('Jeffrey	Way');

});

Laravel	Documentation	-	7.x	/	Browser	Tests 501

Resizing	Browser	Windows

You	may	use	the	resize	method	to	adjust	the	size	of	the	browser	window:

$browser->resize(1920,	1080);

The	maximize	method	may	be	used	to	maximize	the	browser	window:

$browser->maximize();

The	fitContent	method	will	resize	the	browser	window	to	match	the	size	of	the	content:

$browser->fitContent();

When	a	test	fails,	Dusk	will	automatically	resize	the	browser	to	fit	the	content	prior	to	taking	a	screenshot.	You
may	disable	this	feature	by	calling	the	disableFitOnFailure	method	within	your	test:

$browser->disableFitOnFailure();

You	may	use	the	move	method	to	move	the	browser	window	to	a	different	position	on	your	screen:

$browser->move(100,	100);

Browser	Macros

If	you	would	like	to	define	a	custom	browser	method	that	you	can	re-use	in	a	variety	of	your	tests,	you	may	use
the	macro	method	on	the	Browser	class.	Typically,	you	should	call	this	method	from	a	service	provider's	boot
method:

<?php

namespace	App\Providers;

use	Illuminate\Support\ServiceProvider;

use	Laravel\Dusk\Browser;

class	DuskServiceProvider	extends	ServiceProvider

{

				/**

					*	Register	the	Dusk's	browser	macros.

					*

					*	@return	void

					*/

				public	function	boot()

				{

								Browser::macro('scrollToElement',	function	($element	=	null)	{

												$this->script("$('html,	body').animate({	scrollTop:	$('$element').offset().top	},	0);");

												return	$this;

								});

				}

}

The	macro	function	accepts	a	name	as	its	first	argument,	and	a	Closure	as	its	second.	The	macro's	Closure	will
be	executed	when	calling	the	macro	as	a	method	on	a	Browser	implementation:

$this->browse(function	($browser)	use	($user)	{

				$browser->visit('/pay')

												->scrollToElement('#credit-card-details')

												->assertSee('Enter	Credit	Card	Details');

});

Authentication

Often,	you	will	be	testing	pages	that	require	authentication.	You	can	use	Dusk's	loginAs	method	in	order	to
avoid	interacting	with	the	login	screen	during	every	test.	The	loginAs	method	accepts	a	user	ID	or	user	model
instance:

$this->browse(function	($first,	$second)	{

				$first->loginAs(User::find(1))

Laravel	Documentation	-	7.x	/	Browser	Tests 502

										->visit('/home');

});

NOTE	After	using	the	loginAs	method,	the	user	session	will	be	maintained	for	all	tests	within	the	file.

Database	Migrations

When	your	test	requires	migrations,	like	the	authentication	example	above,	you	should	never	use	the	
RefreshDatabase	trait.	The	RefreshDatabase	trait	leverages	database	transactions	which	will	not	be	applicable
across	HTTP	requests.	Instead,	use	the	DatabaseMigrations	trait:

<?php

namespace	Tests\Browser;

use	App\User;

use	Illuminate\Foundation\Testing\DatabaseMigrations;

use	Laravel\Dusk\Chrome;

use	Tests\DuskTestCase;

class	ExampleTest	extends	DuskTestCase

{

				use	DatabaseMigrations;

}

Cookies

You	may	use	the	cookie	method	to	get	or	set	an	encrypted	cookie's	value:

$browser->cookie('name');

$browser->cookie('name',	'Taylor');

You	may	use	the	plainCookie	method	to	get	or	set	an	unencrypted	cookie's	value:

$browser->plainCookie('name');

$browser->plainCookie('name',	'Taylor');

You	may	use	the	deleteCookie	method	to	delete	the	given	cookie:

$browser->deleteCookie('name');

Taking	A	Screenshot

You	may	use	the	screenshot	method	to	take	a	screenshot	and	store	it	with	the	given	filename.	All	screenshots
will	be	stored	within	the	tests/Browser/screenshots	directory:

$browser->screenshot('filename');

Storing	Console	Output	To	Disk

You	may	use	the	storeConsoleLog	method	to	write	the	console	output	to	disk	with	the	given	filename.	Console
output	will	be	stored	within	the	tests/Browser/console	directory:

$browser->storeConsoleLog('filename');

Storing	Page	Source	To	Disk

You	may	use	the	storeSource	method	to	write	the	page's	current	source	to	disk	with	the	given	filename.	The
page	source	will	be	stored	within	the	tests/Browser/source	directory:

$browser->storeSource('filename');

Interacting	With	Elements

Laravel	Documentation	-	7.x	/	Browser	Tests 503

Dusk	Selectors

Choosing	good	CSS	selectors	for	interacting	with	elements	is	one	of	the	hardest	parts	of	writing	Dusk	tests.
Over	time,	frontend	changes	can	cause	CSS	selectors	like	the	following	to	break	your	tests:

//	HTML...

<button>Login</button>

//	Test...

$browser->click('.login-page	.container	div	>	button');

Dusk	selectors	allow	you	to	focus	on	writing	effective	tests	rather	than	remembering	CSS	selectors.	To	define	a
selector,	add	a	dusk	attribute	to	your	HTML	element.	Then,	prefix	the	selector	with	@	to	manipulate	the	attached
element	within	a	Dusk	test:

//	HTML...

<button	dusk="login-button">Login</button>

//	Test...

$browser->click('@login-button');

Clicking	Links

To	click	a	link,	you	may	use	the	clickLink	method	on	the	browser	instance.	The	clickLink	method	will	click	the
link	that	has	the	given	display	text:

$browser->clickLink($linkText);

You	may	use	the	seeLink	method	to	determine	if	a	link	that	has	the	given	display	text	is	visible	on	the	page:

if	($browser->seeLink($linkText))	{

				//	...

}

NOTE	These	methods	interact	with	jQuery.	If	jQuery	is	not	available	on	the	page,	Dusk	will	automatically
inject	it	into	the	page	so	it	is	available	for	the	test's	duration.

Text,	Values,	&	Attributes

Retrieving	&	Setting	Values

Dusk	provides	several	methods	for	interacting	with	the	current	display	text,	value,	and	attributes	of	elements	on
the	page.	For	example,	to	get	the	"value"	of	an	element	that	matches	a	given	selector,	use	the	value	method:

//	Retrieve	the	value...

$value	=	$browser->value('selector');

//	Set	the	value...

$browser->value('selector',	'value');

You	may	use	the	inputValue	method	to	get	the	"value"	of	an	input	element	that	has	a	given	field	name:

//	Retrieve	the	value	of	an	input	element...

$inputValue	=	$browser->inputValue('field');

Retrieving	Text

The	text	method	may	be	used	to	retrieve	the	display	text	of	an	element	that	matches	the	given	selector:

$text	=	$browser->text('selector');

Retrieving	Attributes

Laravel	Documentation	-	7.x	/	Browser	Tests 504

Finally,	the	attribute	method	may	be	used	to	retrieve	an	attribute	of	an	element	matching	the	given	selector:

$attribute	=	$browser->attribute('selector',	'value');

Using	Forms

Typing	Values

Dusk	provides	a	variety	of	methods	for	interacting	with	forms	and	input	elements.	First,	let's	take	a	look	at	an
example	of	typing	text	into	an	input	field:

$browser->type('email',	'taylor@laravel.com');

Note	that,	although	the	method	accepts	one	if	necessary,	we	are	not	required	to	pass	a	CSS	selector	into	the	type
method.	If	a	CSS	selector	is	not	provided,	Dusk	will	search	for	an	input	field	with	the	given	name	attribute.
Finally,	Dusk	will	attempt	to	find	a	textarea	with	the	given	name	attribute.

To	append	text	to	a	field	without	clearing	its	content,	you	may	use	the	append	method:

$browser->type('tags',	'foo')

								->append('tags',	',	bar,	baz');

You	may	clear	the	value	of	an	input	using	the	clear	method:

$browser->clear('email');

You	can	instruct	Dusk	to	type	slowly	using	the	typeSlowly	method.	By	default,	Dusk	will	pause	for	100
milliseconds	between	key	presses.	To	customize	the	amount	of	time	between	key	presses,	you	may	pass	the
appropriate	number	of	milliseconds	as	the	third	argument	to	the	method:

$browser->typeSlowly('mobile',	'+1	(202)	555-5555');

$browser->typeSlowly('mobile',	'+1	(202)	555-5555',	300);

You	may	use	the	appendSlowly	method	to	append	text	slowly:

$browser->type('tags',	'foo')

								->appendSlowly('tags',	',	bar,	baz');

Dropdowns

To	select	a	value	in	a	dropdown	selection	box,	you	may	use	the	select	method.	Like	the	type	method,	the	
select	method	does	not	require	a	full	CSS	selector.	When	passing	a	value	to	the	select	method,	you	should
pass	the	underlying	option	value	instead	of	the	display	text:

$browser->select('size',	'Large');

You	may	select	a	random	option	by	omitting	the	second	parameter:

$browser->select('size');

Checkboxes

To	"check"	a	checkbox	field,	you	may	use	the	check	method.	Like	many	other	input	related	methods,	a	full	CSS
selector	is	not	required.	If	an	exact	selector	match	can't	be	found,	Dusk	will	search	for	a	checkbox	with	a
matching	name	attribute:

$browser->check('terms');

$browser->uncheck('terms');

Radio	Buttons

To	"select"	a	radio	button	option,	you	may	use	the	radio	method.	Like	many	other	input	related	methods,	a	full
CSS	selector	is	not	required.	If	an	exact	selector	match	can't	be	found,	Dusk	will	search	for	a	radio	with

Laravel	Documentation	-	7.x	/	Browser	Tests 505

matching	name	and	value	attributes:

$browser->radio('version',	'php7');

Attaching	Files

The	attach	method	may	be	used	to	attach	a	file	to	a	file	input	element.	Like	many	other	input	related	methods,
a	full	CSS	selector	is	not	required.	If	an	exact	selector	match	can't	be	found,	Dusk	will	search	for	a	file	input
with	matching	name	attribute:

$browser->attach('photo',	__DIR__.'/photos/me.png');

NOTE	The	attach	function	requires	the	Zip	PHP	extension	to	be	installed	and	enabled	on	your	server.

Using	The	Keyboard

The	keys	method	allows	you	to	provide	more	complex	input	sequences	to	a	given	element	than	normally
allowed	by	the	type	method.	For	example,	you	may	hold	modifier	keys	entering	values.	In	this	example,	the	
shift	key	will	be	held	while	taylor	is	entered	into	the	element	matching	the	given	selector.	After	taylor	is
typed,	otwell	will	be	typed	without	any	modifier	keys:

$browser->keys('selector',	['{shift}',	'taylor'],	'otwell');

You	may	even	send	a	"hot	key"	to	the	primary	CSS	selector	that	contains	your	application:

$browser->keys('.app',	['{command}',	'j']);

TIP	All	modifier	keys	are	wrapped	in	{}	characters,	and	match	the	constants	defined	in	the	
Facebook\WebDriver\WebDriverKeys	class,	which	can	be	found	on	GitHub.

Using	The	Mouse

Clicking	On	Elements

The	click	method	may	be	used	to	"click"	on	an	element	matching	the	given	selector:

$browser->click('.selector');

The	clickAtXPath	method	may	be	used	to	"click"	on	an	element	matching	the	given	XPath	expression:

$browser->clickAtXPath('//div[@class	=	"selector"]');

The	clickAtPoint	method	may	be	used	to	"click"	on	the	topmost	element	at	a	given	pair	of	coordinates	relative
to	the	viewable	area	of	the	browser:

$browser->clickAtPoint(0,	0);

The	doubleClick	method	may	be	used	to	simulate	the	double	"click"	of	a	mouse:

$browser->doubleClick();

The	rightClick	method	may	be	used	to	simulate	the	right	"click"	of	a	mouse:

$browser->rightClick();

$browser->rightClick('.selector');

The	clickAndHold	method	may	be	used	to	simulate	a	mouse	button	being	clicked	and	held	down.	A	subsequent
call	to	the	releaseMouse	method	will	undo	this	behavior	and	release	the	mouse	button:

$browser->clickAndHold()

								->pause(1000)

								->releaseMouse();

Mouseover

Laravel	Documentation	-	7.x	/	Browser	Tests 506

https://github.com/php-webdriver/php-webdriver/blob/master/lib/WebDriverKeys.php

The	mouseover	method	may	be	used	when	you	need	to	move	the	mouse	over	an	element	matching	the	given
selector:

$browser->mouseover('.selector');

Drag	&	Drop

The	drag	method	may	be	used	to	drag	an	element	matching	the	given	selector	to	another	element:

$browser->drag('.from-selector',	'.to-selector');

Or,	you	may	drag	an	element	in	a	single	direction:

$browser->dragLeft('.selector',	10);

$browser->dragRight('.selector',	10);

$browser->dragUp('.selector',	10);

$browser->dragDown('.selector',	10);

Finally,	you	may	drag	an	element	by	a	given	offset:

$browser->dragOffset('.selector',	10,	10);

JavaScript	Dialogs

Dusk	provides	various	methods	to	interact	with	JavaScript	Dialogs:

//	Wait	for	a	dialog	to	appear:

$browser->waitForDialog($seconds	=	null);

//	Assert	that	a	dialog	has	been	displayed	and	that	its	message	matches	the	given	value:

$browser->assertDialogOpened('value');

//	Type	the	given	value	in	an	open	JavaScript	prompt	dialog:

$browser->typeInDialog('Hello	World');

To	close	an	opened	JavaScript	Dialog,	clicking	the	OK	button:

$browser->acceptDialog();

To	close	an	opened	JavaScript	Dialog,	clicking	the	Cancel	button	(for	a	confirmation	dialog	only):

$browser->dismissDialog();

Scoping	Selectors

Sometimes	you	may	wish	to	perform	several	operations	while	scoping	all	of	the	operations	within	a	given
selector.	For	example,	you	may	wish	to	assert	that	some	text	exists	only	within	a	table	and	then	click	a	button
within	that	table.	You	may	use	the	with	method	to	accomplish	this.	All	operations	performed	within	the
callback	given	to	the	with	method	will	be	scoped	to	the	original	selector:

$browser->with('.table',	function	($table)	{

				$table->assertSee('Hello	World')

										->clickLink('Delete');

});

You	may	occasionally	need	to	execute	assertions	outside	of	the	current	scope.	You	may	use	the	elsewhere
method	to	accomplish	this:

	$browser->with('.table',	function	($table)	{

				//	Current	scope	is	`body	.table`...

				$browser->elsewhere('.page-title',	function	($title)	{

								//	Current	scope	is	`body	.page-title`...

								$title->assertSee('Hello	World');

				});

	});

Waiting	For	Elements

Laravel	Documentation	-	7.x	/	Browser	Tests 507

When	testing	applications	that	use	JavaScript	extensively,	it	often	becomes	necessary	to	"wait"	for	certain
elements	or	data	to	be	available	before	proceeding	with	a	test.	Dusk	makes	this	a	cinch.	Using	a	variety	of
methods,	you	may	wait	for	elements	to	be	visible	on	the	page	or	even	wait	until	a	given	JavaScript	expression
evaluates	to	true.

Waiting

If	you	need	to	pause	the	test	for	a	given	number	of	milliseconds,	use	the	pause	method:

$browser->pause(1000);

Waiting	For	Selectors

The	waitFor	method	may	be	used	to	pause	the	execution	of	the	test	until	the	element	matching	the	given	CSS
selector	is	displayed	on	the	page.	By	default,	this	will	pause	the	test	for	a	maximum	of	five	seconds	before
throwing	an	exception.	If	necessary,	you	may	pass	a	custom	timeout	threshold	as	the	second	argument	to	the
method:

//	Wait	a	maximum	of	five	seconds	for	the	selector...

$browser->waitFor('.selector');

//	Wait	a	maximum	of	one	second	for	the	selector...

$browser->waitFor('.selector',	1);

You	may	also	wait	until	the	given	selector	is	missing	from	the	page:

$browser->waitUntilMissing('.selector');

$browser->waitUntilMissing('.selector',	1);

Scoping	Selectors	When	Available

Occasionally,	you	may	wish	to	wait	for	a	given	selector	and	then	interact	with	the	element	matching	the
selector.	For	example,	you	may	wish	to	wait	until	a	modal	window	is	available	and	then	press	the	"OK"	button
within	the	modal.	The	whenAvailable	method	may	be	used	in	this	case.	All	element	operations	performed	within
the	given	callback	will	be	scoped	to	the	original	selector:

$browser->whenAvailable('.modal',	function	($modal)	{

				$modal->assertSee('Hello	World')

										->press('OK');

});

Waiting	For	Text

The	waitForText	method	may	be	used	to	wait	until	the	given	text	is	displayed	on	the	page:

//	Wait	a	maximum	of	five	seconds	for	the	text...

$browser->waitForText('Hello	World');

//	Wait	a	maximum	of	one	second	for	the	text...

$browser->waitForText('Hello	World',	1);

You	may	use	the	waitUntilMissingText	method	to	wait	until	the	displayed	text	has	been	removed	from	the	page:

//	Wait	a	maximum	of	five	seconds	for	the	text	to	be	removed...

$browser->waitUntilMissingText('Hello	World');

//	Wait	a	maximum	of	one	second	for	the	text	to	be	removed...

$browser->waitUntilMissingText('Hello	World',	1);

Waiting	For	Links

The	waitForLink	method	may	be	used	to	wait	until	the	given	link	text	is	displayed	on	the	page:

//	Wait	a	maximum	of	five	seconds	for	the	link...

$browser->waitForLink('Create');

Laravel	Documentation	-	7.x	/	Browser	Tests 508

//	Wait	a	maximum	of	one	second	for	the	link...

$browser->waitForLink('Create',	1);

Waiting	On	The	Page	Location

When	making	a	path	assertion	such	as	$browser->assertPathIs('/home'),	the	assertion	can	fail	if	
window.location.pathname	is	being	updated	asynchronously.	You	may	use	the	waitForLocation	method	to	wait
for	the	location	to	be	a	given	value:

$browser->waitForLocation('/secret');

You	may	also	wait	for	a	named	route's	location:

$browser->waitForRoute($routeName,	$parameters);

Waiting	for	Page	Reloads

If	you	need	to	make	assertions	after	a	page	has	been	reloaded,	use	the	waitForReload	method:

$browser->click('.some-action')

								->waitForReload()

								->assertSee('something');

Waiting	On	JavaScript	Expressions

Sometimes	you	may	wish	to	pause	the	execution	of	a	test	until	a	given	JavaScript	expression	evaluates	to	true.
You	may	easily	accomplish	this	using	the	waitUntil	method.	When	passing	an	expression	to	this	method,	you
do	not	need	to	include	the	return	keyword	or	an	ending	semi-colon:

//	Wait	a	maximum	of	five	seconds	for	the	expression	to	be	true...

$browser->waitUntil('App.dataLoaded');

$browser->waitUntil('App.data.servers.length	>	0');

//	Wait	a	maximum	of	one	second	for	the	expression	to	be	true...

$browser->waitUntil('App.data.servers.length	>	0',	1);

Waiting	On	Vue	Expressions

The	following	methods	may	be	used	to	wait	until	a	given	Vue	component	attribute	has	a	given	value:

//	Wait	until	the	component	attribute	contains	the	given	value...

$browser->waitUntilVue('user.name',	'Taylor',	'@user');

//	Wait	until	the	component	attribute	doesn't	contain	the	given	value...

$browser->waitUntilVueIsNot('user.name',	null,	'@user');

Waiting	With	A	Callback

Many	of	the	"wait"	methods	in	Dusk	rely	on	the	underlying	waitUsing	method.	You	may	use	this	method
directly	to	wait	for	a	given	callback	to	return	true.	The	waitUsing	method	accepts	the	maximum	number	of
seconds	to	wait,	the	interval	at	which	the	Closure	should	be	evaluated,	the	Closure,	and	an	optional	failure
message:

$browser->waitUsing(10,	1,	function	()	use	($something)	{

				return	$something->isReady();

},	"Something	wasn't	ready	in	time.");

Scrolling	An	Element	Into	View

Sometimes	you	may	not	be	able	to	click	on	an	element	because	it	is	outside	of	the	viewable	area	of	the	browser.
The	scrollIntoView	method	will	scroll	the	browser	window	until	the	element	at	the	given	selector	is	within	the
view:

$browser->scrollIntoView('selector')

								->click('selector');

Laravel	Documentation	-	7.x	/	Browser	Tests 509

Making	Vue	Assertions

Dusk	even	allows	you	to	make	assertions	on	the	state	of	Vue	component	data.	For	example,	imagine	your
application	contains	the	following	Vue	component:

//	HTML...

<profile	dusk="profile-component"></profile>

//	Component	Definition...

Vue.component('profile',	{

				template:	'<div>{{	user.name	}}</div>',

				data:	function	()	{

								return	{

												user:	{

																name:	'Taylor'

												}

								};

				}

});

You	may	assert	on	the	state	of	the	Vue	component	like	so:

/**

	*	A	basic	Vue	test	example.

	*

	*	@return	void

	*/

public	function	testVue()

{

				$this->browse(function	(Browser	$browser)	{

								$browser->visit('/')

																->assertVue('user.name',	'Taylor',	'@profile-component');

				});

}

Available	Assertions

Dusk	provides	a	variety	of	assertions	that	you	may	make	against	your	application.	All	of	the	available
assertions	are	documented	in	the	list	below:

assertTitle	assertTitleContains	assertUrlIs	assertSchemeIs	assertSchemeIsNot	assertHostIs	assertHostIsNot
assertPortIs	assertPortIsNot	assertPathBeginsWith	assertPathIs	assertPathIsNot	assertRouteIs
assertQueryStringHas	assertQueryStringMissing	assertFragmentIs	assertFragmentBeginsWith
assertFragmentIsNot	assertHasCookie	assertHasPlainCookie	assertCookieMissing	assertPlainCookieMissing
assertCookieValue	assertPlainCookieValue	assertSee	assertDontSee	assertSeeIn	assertDontSeeIn
assertSourceHas	assertSourceMissing	assertSeeLink	assertDontSeeLink	assertInputValue
assertInputValueIsNot	assertChecked	assertNotChecked	assertRadioSelected	assertRadioNotSelected
assertSelected	assertNotSelected	assertSelectHasOptions	assertSelectMissingOption
assertSelectMissingOptions	assertSelectHasOption	assertValue	assertAttribute	assertAriaAttribute
assertDataAttribute	assertVisible	assertPresent	assertMissing	assertDialogOpened	assertEnabled	assertDisabled
assertButtonEnabled	assertButtonDisabled	assertFocused	assertNotFocused	assertAuthenticated	assertGuest
assertAuthenticatedAs	assertVue	assertVueIsNot	assertVueContains	assertVueDoesNotContain

assertTitle

Assert	that	the	page	title	matches	the	given	text:

$browser->assertTitle($title);

assertTitleContains

Assert	that	the	page	title	contains	the	given	text:

$browser->assertTitleContains($title);

Laravel	Documentation	-	7.x	/	Browser	Tests 510

https://vuejs.org

assertUrlIs

Assert	that	the	current	URL	(without	the	query	string)	matches	the	given	string:

$browser->assertUrlIs($url);

assertSchemeIs

Assert	that	the	current	URL	scheme	matches	the	given	scheme:

$browser->assertSchemeIs($scheme);

assertSchemeIsNot

Assert	that	the	current	URL	scheme	does	not	match	the	given	scheme:

$browser->assertSchemeIsNot($scheme);

assertHostIs

Assert	that	the	current	URL	host	matches	the	given	host:

$browser->assertHostIs($host);

assertHostIsNot

Assert	that	the	current	URL	host	does	not	match	the	given	host:

$browser->assertHostIsNot($host);

assertPortIs

Assert	that	the	current	URL	port	matches	the	given	port:

$browser->assertPortIs($port);

assertPortIsNot

Assert	that	the	current	URL	port	does	not	match	the	given	port:

$browser->assertPortIsNot($port);

assertPathBeginsWith

Assert	that	the	current	URL	path	begins	with	the	given	path:

$browser->assertPathBeginsWith($path);

assertPathIs

Assert	that	the	current	path	matches	the	given	path:

$browser->assertPathIs('/home');

assertPathIsNot

Assert	that	the	current	path	does	not	match	the	given	path:

$browser->assertPathIsNot('/home');

assertRouteIs

Laravel	Documentation	-	7.x	/	Browser	Tests 511

Assert	that	the	current	URL	matches	the	given	named	route's	URL:

$browser->assertRouteIs($name,	$parameters);

assertQueryStringHas

Assert	that	the	given	query	string	parameter	is	present:

$browser->assertQueryStringHas($name);

Assert	that	the	given	query	string	parameter	is	present	and	has	a	given	value:

$browser->assertQueryStringHas($name,	$value);

assertQueryStringMissing

Assert	that	the	given	query	string	parameter	is	missing:

$browser->assertQueryStringMissing($name);

assertFragmentIs

Assert	that	the	current	fragment	matches	the	given	fragment:

$browser->assertFragmentIs('anchor');

assertFragmentBeginsWith

Assert	that	the	current	fragment	begins	with	the	given	fragment:

$browser->assertFragmentBeginsWith('anchor');

assertFragmentIsNot

Assert	that	the	current	fragment	does	not	match	the	given	fragment:

$browser->assertFragmentIsNot('anchor');

assertHasCookie

Assert	that	the	given	encrypted	cookie	is	present:

$browser->assertHasCookie($name);

assertHasPlainCookie

Assert	that	the	given	unencrypted	cookie	is	present:

$browser->assertHasPlainCookie($name);

assertCookieMissing

Assert	that	the	given	encrypted	cookie	is	not	present:

$browser->assertCookieMissing($name);

assertPlainCookieMissing

Assert	that	the	given	unencrypted	cookie	is	not	present:

$browser->assertPlainCookieMissing($name);

Laravel	Documentation	-	7.x	/	Browser	Tests 512

assertCookieValue

Assert	that	an	encrypted	cookie	has	a	given	value:

$browser->assertCookieValue($name,	$value);

assertPlainCookieValue

Assert	that	an	unencrypted	cookie	has	a	given	value:

$browser->assertPlainCookieValue($name,	$value);

assertSee

Assert	that	the	given	text	is	present	on	the	page:

$browser->assertSee($text);

assertDontSee

Assert	that	the	given	text	is	not	present	on	the	page:

$browser->assertDontSee($text);

assertSeeIn

Assert	that	the	given	text	is	present	within	the	selector:

$browser->assertSeeIn($selector,	$text);

assertDontSeeIn

Assert	that	the	given	text	is	not	present	within	the	selector:

$browser->assertDontSeeIn($selector,	$text);

assertSourceHas

Assert	that	the	given	source	code	is	present	on	the	page:

$browser->assertSourceHas($code);

assertSourceMissing

Assert	that	the	given	source	code	is	not	present	on	the	page:

$browser->assertSourceMissing($code);

assertSeeLink

Assert	that	the	given	link	is	present	on	the	page:

$browser->assertSeeLink($linkText);

assertDontSeeLink

Assert	that	the	given	link	is	not	present	on	the	page:

$browser->assertDontSeeLink($linkText);

assertInputValue

Laravel	Documentation	-	7.x	/	Browser	Tests 513

Assert	that	the	given	input	field	has	the	given	value:

$browser->assertInputValue($field,	$value);

assertInputValueIsNot

Assert	that	the	given	input	field	does	not	have	the	given	value:

$browser->assertInputValueIsNot($field,	$value);

assertChecked

Assert	that	the	given	checkbox	is	checked:

$browser->assertChecked($field);

assertNotChecked

Assert	that	the	given	checkbox	is	not	checked:

$browser->assertNotChecked($field);

assertRadioSelected

Assert	that	the	given	radio	field	is	selected:

$browser->assertRadioSelected($field,	$value);

assertRadioNotSelected

Assert	that	the	given	radio	field	is	not	selected:

$browser->assertRadioNotSelected($field,	$value);

assertSelected

Assert	that	the	given	dropdown	has	the	given	value	selected:

$browser->assertSelected($field,	$value);

assertNotSelected

Assert	that	the	given	dropdown	does	not	have	the	given	value	selected:

$browser->assertNotSelected($field,	$value);

assertSelectHasOptions

Assert	that	the	given	array	of	values	are	available	to	be	selected:

$browser->assertSelectHasOptions($field,	$values);

assertSelectMissingOption

Assert	that	the	given	value	is	not	available	to	be	selected:

$browser->assertSelectMissingOption($field,	$value);

assertSelectMissingOptions

Assert	that	the	given	array	of	values	are	not	available	to	be	selected:

Laravel	Documentation	-	7.x	/	Browser	Tests 514

$browser->assertSelectMissingOptions($field,	$values);

assertSelectHasOption

Assert	that	the	given	value	is	available	to	be	selected	on	the	given	field:

$browser->assertSelectHasOption($field,	$value);

assertValue

Assert	that	the	element	matching	the	given	selector	has	the	given	value:

$browser->assertValue($selector,	$value);

assertAttribute

Assert	that	the	element	matching	the	given	selector	has	the	given	value	in	the	provided	attribute:

$browser->assertAttribute($selector,	$attribute,	$value);

assertAriaAttribute

Assert	that	the	element	matching	the	given	selector	has	the	given	value	in	the	provided	aria	attribute:

$browser->assertAriaAttribute($selector,	$attribute,	$value);

For	example,	given	the	markup	<button	aria-label="Add"></button>,	you	may	assert	against	the	aria-label
attribute	like	so:

$browser->assertAriaAttribute('button',	'label',	'Add')

assertDataAttribute

Assert	that	the	element	matching	the	given	selector	has	the	given	value	in	the	provided	data	attribute:

$browser->assertDataAttribute($selector,	$attribute,	$value);

For	example,	given	the	markup	<tr	id="row-1"	data-content="attendees"></tr>,	you	may	assert	against	the	
data-label	attribute	like	so:

$browser->assertDataAttribute('#row-1',	'content',	'attendees')

assertVisible

Assert	that	the	element	matching	the	given	selector	is	visible:

$browser->assertVisible($selector);

assertPresent

Assert	that	the	element	matching	the	given	selector	is	present:

$browser->assertPresent($selector);

assertMissing

Assert	that	the	element	matching	the	given	selector	is	not	visible:

$browser->assertMissing($selector);

assertDialogOpened

Assert	that	a	JavaScript	dialog	with	the	given	message	has	been	opened:

Laravel	Documentation	-	7.x	/	Browser	Tests 515

$browser->assertDialogOpened($message);

assertEnabled

Assert	that	the	given	field	is	enabled:

$browser->assertEnabled($field);

assertDisabled

Assert	that	the	given	field	is	disabled:

$browser->assertDisabled($field);

assertButtonEnabled

Assert	that	the	given	button	is	enabled:

$browser->assertButtonEnabled($button);

assertButtonDisabled

Assert	that	the	given	button	is	disabled:

$browser->assertButtonDisabled($button);

assertFocused

Assert	that	the	given	field	is	focused:

$browser->assertFocused($field);

assertNotFocused

Assert	that	the	given	field	is	not	focused:

$browser->assertNotFocused($field);

assertAuthenticated

Assert	that	the	user	is	authenticated:

$browser->assertAuthenticated();

assertGuest

Assert	that	the	user	is	not	authenticated:

$browser->assertGuest();

assertAuthenticatedAs

Assert	that	the	user	is	authenticated	as	the	given	user:

$browser->assertAuthenticatedAs($user);

assertVue

Assert	that	a	given	Vue	component	data	property	matches	the	given	value:

$browser->assertVue($property,	$value,	$componentSelector	=	null);

Laravel	Documentation	-	7.x	/	Browser	Tests 516

assertVueIsNot

Assert	that	a	given	Vue	component	data	property	does	not	match	the	given	value:

$browser->assertVueIsNot($property,	$value,	$componentSelector	=	null);

assertVueContains

Assert	that	a	given	Vue	component	data	property	is	an	array	and	contains	the	given	value:

$browser->assertVueContains($property,	$value,	$componentSelector	=	null);

assertVueDoesNotContain

Assert	that	a	given	Vue	component	data	property	is	an	array	and	does	not	contain	the	given	value:

$browser->assertVueDoesNotContain($property,	$value,	$componentSelector	=	null);

Pages

Sometimes,	tests	require	several	complicated	actions	to	be	performed	in	sequence.	This	can	make	your	tests
harder	to	read	and	understand.	Pages	allow	you	to	define	expressive	actions	that	may	then	be	performed	on	a
given	page	using	a	single	method.	Pages	also	allow	you	to	define	short-cuts	to	common	selectors	for	your
application	or	a	single	page.

Generating	Pages

To	generate	a	page	object,	use	the	dusk:page	Artisan	command.	All	page	objects	will	be	placed	in	the	
tests/Browser/Pages	directory:

php	artisan	dusk:page	Login

Configuring	Pages

By	default,	pages	have	three	methods:	url,	assert,	and	elements.	We	will	discuss	the	url	and	assert	methods
now.	The	elements	method	will	be	discussed	in	more	detail	below.

The	url	Method

The	url	method	should	return	the	path	of	the	URL	that	represents	the	page.	Dusk	will	use	this	URL	when
navigating	to	the	page	in	the	browser:

/**

	*	Get	the	URL	for	the	page.

	*

	*	@return	string

	*/

public	function	url()

{

				return	'/login';

}

The	assert	Method

The	assert	method	may	make	any	assertions	necessary	to	verify	that	the	browser	is	actually	on	the	given	page.
Completing	this	method	is	not	necessary;	however,	you	are	free	to	make	these	assertions	if	you	wish.	These
assertions	will	be	run	automatically	when	navigating	to	the	page:

/**

	*	Assert	that	the	browser	is	on	the	page.

	*

	*	@return	void

	*/

Laravel	Documentation	-	7.x	/	Browser	Tests 517

public	function	assert(Browser	$browser)

{

				$browser->assertPathIs($this->url());

}

Navigating	To	Pages

Once	a	page	has	been	configured,	you	may	navigate	to	it	using	the	visit	method:

use	Tests\Browser\Pages\Login;

$browser->visit(new	Login);

You	may	use	the	visitRoute	method	to	navigate	to	a	named	route:

$browser->visitRoute('login');

You	may	navigate	"back"	and	"forward"	using	the	back	and	forward	methods:

$browser->back();

$browser->forward();

You	may	use	the	refresh	method	to	refresh	the	page:

$browser->refresh();

Sometimes	you	may	already	be	on	a	given	page	and	need	to	"load"	the	page's	selectors	and	methods	into	the
current	test	context.	This	is	common	when	pressing	a	button	and	being	redirected	to	a	given	page	without
explicitly	navigating	to	it.	In	this	situation,	you	may	use	the	on	method	to	load	the	page:

use	Tests\Browser\Pages\CreatePlaylist;

$browser->visit('/dashboard')

								->clickLink('Create	Playlist')

								->on(new	CreatePlaylist)

								->assertSee('@create');

Shorthand	Selectors

The	elements	method	of	pages	allows	you	to	define	quick,	easy-to-remember	shortcuts	for	any	CSS	selector	on
your	page.	For	example,	let's	define	a	shortcut	for	the	"email"	input	field	of	the	application's	login	page:

/**

	*	Get	the	element	shortcuts	for	the	page.

	*

	*	@return	array

	*/

public	function	elements()

{

				return	[

								'@email'	=>	'input[name=email]',

];

}

Now,	you	may	use	this	shorthand	selector	anywhere	you	would	use	a	full	CSS	selector:

$browser->type('@email',	'taylor@laravel.com');

Global	Shorthand	Selectors

After	installing	Dusk,	a	base	Page	class	will	be	placed	in	your	tests/Browser/Pages	directory.	This	class	contains
a	siteElements	method	which	may	be	used	to	define	global	shorthand	selectors	that	should	be	available	on
every	page	throughout	your	application:

/**

	*	Get	the	global	element	shortcuts	for	the	site.

	*

	*	@return	array

	*/

Laravel	Documentation	-	7.x	/	Browser	Tests 518

public	static	function	siteElements()

{

				return	[

								'@element'	=>	'#selector',

];

}

Page	Methods

In	addition	to	the	default	methods	defined	on	pages,	you	may	define	additional	methods	which	may	be	used
throughout	your	tests.	For	example,	let's	imagine	we	are	building	a	music	management	application.	A	common
action	for	one	page	of	the	application	might	be	to	create	a	playlist.	Instead	of	re-writing	the	logic	to	create	a
playlist	in	each	test,	you	may	define	a	createPlaylist	method	on	a	page	class:

<?php

namespace	Tests\Browser\Pages;

use	Laravel\Dusk\Browser;

class	Dashboard	extends	Page

{

				//	Other	page	methods...

				/**

					*	Create	a	new	playlist.

					*

					*	@param		\Laravel\Dusk\Browser		$browser

					*	@param		string		$name

					*	@return	void

					*/

				public	function	createPlaylist(Browser	$browser,	$name)

				{

								$browser->type('name',	$name)

																->check('share')

																->press('Create	Playlist');

				}

}

Once	the	method	has	been	defined,	you	may	use	it	within	any	test	that	utilizes	the	page.	The	browser	instance
will	automatically	be	passed	to	the	page	method:

use	Tests\Browser\Pages\Dashboard;

$browser->visit(new	Dashboard)

								->createPlaylist('My	Playlist')

								->assertSee('My	Playlist');

Components

Components	are	similar	to	Dusk’s	“page	objects”,	but	are	intended	for	pieces	of	UI	and	functionality	that	are
re-used	throughout	your	application,	such	as	a	navigation	bar	or	notification	window.	As	such,	components	are
not	bound	to	specific	URLs.

Generating	Components

To	generate	a	component,	use	the	dusk:component	Artisan	command.	New	components	are	placed	in	the	
tests/Browser/Components	directory:

php	artisan	dusk:component	DatePicker

As	shown	above,	a	"date	picker"	is	an	example	of	a	component	that	might	exist	throughout	your	application	on
a	variety	of	pages.	It	can	become	cumbersome	to	manually	write	the	browser	automation	logic	to	select	a	date
in	dozens	of	tests	throughout	your	test	suite.	Instead,	we	can	define	a	Dusk	component	to	represent	the	date
picker,	allowing	us	to	encapsulate	that	logic	within	the	component:

<?php

namespace	Tests\Browser\Components;

Laravel	Documentation	-	7.x	/	Browser	Tests 519

use	Laravel\Dusk\Browser;

use	Laravel\Dusk\Component	as	BaseComponent;

class	DatePicker	extends	BaseComponent

{

				/**

					*	Get	the	root	selector	for	the	component.

					*

					*	@return	string

					*/

				public	function	selector()

				{

								return	'.date-picker';

				}

				/**

					*	Assert	that	the	browser	page	contains	the	component.

					*

					*	@param		Browser		$browser

					*	@return	void

					*/

				public	function	assert(Browser	$browser)

				{

								$browser->assertVisible($this->selector());

				}

				/**

					*	Get	the	element	shortcuts	for	the	component.

					*

					*	@return	array

					*/

				public	function	elements()

				{

								return	[

												'@date-field'	=>	'input.datepicker-input',

												'@year-list'	=>	'div	>	div.datepicker-years',

												'@month-list'	=>	'div	>	div.datepicker-months',

												'@day-list'	=>	'div	>	div.datepicker-days',

];

				}

				/**

					*	Select	the	given	date.

					*

					*	@param		\Laravel\Dusk\Browser		$browser

					*	@param		int		$year

					*	@param		int		$month

					*	@param		int		$day

					*	@return	void

					*/

				public	function	selectDate($browser,	$year,	$month,	$day)

				{

								$browser->click('@date-field')

																->within('@year-list',	function	($browser)	use	($year)	{

																				$browser->click($year);

																})

																->within('@month-list',	function	($browser)	use	($month)	{

																				$browser->click($month);

																})

																->within('@day-list',	function	($browser)	use	($day)	{

																				$browser->click($day);

																});

				}

}

Using	Components

Once	the	component	has	been	defined,	we	can	easily	select	a	date	within	the	date	picker	from	any	test.	And,	if
the	logic	necessary	to	select	a	date	changes,	we	only	need	to	update	the	component:

<?php

namespace	Tests\Browser;

use	Illuminate\Foundation\Testing\DatabaseMigrations;

use	Laravel\Dusk\Browser;

use	Tests\Browser\Components\DatePicker;

use	Tests\DuskTestCase;

Laravel	Documentation	-	7.x	/	Browser	Tests 520

class	ExampleTest	extends	DuskTestCase

{

				/**

					*	A	basic	component	test	example.

					*

					*	@return	void

					*/

				public	function	testBasicExample()

				{

								$this->browse(function	(Browser	$browser)	{

												$browser->visit('/')

																				->within(new	DatePicker,	function	($browser)	{

																								$browser->selectDate(2019,	1,	30);

																				})

																				->assertSee('January');

								});

				}

}

Continuous	Integration

NOTE	Before	adding	a	continous	integration	configuration	file,	ensure	that	your	.env.testing	file	contains
an	APP_URL	entry	with	a	value	of	http://127.0.0.1:8000.

CircleCI

If	you	are	using	CircleCI	to	run	your	Dusk	tests,	you	may	use	this	configuration	file	as	a	starting	point.	Like
TravisCI,	we	will	use	the	php	artisan	serve	command	to	launch	PHP's	built-in	web	server:

version:	2

jobs:

				build:

								steps:

												-	run:	sudo	apt-get	install	-y	libsqlite3-dev

												-	run:	cp	.env.testing	.env

												-	run:	composer	install	-n	--ignore-platform-reqs

												-	run:	php	artisan	key:generate

												-	run:	php	artisan	dusk:chrome-driver

												-	run:	npm	install

												-	run:	npm	run	production

												-	run:	vendor/bin/phpunit

												-	run:

																name:	Start	Chrome	Driver

																command:	./vendor/laravel/dusk/bin/chromedriver-linux

																background:	true

												-	run:

																name:	Run	Laravel	Server

																command:	php	artisan	serve

																background:	true

												-	run:

																name:	Run	Laravel	Dusk	Tests

																command:	php	artisan	dusk

												-	store_artifacts:

																path:	tests/Browser/screenshots

												-	store_artifacts:

																path:	tests/Browser/console

												-	store_artifacts:

																path:	storage/logs

Codeship

To	run	Dusk	tests	on	Codeship,	add	the	following	commands	to	your	Codeship	project.	These	commands	are
just	a	starting	point	and	you	are	free	to	add	additional	commands	as	needed:

phpenv	local	7.2

cp	.env.testing	.env

Laravel	Documentation	-	7.x	/	Browser	Tests 521

https://codeship.com

mkdir	-p	./bootstrap/cache

composer	install	--no-interaction	--prefer-dist

php	artisan	key:generate

php	artisan	dusk:chrome-driver

nohup	bash	-c	"php	artisan	serve	2>&1	&"	&&	sleep	5

php	artisan	dusk

Heroku	CI

To	run	Dusk	tests	on	Heroku	CI,	add	the	following	Google	Chrome	buildpack	and	scripts	to	your	Heroku	
app.json	file:

{

		"environments":	{

				"test":	{

						"buildpacks":	[

								{	"url":	"heroku/php"	},

								{	"url":	"https://github.com/heroku/heroku-buildpack-google-chrome"	}

],

						"scripts":	{

								"test-setup":	"cp	.env.testing	.env",

								"test":	"nohup	bash	-c	'./vendor/laravel/dusk/bin/chromedriver-linux	>	/dev/null	2>&1	&'	&&	

nohup	bash	-c	'php	artisan	serve	>	/dev/null	2>&1	&'	&&	php	artisan	dusk"

						}

				}

		}

}

Travis	CI

To	run	your	Dusk	tests	on	Travis	CI,	use	the	following	.travis.yml	configuration.	Since	Travis	CI	is	not	a
graphical	environment,	we	will	need	to	take	some	extra	steps	in	order	to	launch	a	Chrome	browser.	In	addition,
we	will	use	php	artisan	serve	to	launch	PHP's	built-in	web	server:

language:	php

php:

		-	7.3

addons:

		chrome:	stable

install:

		-	cp	.env.testing	.env

		-	travis_retry	composer	install	--no-interaction	--prefer-dist	--no-suggest

		-	php	artisan	key:generate

		-	php	artisan	dusk:chrome-driver

before_script:

		-	google-chrome-stable	--headless	--disable-gpu	--remote-debugging-port=9222	http://localhost	&

		-	php	artisan	serve	&

script:

		-	php	artisan	dusk

GitHub	Actions

If	you	are	using	Github	Actions	to	run	your	Dusk	tests,	you	may	use	this	configuration	file	as	a	starting	point.
Like	TravisCI,	we	will	use	the	php	artisan	serve	command	to	launch	PHP's	built-in	web	server:

name:	CI

on:	[push]

jobs:

		dusk-php:

				runs-on:	ubuntu-latest

				steps:

						-	uses:	actions/checkout@v2

						-	name:	Prepare	The	Environment

								run:	cp	.env.example	.env

						-	name:	Create	Database

								run:	|

										sudo	systemctl	start	mysql

Laravel	Documentation	-	7.x	/	Browser	Tests 522

https://www.heroku.com/continuous-integration
https://travis-ci.org
https://github.com/features/actions

										mysql	--user="root"	--password="root"	-e	"CREATE	DATABASE	'my-database'	character	set	UTF8mb4	

collate	utf8mb4_bin;"

						-	name:	Install	Composer	Dependencies

								run:	composer	install	--no-progress	--no-suggest	--prefer-dist	--optimize-autoloader

						-	name:	Generate	Application	Key

								run:	php	artisan	key:generate

						-	name:	Upgrade	Chrome	Driver

								run:	php	artisan	dusk:chrome-driver	`/opt/google/chrome/chrome	--version	|	cut	-d	"	"	-f3	|	cut	

-d	"."	-f1`

						-	name:	Start	Chrome	Driver

								run:	./vendor/laravel/dusk/bin/chromedriver-linux	&

						-	name:	Run	Laravel	Server

								run:	php	artisan	serve	&

						-	name:	Run	Dusk	Tests

								env:

										APP_URL:	"http://127.0.0.1:8000"

								run:	php	artisan	dusk

Laravel	Documentation	-	7.x	/	Browser	Tests 523

Testing

Database	Testing
Introduction
Generating	Factories
Resetting	The	Database	After	Each	Test
Writing	Factories

Extending	Factories
Factory	States
Factory	Callbacks

Using	Factories
Creating	Models
Persisting	Models
Relationships

Using	Seeds
Available	Assertions

Introduction

Laravel	provides	a	variety	of	helpful	tools	to	make	it	easier	to	test	your	database	driven	applications.	First,	you
may	use	the	assertDatabaseHas	helper	to	assert	that	data	exists	in	the	database	matching	a	given	set	of	criteria.
For	example,	if	you	would	like	to	verify	that	there	is	a	record	in	the	users	table	with	the	email	value	of	
sally@example.com,	you	can	do	the	following:

public	function	testDatabase()

{

				//	Make	call	to	application...

				$this->assertDatabaseHas('users',	[

								'email'	=>	'sally@example.com',

]);

}

You	can	also	use	the	assertDatabaseMissing	helper	to	assert	that	data	does	not	exist	in	the	database.

The	assertDatabaseHas	method	and	other	helpers	like	it	are	for	convenience.	You	are	free	to	use	any	of
PHPUnit's	built-in	assertion	methods	to	supplement	your	feature	tests.

Generating	Factories

To	create	a	factory,	use	the	make:factory	Artisan	command:

php	artisan	make:factory	PostFactory

The	new	factory	will	be	placed	in	your	database/factories	directory.

The	--model	option	may	be	used	to	indicate	the	name	of	the	model	created	by	the	factory.	This	option	will	pre-
fill	the	generated	factory	file	with	the	given	model:

php	artisan	make:factory	PostFactory	--model=Post

Resetting	The	Database	After	Each	Test

It	is	often	useful	to	reset	your	database	after	each	test	so	that	data	from	a	previous	test	does	not	interfere	with
subsequent	tests.	The	RefreshDatabase	trait	takes	the	most	optimal	approach	to	migrating	your	test	database
depending	on	if	you	are	using	an	in-memory	database	or	a	traditional	database.	Use	the	trait	on	your	test	class
and	everything	will	be	handled	for	you:

<?php

namespace	Tests\Feature;

Laravel	Documentation	-	7.x	/	Database 524

use	Illuminate\Foundation\Testing\RefreshDatabase;

use	Illuminate\Foundation\Testing\WithoutMiddleware;

use	Tests\TestCase;

class	ExampleTest	extends	TestCase

{

				use	RefreshDatabase;

				/**

					*	A	basic	functional	test	example.

					*

					*	@return	void

					*/

				public	function	testBasicExample()

				{

								$response	=	$this->get('/');

								//	...

				}

}

Writing	Factories

When	testing,	you	may	need	to	insert	a	few	records	into	your	database	before	executing	your	test.	Instead	of
manually	specifying	the	value	of	each	column	when	you	create	this	test	data,	Laravel	allows	you	to	define	a
default	set	of	attributes	for	each	of	your	Eloquent	models	using	model	factories.	To	get	started,	take	a	look	at
the	database/factories/UserFactory.php	file	in	your	application.	Out	of	the	box,	this	file	contains	one	factory
definition:

use	Faker\Generator	as	Faker;

use	Illuminate\Support\Str;

$factory->define(App\User::class,	function	(Faker	$faker)	{

				return	[

								'name'	=>	$faker->name,

								'email'	=>	$faker->unique()->safeEmail,

								'email_verified_at'	=>	now(),

								'password'	=>	'$2y$10$92IXUNpkjO0rOQ5byMi.Ye4oKoEa3Ro9llC/.og/at2.uheWG/igi',	//	password

								'remember_token'	=>	Str::random(10),

];

});

Within	the	Closure,	which	serves	as	the	factory	definition,	you	may	return	the	default	test	values	of	all
attributes	on	the	model.	The	Closure	will	receive	an	instance	of	the	Faker	PHP	library,	which	allows	you	to
conveniently	generate	various	kinds	of	random	data	for	testing.

You	may	also	create	additional	factory	files	for	each	model	for	better	organization.	For	example,	you	could
create	UserFactory.php	and	CommentFactory.php	files	within	your	database/factories	directory.	All	of	the	files
within	the	factories	directory	will	automatically	be	loaded	by	Laravel.

TIP	You	can	set	the	Faker	locale	by	adding	a	faker_locale	option	to	your	config/app.php	configuration
file.

Extending	Factories

If	you	have	extended	a	model,	you	may	wish	to	extend	its	factory	as	well	in	order	to	utilize	the	child	model's
factory	attributes	during	testing	and	seeding.	To	accomplish	this,	you	may	call	the	factory	builder's	raw	method
to	obtain	the	raw	array	of	attributes	from	any	given	factory:

$factory->define(App\Admin::class,	function	(Faker\Generator	$faker)	{

				return	factory(App\User::class)->raw([

								//	...

]);

});

Factory	States

States	allow	you	to	define	discrete	modifications	that	can	be	applied	to	your	model	factories	in	any

Laravel	Documentation	-	7.x	/	Database 525

https://github.com/fzaninotto/Faker

combination.	For	example,	your	User	model	might	have	a	delinquent	state	that	modifies	one	of	its	default
attribute	values.	You	may	define	your	state	transformations	using	the	state	method.	For	simple	states,	you	may
pass	an	array	of	attribute	modifications:

$factory->state(App\User::class,	'delinquent',	[

				'account_status'	=>	'delinquent',

]);

If	your	state	requires	calculation	or	a	$faker	instance,	you	may	use	a	Closure	to	calculate	the	state's	attribute
modifications:

$factory->state(App\User::class,	'address',	function	($faker)	{

				return	[

								'address'	=>	$faker->address,

];

});

Factory	Callbacks

Factory	callbacks	are	registered	using	the	afterMaking	and	afterCreating	methods,	and	allow	you	to	perform
additional	tasks	after	making	or	creating	a	model.	For	example,	you	may	use	callbacks	to	relate	additional
models	to	the	created	model:

$factory->afterMaking(App\User::class,	function	($user,	$faker)	{

				//	...

});

$factory->afterCreating(App\User::class,	function	($user,	$faker)	{

				$user->accounts()->save(factory(App\Account::class)->make());

});

You	may	also	define	callbacks	for	factory	states:

$factory->afterMakingState(App\User::class,	'delinquent',	function	($user,	$faker)	{

				//	...

});

$factory->afterCreatingState(App\User::class,	'delinquent',	function	($user,	$faker)	{

				//	...

});

Using	Factories

Creating	Models

Once	you	have	defined	your	factories,	you	may	use	the	global	factory	function	in	your	feature	tests	or	seed
files	to	generate	model	instances.	So,	let's	take	a	look	at	a	few	examples	of	creating	models.	First,	we'll	use	the	
make	method	to	create	models	but	not	save	them	to	the	database:

public	function	testDatabase()

{

				$user	=	factory(App\User::class)->make();

				//	Use	model	in	tests...

}

You	may	also	create	a	Collection	of	many	models	or	create	models	of	a	given	type:

//	Create	three	App\User	instances...

$users	=	factory(App\User::class,	3)->make();

Applying	States

You	may	also	apply	any	of	your	states	to	the	models.	If	you	would	like	to	apply	multiple	state	transformations
to	the	models,	you	should	specify	the	name	of	each	state	you	would	like	to	apply:

$users	=	factory(App\User::class,	5)->states('delinquent')->make();

Laravel	Documentation	-	7.x	/	Database 526

$users	=	factory(App\User::class,	5)->states('premium',	'delinquent')->make();

Overriding	Attributes

If	you	would	like	to	override	some	of	the	default	values	of	your	models,	you	may	pass	an	array	of	values	to	the	
make	method.	Only	the	specified	values	will	be	replaced	while	the	rest	of	the	values	remain	set	to	their	default
values	as	specified	by	the	factory:

$user	=	factory(App\User::class)->make([

				'name'	=>	'Abigail',

]);

TIP	Mass	assignment	protection	is	automatically	disabled	when	creating	models	using	factories.

Persisting	Models

The	create	method	not	only	creates	the	model	instances	but	also	saves	them	to	the	database	using	Eloquent's	
save	method:

public	function	testDatabase()

{

				//	Create	a	single	App\User	instance...

				$user	=	factory(App\User::class)->create();

				//	Create	three	App\User	instances...

				$users	=	factory(App\User::class,	3)->create();

				//	Use	model	in	tests...

}

You	may	override	attributes	on	the	model	by	passing	an	array	to	the	create	method:

$user	=	factory(App\User::class)->create([

				'name'	=>	'Abigail',

]);

Relationships

In	this	example,	we'll	attach	a	relation	to	some	created	models.	When	using	the	create	method	to	create
multiple	models,	an	Eloquent	collection	instance	is	returned,	allowing	you	to	use	any	of	the	convenient
functions	provided	by	the	collection,	such	as	each:

$users	=	factory(App\User::class,	3)

											->create()

											->each(function	($user)	{

																$user->posts()->save(factory(App\Post::class)->make());

												});

You	may	use	the	createMany	method	to	create	multiple	related	models:

$user->posts()->createMany(

				factory(App\Post::class,	3)->make()->toArray()

);

Relations	&	Attribute	Closures

You	may	also	attach	relationships	to	models	in	your	factory	definitions.	For	example,	if	you	would	like	to
create	a	new	User	instance	when	creating	a	Post,	you	may	do	the	following:

$factory->define(App\Post::class,	function	($faker)	{

				return	[

								'title'	=>	$faker->title,

								'content'	=>	$faker->paragraph,

								'user_id'	=>	factory(App\User::class),

];

});

If	the	relationship	depends	on	the	factory	that	defines	it	you	may	provide	a	callback	which	accepts	the
evaluated	attribute	array:

Laravel	Documentation	-	7.x	/	Database 527

$factory->define(App\Post::class,	function	($faker)	{

				return	[

								'title'	=>	$faker->title,

								'content'	=>	$faker->paragraph,

								'user_id'	=>	factory(App\User::class),

								'user_type'	=>	function	(array	$post)	{

												return	App\User::find($post['user_id'])->type;

								},

];

});

Using	Seeds

If	you	would	like	to	use	database	seeders	to	populate	your	database	during	a	feature	test,	you	may	use	the	seed
method.	By	default,	the	seed	method	will	return	the	DatabaseSeeder,	which	should	execute	all	of	your	other
seeders.	Alternatively,	you	pass	a	specific	seeder	class	name	to	the	seed	method:

<?php

namespace	Tests\Feature;

use	Illuminate\Foundation\Testing\RefreshDatabase;

use	Illuminate\Foundation\Testing\WithoutMiddleware;

use	OrderStatusSeeder;

use	Tests\TestCase;

class	ExampleTest	extends	TestCase

{

				use	RefreshDatabase;

				/**

					*	Test	creating	a	new	order.

					*

					*	@return	void

					*/

				public	function	testCreatingANewOrder()

				{

								//	Run	the	DatabaseSeeder...

								$this->seed();

								//	Run	a	single	seeder...

								$this->seed(OrderStatusSeeder::class);

								//	...

				}

}

Available	Assertions

Laravel	provides	several	database	assertions	for	your	PHPUnit	feature	tests:

Method Description
$this->assertDatabaseCount($table,	int	$count); Assert	that	a	table	in	the	database	contains	the	given	amount	of	entries.
$this->assertDatabaseHas($table,	array	$data); Assert	that	a	table	in	the	database	contains	the	given	data.
$this->assertDatabaseMissing($table,	array	$data); Assert	that	a	table	in	the	database	does	not	contain	the	given	data.
$this->assertDeleted($table,	array	$data); Assert	that	the	given	record	has	been	deleted.
$this->assertSoftDeleted($table,	array	$data); Assert	that	the	given	record	has	been	soft	deleted.

For	convenience,	you	may	pass	a	model	to	the	assertDeleted	and	assertSoftDeleted	helpers	to	assert	the	record
was	deleted	or	soft	deleted,	respectively,	from	the	database	based	on	the	model's	primary	key.

For	example,	if	you	are	using	a	model	factory	in	your	test,	you	may	pass	this	model	to	one	of	these	helpers	to
test	your	application	properly	deleted	the	record	from	the	database:

public	function	testDatabase()

{

				$user	=	factory(App\User::class)->create();

				//	Make	call	to	application...

Laravel	Documentation	-	7.x	/	Database 528

https://phpunit.de/

				$this->assertDeleted($user);

}

Laravel	Documentation	-	7.x	/	Database 529

Testing

Mocking
Introduction
Mocking	Objects
Bus	Fake
Event	Fake

Scoped	Event	Fakes
HTTP	Fake
Mail	Fake
Notification	Fake
Queue	Fake
Storage	Fake
Facades

Introduction

When	testing	Laravel	applications,	you	may	wish	to	"mock"	certain	aspects	of	your	application	so	they	are	not
actually	executed	during	a	given	test.	For	example,	when	testing	a	controller	that	dispatches	an	event,	you	may
wish	to	mock	the	event	listeners	so	they	are	not	actually	executed	during	the	test.	This	allows	you	to	only	test
the	controller's	HTTP	response	without	worrying	about	the	execution	of	the	event	listeners,	since	the	event
listeners	can	be	tested	in	their	own	test	case.

Laravel	provides	helpers	for	mocking	events,	jobs,	and	facades	out	of	the	box.	These	helpers	primarily	provide
a	convenience	layer	over	Mockery	so	you	do	not	have	to	manually	make	complicated	Mockery	method	calls.
You	can	also	use	Mockery	or	PHPUnit	to	create	your	own	mocks	or	spies.

Mocking	Objects

When	mocking	an	object	that	is	going	to	be	injected	into	your	application	via	Laravel's	service	container,	you
will	need	to	bind	your	mocked	instance	into	the	container	as	an	instance	binding.	This	will	instruct	the
container	to	use	your	mocked	instance	of	the	object	instead	of	constructing	the	object	itself:

use	App\Service;

use	Mockery;

$this->instance(Service::class,	Mockery::mock(Service::class,	function	($mock)	{

				$mock->shouldReceive('process')->once();

}));

In	order	to	make	this	more	convenient,	you	may	use	the	mock	method,	which	is	provided	by	Laravel's	base	test
case	class:

use	App\Service;

$this->mock(Service::class,	function	($mock)	{

				$mock->shouldReceive('process')->once();

});

You	may	use	the	partialMock	method	when	you	only	need	to	mock	a	few	methods	of	an	object.	The	methods
that	are	not	mocked	will	be	executed	normally	when	called:

use	App\Service;

$this->partialMock(Service::class,	function	($mock)	{

				$mock->shouldReceive('process')->once();

});

Similarly,	if	you	want	to	spy	on	an	object,	Laravel's	base	test	case	class	offers	a	spy	method	as	a	convenient
wrapper	around	the	Mockery::spy	method:

use	App\Service;

Laravel	Documentation	-	7.x	/	Mocking 530

http://docs.mockery.io/en/latest/

$this->spy(Service::class,	function	($mock)	{

				$mock->shouldHaveReceived('process');

});

Bus	Fake

As	an	alternative	to	mocking,	you	may	use	the	Bus	facade's	fake	method	to	prevent	jobs	from	being	dispatched.
When	using	fakes,	assertions	are	made	after	the	code	under	test	is	executed:

<?php

namespace	Tests\Feature;

use	App\Jobs\ShipOrder;

use	Illuminate\Foundation\Testing\RefreshDatabase;

use	Illuminate\Foundation\Testing\WithoutMiddleware;

use	Illuminate\Support\Facades\Bus;

use	Tests\TestCase;

class	ExampleTest	extends	TestCase

{

				public	function	testOrderShipping()

				{

								Bus::fake();

								//	Perform	order	shipping...

								//	Assert	a	specific	type	of	job	was	dispatched	meeting	the	given	truth	test...

								Bus::assertDispatched(function	(ShipOrder	$job)	use	($order)	{

												return	$job->order->id	===	$order->id;

								});

								//	Assert	a	job	was	not	dispatched...

								Bus::assertNotDispatched(AnotherJob::class);

				}

}

Event	Fake

As	an	alternative	to	mocking,	you	may	use	the	Event	facade's	fake	method	to	prevent	all	event	listeners	from
executing.	You	may	then	assert	that	events	were	dispatched	and	even	inspect	the	data	they	received.	When
using	fakes,	assertions	are	made	after	the	code	under	test	is	executed:

<?php

namespace	Tests\Feature;

use	App\Events\OrderFailedToShip;

use	App\Events\OrderShipped;

use	Illuminate\Foundation\Testing\RefreshDatabase;

use	Illuminate\Foundation\Testing\WithoutMiddleware;

use	Illuminate\Support\Facades\Event;

use	Tests\TestCase;

class	ExampleTest	extends	TestCase

{

				/**

					*	Test	order	shipping.

					*/

				public	function	testOrderShipping()

				{

								Event::fake();

								//	Perform	order	shipping...

								//	Assert	a	specific	type	of	event	was	dispatched	meeting	the	given	truth	test...

								Event::assertDispatched(function	(OrderShipped	$event)	use	($order)	{

												return	$event->order->id	===	$order->id;

								});

								//	Assert	an	event	was	dispatched	twice...

								Event::assertDispatched(OrderShipped::class,	2);

								//	Assert	an	event	was	not	dispatched...

								Event::assertNotDispatched(OrderFailedToShip::class);

Laravel	Documentation	-	7.x	/	Mocking 531

				}

}

NOTE	After	calling	Event::fake(),	no	event	listeners	will	be	executed.	So,	if	your	tests	use	model
factories	that	rely	on	events,	such	as	creating	a	UUID	during	a	model's	creating	event,	you	should	call	
Event::fake()	after	using	your	factories.

Faking	A	Subset	Of	Events

If	you	only	want	to	fake	event	listeners	for	a	specific	set	of	events,	you	may	pass	them	to	the	fake	or	fakeFor
method:

/**

	*	Test	order	process.

	*/

public	function	testOrderProcess()

{

				Event::fake([

								OrderCreated::class,

]);

				$order	=	factory(Order::class)->create();

				Event::assertDispatched(OrderCreated::class);

				//	Other	events	are	dispatched	as	normal...

				$order->update([...]);

}

Scoped	Event	Fakes

If	you	only	want	to	fake	event	listeners	for	a	portion	of	your	test,	you	may	use	the	fakeFor	method:

<?php

namespace	Tests\Feature;

use	App\Events\OrderCreated;

use	App\Order;

use	Illuminate\Foundation\Testing\RefreshDatabase;

use	Illuminate\Support\Facades\Event;

use	Illuminate\Foundation\Testing\WithoutMiddleware;

use	Tests\TestCase;

class	ExampleTest	extends	TestCase

{

				/**

					*	Test	order	process.

					*/

				public	function	testOrderProcess()

				{

								$order	=	Event::fakeFor(function	()	{

												$order	=	factory(Order::class)->create();

												Event::assertDispatched(OrderCreated::class);

												return	$order;

								});

								//	Events	are	dispatched	as	normal	and	observers	will	run	...

								$order->update([...]);

				}

}

HTTP	Fake

The	Http	facade's	fake	method	allows	you	to	instruct	the	HTTP	client	to	return	stubbed	/	dummy	responses
when	requests	are	made.	For	more	information	on	faking	outgoing	HTTP	requests,	please	consult	the	HTTP
Client	testing	documentation.

Mail	Fake

Laravel	Documentation	-	7.x	/	Mocking 532

You	may	use	the	Mail	facade's	fake	method	to	prevent	mail	from	being	sent.	You	may	then	assert	that	mailables
were	sent	to	users	and	even	inspect	the	data	they	received.	When	using	fakes,	assertions	are	made	after	the	code
under	test	is	executed:

<?php

namespace	Tests\Feature;

use	App\Mail\OrderShipped;

use	Illuminate\Foundation\Testing\RefreshDatabase;

use	Illuminate\Foundation\Testing\WithoutMiddleware;

use	Illuminate\Support\Facades\Mail;

use	Tests\TestCase;

class	ExampleTest	extends	TestCase

{

				public	function	testOrderShipping()

				{

								Mail::fake();

								//	Assert	that	no	mailables	were	sent...

								Mail::assertNothingSent();

								//	Perform	order	shipping...

								//	Assert	a	specific	type	of	mailable	was	dispatched	meeting	the	given	truth	test...

								Mail::assertSent(function	(OrderShipped	$mail)	use	($order)	{

												return	$mail->order->id	===	$order->id;

								});

								//	Assert	a	message	was	sent	to	the	given	users...

								Mail::assertSent(OrderShipped::class,	function	($mail)	use	($user)	{

												return	$mail->hasTo($user->email)	&&

																			$mail->hasCc('...')	&&

																			$mail->hasBcc('...');

								});

								//	Assert	a	mailable	was	sent	twice...

								Mail::assertSent(OrderShipped::class,	2);

								//	Assert	a	mailable	was	not	sent...

								Mail::assertNotSent(AnotherMailable::class);

				}

}

If	you	are	queueing	mailables	for	delivery	in	the	background,	you	should	use	the	assertQueued	method	instead
of	assertSent:

Mail::assertQueued(...);

Mail::assertNotQueued(...);

Notification	Fake

You	may	use	the	Notification	facade's	fake	method	to	prevent	notifications	from	being	sent.	You	may	then
assert	that	notifications	were	sent	to	users	and	even	inspect	the	data	they	received.	When	using	fakes,	assertions
are	made	after	the	code	under	test	is	executed:

<?php

namespace	Tests\Feature;

use	App\Notifications\OrderShipped;

use	Illuminate\Foundation\Testing\RefreshDatabase;

use	Illuminate\Foundation\Testing\WithoutMiddleware;

use	Illuminate\Notifications\AnonymousNotifiable;

use	Illuminate\Support\Facades\Notification;

use	Tests\TestCase;

class	ExampleTest	extends	TestCase

{

				public	function	testOrderShipping()

				{

								Notification::fake();

								//	Assert	that	no	notifications	were	sent...

Laravel	Documentation	-	7.x	/	Mocking 533

								Notification::assertNothingSent();

								//	Perform	order	shipping...

								//	Assert	a	specific	type	of	notification	was	sent	meeting	the	given	truth	test...

								Notification::assertSentTo(

												$user,

												function	(OrderShipped	$notification,	$channels)	use	($order)	{

																return	$notification->order->id	===	$order->id;

												}

);

								//	Assert	a	notification	was	sent	to	the	given	users...

								Notification::assertSentTo(

												[$user],	OrderShipped::class

);

								//	Assert	a	notification	was	not	sent...

								Notification::assertNotSentTo(

												[$user],	AnotherNotification::class

);

								//	Assert	a	notification	was	sent	via	Notification::route()	method...

								Notification::assertSentTo(

												new	AnonymousNotifiable,	OrderShipped::class

);

								//	Assert	Notification::route()	method	sent	notification	to	the	correct	user...

								Notification::assertSentTo(

												new	AnonymousNotifiable,

												OrderShipped::class,

												function	($notification,	$channels,	$notifiable)	use	($user)	{

																return	$notifiable->routes['mail']	===	$user->email;

												}

);

				}

}

Queue	Fake

As	an	alternative	to	mocking,	you	may	use	the	Queue	facade's	fake	method	to	prevent	jobs	from	being	queued.
You	may	then	assert	that	jobs	were	pushed	to	the	queue	and	even	inspect	the	data	they	received.	When	using
fakes,	assertions	are	made	after	the	code	under	test	is	executed:

<?php

namespace	Tests\Feature;

use	App\Jobs\AnotherJob;

use	App\Jobs\FinalJob;

use	App\Jobs\ShipOrder;

use	Illuminate\Foundation\Testing\RefreshDatabase;

use	Illuminate\Foundation\Testing\WithoutMiddleware;

use	Illuminate\Support\Facades\Queue;

use	Tests\TestCase;

class	ExampleTest	extends	TestCase

{

				public	function	testOrderShipping()

				{

								Queue::fake();

								//	Assert	that	no	jobs	were	pushed...

								Queue::assertNothingPushed();

								//	Perform	order	shipping...

								//	Assert	a	specific	type	of	job	was	pushed	meeting	the	given	truth	test...

								Queue::assertPushed(function	(ShipOrder	$job)	use	($order)	{

												return	$job->order->id	===	$order->id;

								});

								//	Assert	a	job	was	pushed	to	a	given	queue...

								Queue::assertPushedOn('queue-name',	ShipOrder::class);

								//	Assert	a	job	was	pushed	twice...

								Queue::assertPushed(ShipOrder::class,	2);

Laravel	Documentation	-	7.x	/	Mocking 534

								//	Assert	a	job	was	not	pushed...

								Queue::assertNotPushed(AnotherJob::class);

								//	Assert	a	job	was	pushed	with	a	given	chain	of	jobs,	matching	by	class...

								Queue::assertPushedWithChain(ShipOrder::class,	[

												AnotherJob::class,

												FinalJob::class

]);

								//	Assert	a	job	was	pushed	with	a	given	chain	of	jobs,	matching	by	both	class	and	properties...

								Queue::assertPushedWithChain(ShipOrder::class,	[

												new	AnotherJob('foo'),

												new	FinalJob('bar'),

]);

								//	Assert	a	job	was	pushed	without	a	chain	of	jobs...

								Queue::assertPushedWithoutChain(ShipOrder::class);

				}

}

Storage	Fake

The	Storage	facade's	fake	method	allows	you	to	easily	generate	a	fake	disk	that,	combined	with	the	file
generation	utilities	of	the	UploadedFile	class,	greatly	simplifies	the	testing	of	file	uploads.	For	example:

<?php

namespace	Tests\Feature;

use	Illuminate\Foundation\Testing\RefreshDatabase;

use	Illuminate\Foundation\Testing\WithoutMiddleware;

use	Illuminate\Http\UploadedFile;

use	Illuminate\Support\Facades\Storage;

use	Tests\TestCase;

class	ExampleTest	extends	TestCase

{

				public	function	testAlbumUpload()

				{

								Storage::fake('photos');

								$response	=	$this->json('POST',	'/photos',	[

												UploadedFile::fake()->image('photo1.jpg'),

												UploadedFile::fake()->image('photo2.jpg')

]);

								//	Assert	one	or	more	files	were	stored...

								Storage::disk('photos')->assertExists('photo1.jpg');

								Storage::disk('photos')->assertExists(['photo1.jpg',	'photo2.jpg']);

								//	Assert	one	or	more	files	were	not	stored...

								Storage::disk('photos')->assertMissing('missing.jpg');

								Storage::disk('photos')->assertMissing(['missing.jpg',	'non-existing.jpg']);

				}

}

TIP	By	default,	the	fake	method	will	delete	all	files	in	its	temporary	directory.	If	you	would	like	to	keep
these	files,	you	may	use	the	"persistentFake"	method	instead.

Facades

Unlike	traditional	static	method	calls,	facades	may	be	mocked.	This	provides	a	great	advantage	over	traditional
static	methods	and	grants	you	the	same	testability	you	would	have	if	you	were	using	dependency	injection.
When	testing,	you	may	often	want	to	mock	a	call	to	a	Laravel	facade	in	one	of	your	controllers.	For	example,
consider	the	following	controller	action:

<?php

namespace	App\Http\Controllers;

use	Illuminate\Support\Facades\Cache;

class	UserController	extends	Controller

{

Laravel	Documentation	-	7.x	/	Mocking 535

				/**

					*	Show	a	list	of	all	users	of	the	application.

					*

					*	@return	Response

					*/

				public	function	index()

				{

								$value	=	Cache::get('key');

								//

				}

}

We	can	mock	the	call	to	the	Cache	facade	by	using	the	shouldReceive	method,	which	will	return	an	instance	of	a
Mockery	mock.	Since	facades	are	actually	resolved	and	managed	by	the	Laravel	service	container,	they	have
much	more	testability	than	a	typical	static	class.	For	example,	let's	mock	our	call	to	the	Cache	facade's	get
method:

<?php

namespace	Tests\Feature;

use	Illuminate\Foundation\Testing\RefreshDatabase;

use	Illuminate\Foundation\Testing\WithoutMiddleware;

use	Illuminate\Support\Facades\Cache;

use	Tests\TestCase;

class	UserControllerTest	extends	TestCase

{

				public	function	testGetIndex()

				{

								Cache::shouldReceive('get')

																				->once()

																				->with('key')

																				->andReturn('value');

								$response	=	$this->get('/users');

								//	...

				}

}

NOTE	You	should	not	mock	the	Request	facade.	Instead,	pass	the	input	you	desire	into	the	HTTP	helper
methods	such	as	get	and	post	when	running	your	test.	Likewise,	instead	of	mocking	the	Config	facade,	call
the	Config::set	method	in	your	tests.

Laravel	Documentation	-	7.x	/	Mocking 536

https://github.com/padraic/mockery

Official	Packages

Laravel	Cashier
Introduction
Upgrading	Cashier
Installation
Configuration

Billable	Model
API	Keys
Currency	Configuration
Logging

Customers
Retrieving	Customers
Creating	Customers
Updating	Customers
Billing	Portal

Payment	Methods
Storing	Payment	Methods
Retrieving	Payment	Methods
Determining	If	A	User	Has	A	Payment	Method
Updating	The	Default	Payment	Method
Adding	Payment	Methods
Deleting	Payment	Methods

Subscriptions
Creating	Subscriptions
Checking	Subscription	Status
Changing	Plans
Subscription	Quantity
Multiplan	Subscriptions
Subscription	Taxes
Subscription	Anchor	Date
Cancelling	Subscriptions
Resuming	Subscriptions

Subscription	Trials
With	Payment	Method	Up	Front
Without	Payment	Method	Up	Front
Extending	Trials

Handling	Stripe	Webhooks
Defining	Webhook	Event	Handlers
Failed	Subscriptions
Verifying	Webhook	Signatures

Single	Charges
Simple	Charge
Charge	With	Invoice
Refunding	Charges

Invoices
Retrieving	Invoices
Generating	Invoice	PDFs

Handling	Failed	Payments
Strong	Customer	Authentication	(SCA)

Payments	Requiring	Additional	Confirmation
Off-session	Payment	Notifications

Stripe	SDK
Testing

Introduction

Laravel	Cashier	provides	an	expressive,	fluent	interface	to	Stripe's	subscription	billing	services.	It	handles

Laravel	Documentation	-	7.x	/	Official	Packages 537

https://stripe.com

almost	all	of	the	boilerplate	subscription	billing	code	you	are	dreading	writing.	In	addition	to	basic	subscription
management,	Cashier	can	handle	coupons,	swapping	subscription,	subscription	"quantities",	cancellation	grace
periods,	and	even	generate	invoice	PDFs.

Upgrading	Cashier

When	upgrading	to	a	new	version	of	Cashier,	it's	important	that	you	carefully	review	the	upgrade	guide.

NOTE	To	prevent	breaking	changes,	Cashier	uses	a	fixed	Stripe	API	version.	Cashier	12	utilizes	Stripe
API	version	2020-03-02.	The	Stripe	API	version	will	be	updated	on	minor	releases	in	order	to	make	use	of
new	Stripe	features	and	improvements.

Installation

First,	require	the	Cashier	package	for	Stripe	with	Composer:

composer	require	laravel/cashier

NOTE	To	ensure	Cashier	properly	handles	all	Stripe	events,	remember	to	set	up	Cashier's	webhook
handling.

Database	Migrations

The	Cashier	service	provider	registers	its	own	database	migration	directory,	so	remember	to	migrate	your
database	after	installing	the	package.	The	Cashier	migrations	will	add	several	columns	to	your	users	table	as
well	as	create	a	new	subscriptions	table	to	hold	all	of	your	customer's	subscriptions:

php	artisan	migrate

If	you	need	to	overwrite	the	migrations	that	ship	with	the	Cashier	package,	you	can	publish	them	using	the	
vendor:publish	Artisan	command:

php	artisan	vendor:publish	--tag="cashier-migrations"

If	you	would	like	to	prevent	Cashier's	migrations	from	running	entirely,	you	may	use	the	ignoreMigrations
provided	by	Cashier.	Typically,	this	method	should	be	called	in	the	register	method	of	your	
AppServiceProvider:

use	Laravel\Cashier\Cashier;

Cashier::ignoreMigrations();

NOTE	Stripe	recommends	that	any	column	used	for	storing	Stripe	identifiers	should	be	case-sensitive.
Therefore,	you	should	ensure	the	column	collation	for	the	stripe_id	column	is	set	to,	for	example,	
utf8_bin	in	MySQL.	More	info	can	be	found	in	the	Stripe	documentation.

Configuration

Billable	Model

Before	using	Cashier,	add	the	Billable	trait	to	your	model	definition.	This	trait	provides	various	methods	to
allow	you	to	perform	common	billing	tasks,	such	as	creating	subscriptions,	applying	coupons,	and	updating
payment	method	information:

use	Laravel\Cashier\Billable;

class	User	extends	Authenticatable

{

				use	Billable;

}

Cashier	assumes	your	Billable	model	will	be	the	App\User	class	that	ships	with	Laravel.	If	you	wish	to	change
this	you	can	specify	a	different	model	in	your	.env	file:

Laravel	Documentation	-	7.x	/	Official	Packages 538

https://github.com/laravel/cashier-stripe/blob/master/UPGRADE.md
https://stripe.com/docs/upgrades#what-changes-does-stripe-consider-to-be-backwards-compatible

CASHIER_MODEL=App\User

NOTE	If	you're	using	a	model	other	than	Laravel's	supplied	App\User	model,	you'll	need	to	publish	and
alter	the	migrations	provided	to	match	your	alternative	model's	table	name.

API	Keys

Next,	you	should	configure	your	Stripe	keys	in	your	.env	file.	You	can	retrieve	your	Stripe	API	keys	from	the
Stripe	control	panel.

STRIPE_KEY=your-stripe-key

STRIPE_SECRET=your-stripe-secret

Currency	Configuration

The	default	Cashier	currency	is	United	States	Dollars	(USD).	You	can	change	the	default	currency	by	setting
the	CASHIER_CURRENCY	environment	variable:

CASHIER_CURRENCY=eur

In	addition	to	configuring	Cashier's	currency,	you	may	also	specify	a	locale	to	be	used	when	formatting	money
values	for	display	on	invoices.	Internally,	Cashier	utilizes	PHP's	NumberFormatter	class	to	set	the	currency
locale:

CASHIER_CURRENCY_LOCALE=nl_BE

NOTE	In	order	to	use	locales	other	than	en,	ensure	the	ext-intl	PHP	extension	is	installed	and	configured
on	your	server.

Logging

Cashier	allows	you	to	specify	the	log	channel	to	be	used	when	logging	all	Stripe	related	exceptions.	You	may
specify	the	log	channel	using	the	CASHIER_LOGGER	environment	variable:

CASHIER_LOGGER=stack

Customers

Retrieving	Customers

You	can	retrieve	a	customer	by	their	Stripe	ID	using	the	Cashier::findBillable	method.	This	will	return	an
instance	of	the	Billable	model:

use	Laravel\Cashier\Cashier;

$user	=	Cashier::findBillable($stripeId);

Creating	Customers

Occasionally,	you	may	wish	to	create	a	Stripe	customer	without	beginning	a	subscription.	You	may	accomplish
this	using	the	createAsStripeCustomer	method:

$stripeCustomer	=	$user->createAsStripeCustomer();

Once	the	customer	has	been	created	in	Stripe,	you	may	begin	a	subscription	at	a	later	date.	You	can	also	use	an
optional	$options	array	to	pass	in	any	additional	parameters	which	are	supported	by	the	Stripe	API:

$stripeCustomer	=	$user->createAsStripeCustomer($options);

You	may	use	the	asStripeCustomer	method	if	you	want	to	return	the	customer	object	if	the	billable	entity	is
already	a	customer	within	Stripe:

$stripeCustomer	=	$user->asStripeCustomer();

Laravel	Documentation	-	7.x	/	Official	Packages 539

https://www.php.net/manual/en/class.numberformatter.php

The	createOrGetStripeCustomer	method	may	be	used	if	you	want	to	return	the	customer	object	but	are	not	sure
whether	the	billable	entity	is	already	a	customer	within	Stripe.	This	method	will	create	a	new	customer	in	Stripe
if	one	does	not	already	exist:

$stripeCustomer	=	$user->createOrGetStripeCustomer();

Updating	Customers

Occasionally,	you	may	wish	to	update	the	Stripe	customer	directly	with	additional	information.	You	may
accomplish	this	using	the	updateStripeCustomer	method:

$stripeCustomer	=	$user->updateStripeCustomer($options);

Billing	Portal

Stripe	offers	an	easy	way	to	set	up	a	billing	portal	so	your	customer	can	manage	their	subscription,	payment
methods,	and	view	their	billing	history.	You	can	redirect	your	users	to	the	billing	portal	using	the	
redirectToBillingPortal	method	from	a	controller	or	route:

use	Illuminate\Http\Request;

public	function	billingPortal(Request	$request)

{

				return	$request->user()->redirectToBillingPortal();

}

By	default,	when	the	user	is	finished	managing	their	subscription,	they	can	return	to	the	home	route	of	your
application.	You	may	provide	a	custom	URL	the	user	should	return	to	by	passing	the	URL	as	an	argument	to	the
redirectToBillingPortal	method:

use	Illuminate\Http\Request;

public	function	billingPortal(Request	$request)

{

				return	$request->user()->redirectToBillingPortal(

								route('billing')

);

}

If	you	would	like	to	only	generate	the	URL	to	the	billing	portal,	you	may	use	the	billingPortalUrl	method:

$url	=	$user->billingPortalUrl(route('billing'));

Payment	Methods

Storing	Payment	Methods

In	order	to	create	subscriptions	or	perform	"one	off"	charges	with	Stripe,	you	will	need	to	store	a	payment
method	and	retrieve	its	identifier	from	Stripe.	The	approach	used	to	accomplish	differs	based	on	whether	you
plan	to	use	the	payment	method	for	subscriptions	or	single	charges,	so	we	will	examine	both	below.

Payment	Methods	For	Subscriptions

When	storing	credit	cards	to	a	customer	for	future	use,	the	Stripe	Setup	Intents	API	must	be	used	to	securely
gather	the	customer's	payment	method	details.	A	"Setup	Intent"	indicates	to	Stripe	the	intention	to	charge	a
customer's	payment	method.	Cashier's	Billable	trait	includes	the	createSetupIntent	to	easily	create	a	new	Setup
Intent.	You	should	call	this	method	from	the	route	or	controller	that	will	render	the	form	which	gathers	your
customer's	payment	method	details:

return	view('update-payment-method',	[

				'intent'	=>	$user->createSetupIntent()

]);

After	you	have	created	the	Setup	Intent	and	passed	it	to	the	view,	you	should	attach	its	secret	to	the	element	that
will	gather	the	payment	method.	For	example,	consider	this	"update	payment	method"	form:

Laravel	Documentation	-	7.x	/	Official	Packages 540

https://stripe.com/docs/billing/subscriptions/customer-portal

<input	id="card-holder-name"	type="text">

<!--	Stripe	Elements	Placeholder	-->

PaymentActionRequired:	this	indicates	that	Stripe	requires	extra	verification	in	order	to	confirm	and
process	a	payment.
PaymentFailure:	this	indicates	that	a	payment	failed	for	various	other	reasons,	such	as	being	out	of
available	funds.

Strong	Customer	Authentication

If	your	business	is	based	in	Europe	you	will	need	to	abide	by	the	Strong	Customer	Authentication	(SCA)
regulations.	These	regulations	were	imposed	in	September	2019	by	the	European	Union	to	prevent	payment
fraud.	Luckily,	Stripe	and	Cashier	are	prepared	for	building	SCA	compliant	applications.

NOTE	Before	getting	started,	review	Stripe's	guide	on	PSD2	and	SCA	as	well	as	their	documentation	on
the	new	SCA	APIs.

Payments	Requiring	Additional	Confirmation

SCA	regulations	often	require	extra	verification	in	order	to	confirm	and	process	a	payment.	When	this	happens,
Cashier	will	throw	a	PaymentActionRequired	exception	that	informs	you	that	this	extra	verification	is	needed.
More	info	on	how	to	handle	these	exceptions	be	found	here.

Incomplete	and	Past	Due	State

When	a	payment	needs	additional	confirmation,	the	subscription	will	remain	in	an	incomplete	or	past_due	state
as	indicated	by	its	stripe_status	database	column.	Cashier	will	automatically	activate	the	customer's
subscription	via	a	webhook	as	soon	as	payment	confirmation	is	complete.

For	more	information	on	incomplete	and	past_due	states,	please	refer	to	our	additional	documentation.

Off-Session	Payment	Notifications

Since	SCA	regulations	require	customers	to	occasionally	verify	their	payment	details	even	while	their
subscription	is	active,	Cashier	can	send	a	payment	notification	to	the	customer	when	off-session	payment
confirmation	is	required.	For	example,	this	may	occur	when	a	subscription	is	renewing.	Cashier's	payment
notification	can	be	enabled	by	setting	the	CASHIER_PAYMENT_NOTIFICATION	environment	variable	to	a	notification
class.	By	default,	this	notification	is	disabled.	Of	course,	Cashier	includes	a	notification	class	you	may	use	for
this	purpose,	but	you	are	free	to	provide	your	own	notification	class	if	desired:

CASHIER_PAYMENT_NOTIFICATION=Laravel\Cashier\Notifications\ConfirmPayment

To	ensure	that	off-session	payment	confirmation	notifications	are	delivered,	verify	that	Stripe	webhooks	are
configured	for	your	application	and	the	invoice.payment_action_required	webhook	is	enabled	in	your	Stripe
dashboard.	In	addition,	your	Billable	model	should	also	use	Laravel's	Illuminate\Notifications\Notifiable
trait.

NOTE	Notifications	will	be	sent	even	when	customers	are	manually	making	a	payment	that	requires
additional	confirmation.	Unfortunately,	there	is	no	way	for	Stripe	to	know	that	the	payment	was	done
manually	or	"off-session".	But,	a	customer	will	simply	see	a	"Payment	Successful"	message	if	they	visit
the	payment	page	after	already	confirming	their	payment.	The	customer	will	not	be	allowed	to	accidentally
confirm	the	same	payment	twice	and	incur	an	accidental	second	charge.

Stripe	SDK

Many	of	Cashier's	objects	are	wrappers	around	Stripe	SDK	objects.	If	you	would	like	to	interact	with	the	Stripe
objects	directly,	you	may	conveniently	retrieve	them	using	the	asStripe	method:

$stripeSubscription	=	$subscription->asStripeSubscription();

Laravel	Documentation	-	7.x	/	Official	Packages 541

https://stripe.com/guides/strong-customer-authentication
https://stripe.com/docs/strong-customer-authentication

$stripeSubscription->application_fee_percent	=	5;

$stripeSubscription->save();

You	may	also	use	the	updateStripeSubscription	method	to	update	the	Stripe	subscription	directly:

$subscription->updateStripeSubscription(['application_fee_percent'	=>	5]);

Testing

When	testing	an	application	that	uses	Cashier,	you	may	mock	the	actual	HTTP	requests	to	the	Stripe	API;
however,	this	requires	you	to	partially	re-implement	Cashier's	own	behavior.	Therefore,	we	recommend
allowing	your	tests	to	hit	the	actual	Stripe	API.	While	this	is	slower,	it	provides	more	confidence	that	your
application	is	working	as	expected	and	any	slow	tests	may	be	placed	within	their	own	PHPUnit	testing	group.

When	testing,	remember	that	that	Cashier	itself	already	has	a	great	test	suite,	so	you	should	only	focus	on
testing	the	subscription	and	payment	flow	of	your	own	application	and	not	every	underlying	Cashier	behavior.

To	get	started,	add	the	testing	version	of	your	Stripe	secret	to	your	phpunit.xml	file:

<env	name="STRIPE_SECRET"	value="sk_test_<your-key>"/>

Now,	whenever	you	interact	with	Cashier	while	testing,	it	will	send	actual	API	requests	to	your	Stripe	testing
environment.	For	convenience,	you	should	pre-fill	your	Stripe	testing	account	with	subscriptions	/	plans	that
you	may	then	use	during	testing.

TIP	In	order	to	test	a	variety	of	billing	scenarios,	such	as	credit	card	denials	and	failures,	you	may	use	the
vast	range	of	testing	card	numbers	and	tokens	provided	by	Stripe.

Laravel	Documentation	-	7.x	/	Official	Packages 542

https://stripe.com/docs/testing

Official	Packages

Laravel	Cashier	Paddle
Introduction
Upgrading	Cashier
Installation
Configuration

Billable	Model
API	Keys
Paddle	JS
Currency	Configuration

Core	Concepts
Pay	Links
Inline	Checkout
User	Identification

Prices
Customers

Customer	Defaults
Subscriptions

Creating	Subscriptions
Checking	Subscription	Status
Subscription	Single	Charges
Updating	Payment	Information
Changing	Plans
Subscription	Quantity
Pausing	Subscriptions
Cancelling	Subscriptions

Subscription	Trials
With	Payment	Method	Up	Front
Without	Payment	Method	Up	Front

Handling	Paddle	Webhooks
Defining	Webhook	Event	Handlers
Failed	Subscriptions
Verifying	Webhook	Signatures

Single	Charges
Simple	Charge
Charging	Products
Refunding	Orders

Receipts
Past	&	Upcoming	Payments

Handling	Failed	Payments
Testing

Introduction

Laravel	Cashier	Paddle	provides	an	expressive,	fluent	interface	to	Paddle's	subscription	billing	services.	It
handles	almost	all	of	the	boilerplate	subscription	billing	code	you	are	dreading.	In	addition	to	basic	subscription
management,	Cashier	can	handle:	coupons,	swapping	subscription,	subscription	"quantities",	cancellation	grace
periods,	and	more.

While	working	with	Cashier	we	recommend	you	also	refer	to	Paddle's	user	guides	and	API	documentation.

Upgrading	Cashier

When	upgrading	to	a	new	version	of	Cashier,	it's	important	that	you	carefully	review	the	upgrade	guide.

Installation

Laravel	Documentation	-	7.x	/	Cashier	(Paddle) 543

https://paddle.com
https://developer.paddle.com/guides
https://developer.paddle.com/api-reference/intro
https://github.com/laravel/cashier-paddle/blob/master/UPGRADE.md

First,	require	the	Cashier	package	for	Paddle	with	Composer:

composer	require	laravel/cashier-paddle

NOTE	To	ensure	Cashier	properly	handles	all	Paddle	events,	remember	to	set	up	Cashier's	webhook
handling.

Database	Migrations

The	Cashier	service	provider	registers	its	own	database	migration	directory,	so	remember	to	migrate	your
database	after	installing	the	package.	The	Cashier	migrations	will	create	a	new	customers	table.	In	addition,	a
new	subscriptions	table	will	be	created	to	store	all	of	your	customer's	subscriptions.	Finally,	a	new	receipts
table	will	be	created	to	store	all	of	your	receipt	information:

php	artisan	migrate

If	you	need	to	overwrite	the	migrations	that	ship	with	the	Cashier	package,	you	can	publish	them	using	the	
vendor:publish	Artisan	command:

php	artisan	vendor:publish	--tag="cashier-migrations"

If	you	would	like	to	prevent	Cashier's	migrations	from	running	entirely,	you	may	use	the	ignoreMigrations
provided	by	Cashier.	Typically,	this	method	should	be	called	in	the	register	method	of	your	
AppServiceProvider:

use	Laravel\Paddle\Cashier;

Cashier::ignoreMigrations();

Configuration

Billable	Model

Before	using	Cashier,	you	must	add	the	Billable	trait	to	your	user	model	definition.	This	trait	provides	various
methods	to	allow	you	to	perform	common	billing	tasks,	such	as	creating	subscriptions,	applying	coupons	and
updating	payment	method	information:

use	Laravel\Paddle\Billable;

class	User	extends	Authenticatable

{

				use	Billable;

}

If	you	have	billable	entities	that	are	not	users,	you	may	also	add	the	trait	to	those	classes:

use	Laravel\Paddle\Billable;

class	Team	extends	Model

{

				use	Billable;

}

API	Keys

Next,	you	should	configure	your	Paddle	keys	in	your	.env	file.	You	can	retrieve	your	Paddle	API	keys	from	the
Paddle	control	panel:

PADDLE_VENDOR_ID=your-paddle-vendor-id

PADDLE_VENDOR_AUTH_CODE=your-paddle-vendor-auth-code

PADDLE_PUBLIC_KEY="your-paddle-public-key"

Paddle	JS

Paddle	relies	on	its	own	JavaScript	library	to	initiate	the	Paddle	checkout	widget.	You	can	load	the	JavaScript

Laravel	Documentation	-	7.x	/	Cashier	(Paddle) 544

library	by	placing	the	@paddleJS	directive	right	before	your	application	layout's	closing	</head>	tag:

<head>

				...

				@paddleJS

</head>

Currency	Configuration

The	default	Cashier	currency	is	United	States	Dollars	(USD).	You	can	change	the	default	currency	by	setting
the	CASHIER_CURRENCY	environment	variable:

CASHIER_CURRENCY=EUR

In	addition	to	configuring	Cashier's	currency,	you	may	also	specify	a	locale	to	be	used	when	formatting	money
values	for	display	on	invoices.	Internally,	Cashier	utilizes	PHP's	NumberFormatter	class	to	set	the	currency
locale:

CASHIER_CURRENCY_LOCALE=nl_BE

NOTE	In	order	to	use	locales	other	than	en,	ensure	the	ext-intl	PHP	extension	is	installed	and	configured
on	your	server.

Core	Concepts

Pay	Links

Paddle	lacks	an	extensive	CRUD	API	to	perform	state	changes.	Therefore,	most	interactions	with	Paddle	are
done	through	its	checkout	widget.	Before	we	can	display	the	checkout	widget,	we	will	generate	a	"pay	link"
using	Cashier:

$user	=	User::find(1);

$payLink	=	$user->newSubscription('default',	$premium	=	34567)

				->returnTo(route('home'))

				->create();

return	view('billing',	['payLink'	=>	$payLink]);

Cashier	includes	a	paddle-button	Blade	component.	We	may	pass	the	pay	link	URL	to	this	component	as	a
"prop".	When	this	button	is	clicked,	Paddle's	checkout	widget	will	be	displayed:

<x-paddle-button	:url="$payLink"	class="px-8	py-4">

				Subscribe

</x-paddle-button>

By	default,	this	will	display	a	button	with	the	standard	Paddle	styling.	You	can	remove	all	Paddle	styling	by
adding	the	data-theme="none"	attribute	to	the	component:

<x-paddle-button	:url="$payLink"	class="px-8	py-4"	data-theme="none">

				Subscribe

</x-paddle-button>

The	Paddle	checkout	widget	is	asynchronous.	Once	the	user	creates	or	updates	a	subscription	within	the	widget,
Paddle	will	send	our	application	webhooks	so	that	we	may	properly	update	the	subscription	state	in	our	own
database.	Therefore,	it's	important	that	you	properly	set	up	webhooks	to	accommodate	for	state	changes	from
Paddle.

After	a	subscription	state	change,	the	delay	for	receiving	the	corresponding	webhook	is	typically	minimal	but
you	should	account	for	this	in	your	application	by	considering	that	your	user's	subscription	might	not	be
immediately	available	after	completing	the	checkout.

For	more	information,	you	may	review	the	Paddle	API	documentation	on	pay	link	generation.

Inline	Checkout

Laravel	Documentation	-	7.x	/	Cashier	(Paddle) 545

https://www.php.net/manual/en/class.numberformatter.php
https://developer.paddle.com/guides/how-tos/checkout/paddle-checkout
https://developer.paddle.com/api-reference/product-api/pay-links/createpaylink

If	you	don't	want	to	make	use	of	the	"overlay"	style	checkout	widget,	Paddle	also	has	an	option	to	display	the
widget	inline.	While	this	approach	does	not	allow	you	to	adjust	any	of	the	checkout's	HTML	fields,	it	allows
you	to	embed	the	widget	within	your	application.

To	make	it	easy	for	you	to	get	started	with	inline	checkout,	Cashier	includes	a	paddle-checkout	Blade
component.	To	get	started,	you	should	generate	a	pay	link	and	pass	the	pay	link	to	the	component's	override
attribute:

<x-paddle-checkout	:override="$payLink"	class="w-full"	/>

To	adjust	the	height	of	the	inline	checkout	component,	you	may	pass	the	height	attribute	to	the	Blade
component:

<x-paddle-checkout	:override="$payLink"	class="w-full"	height="500"	/>

Inline	Checkout	Without	Pay	Links

Alternatively,	you	may	customize	the	widget	with	custom	options	instead	of	using	a	pay	link:

$options	=	[

				'product'	=>	$productId,

				'title'	=>	'Product	Title',

];

<x-paddle-checkout	:options="$options"	class="w-full"	/>

Please	consult	Paddle's	guide	on	Inline	Checkout	as	well	as	their	Parameter	Reference	for	further	details	on
available	options.

NOTE	If	you	would	like	to	also	use	the	passthrough	option	when	specifying	custom	options,	you	should
provide	a	key	/	value	array	since	Cashier	will	automatically	handle	converting	the	array	to	a	JSON	string.
In	addition,	the	customer_id	passthrough	option	is	reserved	for	internal	Cashier	usage.

User	Identification

In	contrast	to	Stripe,	Paddle	users	are	unique	across	the	whole	of	Paddle,	not	unique	per	Paddle	account.
Because	of	this,	Paddle's	API's	do	not	currently	provide	a	method	to	update	a	user's	details	such	as	their	email
address.	When	generating	pay	links,	Paddle	identifies	users	using	the	customer_email	parameter.	When	creating
a	subscription,	Paddle	will	try	to	match	the	user	provided	email	to	an	existing	Paddle	user.

In	light	of	this	behavior,	there	are	some	important	things	to	keep	in	mind	when	using	Cashier	and	Paddle.	First,
you	should	be	aware	that	even	though	subscriptions	in	Cashier	are	tied	to	the	same	application	user,	they	could
be	tied	to	different	users	within	Paddle's	internal	systems.	Secondly,	each	subscription	has	its	own
connected	payment	method	information	and	could	also	have	different	email	addresses	within	Paddle's	internal
systems	(depending	on	which	email	was	assigned	to	the	user	when	the	subscription	was	created).

Therefore,	when	displaying	subscriptions	you	should	always	inform	the	user	which	email	address	or	payment
method	information	is	connected	to	the	subscription	on	a	per-subscription	basis.	Retrieving	this	information	can
be	done	with	the	following	methods	on	the	Subscription	model:

$subscription	=	$user->subscription('default');

$customerEmailAddress	=	$subscription->paddleEmail();

$paymentMethod	=	$subscription->paymentMethod();

$cardBrand	=	$subscription->cardBrand();

$cardLastFour	=	$subscription->cardLastFour();

$cardExpirationDate	=	$subscription->cardExpirationDate();

There	is	currently	no	way	to	modify	a	user's	email	address	through	the	Paddle	API.	When	a	user	wants	to
update	their	email	address	within	Paddle,	the	only	way	for	them	to	do	so	is	to	contact	Paddle	customer	support.
When	communicating	with	Paddle,	they	need	to	provide	the	paddleEmail	value	of	the	subscription	to	assist
Paddle	in	updating	the	correct	user.

Prices

Laravel	Documentation	-	7.x	/	Cashier	(Paddle) 546

https://developer.paddle.com/guides/how-tos/checkout/inline-checkout
https://developer.paddle.com/reference/paddle-js/parameters

Paddle	allows	you	to	customize	prices	per	currency,	essentially	allowing	you	to	configure	different	prices	for
different	countries.	Cashier	Paddle	allows	you	to	retrieve	all	of	the	prices	for	a	given	product	using	the	
productPrices	method:

use	Laravel\Paddle\Cashier;

//	Retrieve	prices	for	two	products...

$prices	=	Cashier::productPrices([123,	456]);

The	currency	will	be	determined	based	on	the	IP	address	of	the	request;	however,	you	may	optionally	provide	a
specific	country	to	retrieve	prices	for:

use	Laravel\Paddle\Cashier;

//	Retrieve	prices	for	two	products...

$prices	=	Cashier::productPrices([123,	456],	['customer_country'	=>	'BE']);

After	retrieving	the	prices	you	may	display	them	however	you	wish:

				@foreach	($prices	as	$price)

								{{	$price->product_title	}}	-	{{	$price->price()->gross()	}}

				@endforeach

You	may	also	display	the	net	price	(excludes	tax)	and	display	the	tax	amount	separately:

				@foreach	($prices	as	$price)

								{{	$price->product_title	}}	-	{{	$price->price()->net()	}}	(+	{{	$price->price()->tax()	}}	

tax)

				@endforeach

If	you	retrieved	prices	for	subscription	plans	you	can	display	their	initial	and	recurring	price	separately:

				@foreach	($prices	as	$price)

								{{	$price->product_title	}}	-	Initial:	{{	$price->initialPrice()->gross()	}}	-	Recurring:	{{	

$price->recurringPrice()->gross()	}}

				@endforeach

For	more	information,	check	Paddle's	API	documentation	on	prices.

Customers

If	a	user	is	already	a	customer	and	you	would	like	to	display	the	prices	that	apply	to	that	customer,	you	may	do
so	by	retrieving	the	prices	directly	from	the	customer	instance:

use	App\User;

//	Retrieve	prices	for	two	products...

$prices	=	User::find(1)->productPrices([123,	456]);

Internally,	Cashier	will	use	the	user's	paddleCountry	method	to	retrieve	the	prices	in	their	currency.	So,	for
example,	a	user	living	in	the	United	States	will	see	prices	in	USD	while	a	user	in	Belgium	will	see	prices	in
EUR.	If	no	matching	currency	can	be	found	the	default	currency	of	the	product	will	be	used.	You	can	customize
all	prices	of	a	product	or	subscription	plan	in	the	Paddle	control	panel.

Coupons

You	may	also	choose	to	display	prices	after	a	coupon	reduction.	When	calling	the	productPrices	method,
coupons	may	be	passed	as	a	comma	delimited	string:

use	Laravel\Paddle\Cashier;

$prices	=	Cashier::productPrices([123,	456],	['coupons'	=>	'SUMMERSALE,20PERCENTOFF']);

Then,	display	the	calculated	prices	using	the	price	method:

Laravel	Documentation	-	7.x	/	Cashier	(Paddle) 547

https://developer.paddle.com/api-reference/checkout-api/prices/getprices

				@foreach	($prices	as	$price)

								{{	$price->product_title	}}	-	{{	$price->price()->gross()	}}

				@endforeach

You	may	display	the	original	listed	prices	(without	coupon	discounts)	using	the	listPrice	method:

				@foreach	($prices	as	$price)

								{{	$price->product_title	}}	-	{{	$price->listPrice()->gross()	}}

				@endforeach

NOTE	When	using	the	prices	API,	Paddle	only	allows	to	apply	coupons	to	one-time	purchase	products
and	not	to	subscription	plans.

Customers

Customer	Defaults

Cashier	allows	you	to	set	some	useful	defaults	for	your	customer	when	creating	pay	links.	Setting	these	defaults
allow	you	to	pre-fill	a	customer's	email	address,	country,	and	postcode	so	that	they	can	immediately	move	on	to
the	payment	portion	of	the	checkout	widget.	You	can	set	these	defaults	by	overriding	the	following	methods	on
your	billable	user:

/**

	*	Get	the	customer's	email	address	to	associate	with	Paddle.

	*

	*	@return	string|null

	*/

public	function	paddleEmail()

{

				return	$this->email;

}

/**

	*	Get	the	customer's	country	to	associate	with	Paddle.

	*

	*	This	needs	to	be	a	2	letter	code.	See	the	link	below	for	supported	countries.

	*

	*	@return	string|null

	*	@link	https://developer.paddle.com/reference/platform-parameters/supported-countries

	*/

public	function	paddleCountry()

{

				//

}

/**

	*	Get	the	customer's	postcode	to	associate	with	Paddle.

	*

	*	See	the	link	below	for	countries	which	require	this.

	*

	*	@return	string|null

	*	@link	https://developer.paddle.com/reference/platform-parameters/supported-countries#countries-

requiring-postcode

	*/

public	function	paddlePostcode()

{

				//

}

These	defaults	will	be	used	for	every	action	in	Cashier	that	generates	a	pay	link.

Subscriptions

Creating	Subscriptions

To	create	a	subscription,	first	retrieve	an	instance	of	your	billable	model,	which	typically	will	be	an	instance	of	
App\User.	Once	you	have	retrieved	the	model	instance,	you	may	use	the	newSubscription	method	to	create	the

Laravel	Documentation	-	7.x	/	Cashier	(Paddle) 548

model's	subscription	pay	link:

$user	=	User::find(1);

$payLink	=	$user->newSubscription('default',	$premium	=	12345)

				->returnTo(route('home'))

				->create();

return	view('billing',	['payLink'	=>	$payLink]);

The	first	argument	passed	to	the	newSubscription	method	should	be	the	name	of	the	subscription.	If	your
application	only	offers	a	single	subscription,	you	might	call	this	default	or	primary.	The	second	argument	is	the
specific	plan	the	user	is	subscribing	to.	This	value	should	correspond	to	the	plan's	identifier	in	Paddle.	The	
returnTo	method	accepts	a	URL	that	your	user	will	be	redirected	to	after	they	successfully	complete	the
checkout.

The	create	method	will	create	a	pay	link	which	you	can	use	to	generate	a	payment	button.	The	payment	button
can	be	generated	using	the	paddle-button	Blade	component	that	ships	with	Cashier	Paddle:

<x-paddle-button	:url="$payLink"	class="px-8	py-4">

				Subscribe

</x-paddle-button>

After	the	user	has	finished	their	checkout,	a	subscription_created	webhook	will	be	dispatched	from	Paddle.
Cashier	will	receive	this	webhook	and	setup	the	subscription	for	your	customer.	In	order	to	make	sure	all
webhooks	are	properly	received	and	handled	by	your	application,	ensure	you	have	properly	setup	webhook
handling.

Additional	Details

If	you	would	like	to	specify	additional	customer	or	subscription	details,	you	may	do	so	by	passing	them	as	a
key	/	value	array	to	the	create	method:

$payLink	=	$user->newSubscription('default',	$monthly	=	12345)

				->returnTo(route('home'))

				->create([

								'vat_number'	=>	$vatNumber,

]);

To	learn	more	about	the	additional	fields	supported	by	Paddle,	check	out	Paddle's	documentation	on	generating
pay	links.

Coupons

If	you	would	like	to	apply	a	coupon	when	creating	the	subscription,	you	may	use	the	withCoupon	method:

$payLink	=	$user->newSubscription('default',	$monthly	=	12345)

				->returnTo(route('home'))

				->withCoupon('code')

				->create();

Metadata

You	can	also	pass	an	array	of	metadata	using	the	withMetadata	method:

$payLink	=	$user->newSubscription('default',	$monthly	=	12345)

				->returnTo(route('home'))

				->withMetadata(['key'	=>	'value'])

				->create();

NOTE	When	providing	metadata,	please	avoid	using	subscription_name	as	a	metadata	key.	This	key	is
reserved	for	internal	use	by	Cashier.

Checking	Subscription	Status

Once	a	user	is	subscribed	to	your	application,	you	may	check	their	subscription	status	using	a	variety	of

Laravel	Documentation	-	7.x	/	Cashier	(Paddle) 549

https://developer.paddle.com/api-reference/product-api/pay-links/createpaylink

convenient	methods.	First,	the	subscribed	method	returns	true	if	the	user	has	an	active	subscription,	even	if	the
subscription	is	currently	within	its	trial	period:

if	($user->subscribed('default'))	{

				//

}

The	subscribed	method	also	makes	a	great	candidate	for	a	route	middleware,	allowing	you	to	filter	access	to
routes	and	controllers	based	on	the	user's	subscription	status:

public	function	handle($request,	Closure	$next)

{

				if	($request->user()	&&	!	$request->user()->subscribed('default'))	{

								//	This	user	is	not	a	paying	customer...

								return	redirect('billing');

				}

				return	$next($request);

}

If	you	would	like	to	determine	if	a	user	is	still	within	their	trial	period,	you	may	use	the	onTrial	method.	This
method	can	be	useful	for	displaying	a	warning	to	the	user	that	they	are	still	on	their	trial	period:

if	($user->subscription('default')->onTrial())	{

				//

}

The	subscribedToPlan	method	may	be	used	to	determine	if	the	user	is	subscribed	to	a	given	plan	based	on	a
given	Paddle	plan	ID.	In	this	example,	we	will	determine	if	the	user's	default	subscription	is	actively
subscribed	to	the	monthly	plan:

if	($user->subscribedToPlan($monthly	=	12345,	'default'))	{

				//

}

By	passing	an	array	to	the	subscribedToPlan	method,	you	may	determine	if	the	user's	default	subscription	is
actively	subscribed	to	the	monthly	or	the	yearly	plan:

if	($user->subscribedToPlan([$monthly	=	12345,	$yearly	=	54321],	'default'))	{

				//

}

The	recurring	method	may	be	used	to	determine	if	the	user	is	currently	subscribed	and	is	no	longer	within	their
trial	period:

if	($user->subscription('default')->recurring())	{

				//

}

Cancelled	Subscription	Status

To	determine	if	the	user	was	once	an	active	subscriber,	but	has	cancelled	their	subscription,	you	may	use	the	
cancelled	method:

if	($user->subscription('default')->cancelled())	{

				//

}

You	may	also	determine	if	a	user	has	cancelled	their	subscription,	but	are	still	on	their	"grace	period"	until	the
subscription	fully	expires.	For	example,	if	a	user	cancels	a	subscription	on	March	5th	that	was	originally
scheduled	to	expire	on	March	10th,	the	user	is	on	their	"grace	period"	until	March	10th.	Note	that	the	
subscribed	method	still	returns	true	during	this	time:

if	($user->subscription('default')->onGracePeriod())	{

				//

}

To	determine	if	the	user	has	cancelled	their	subscription	and	is	no	longer	within	their	"grace	period",	you	may
use	the	ended	method:

Laravel	Documentation	-	7.x	/	Cashier	(Paddle) 550

if	($user->subscription('default')->ended())	{

				//

}

Subscription	Scopes

Most	subscription	states	are	also	available	as	query	scopes	so	that	you	may	easily	query	your	database	for
subscriptions	that	are	in	a	given	state:

//	Get	all	active	subscriptions...

$subscriptions	=	Subscription::query()->active()->get();

//	Get	all	of	the	cancelled	subscriptions	for	a	user...

$subscriptions	=	$user->subscriptions()->cancelled()->get();

A	complete	list	of	available	scopes	is	available	below:

Subscription::query()->active();

Subscription::query()->onTrial();

Subscription::query()->notOnTrial();

Subscription::query()->pastDue();

Subscription::query()->recurring();

Subscription::query()->ended();

Subscription::query()->paused();

Subscription::query()->notPaused();

Subscription::query()->onPausedGracePeriod();

Subscription::query()->notOnPausedGracePeriod();

Subscription::query()->cancelled();

Subscription::query()->notCancelled();

Subscription::query()->onGracePeriod();

Subscription::query()->notOnGracePeriod();

Past	Due	Status

If	a	payment	fails	for	a	subscription,	it	will	be	marked	as	past_due.	When	your	subscription	is	in	this	state	it	will
not	be	active	until	the	customer	has	updated	their	payment	information.	You	may	determine	if	a	subscription	is
past	due	using	the	pastDue	method	on	the	subscription	instance:

if	($user->subscription('default')->pastDue())	{

				//

}

When	a	subscription	is	past	due,	you	should	instruct	the	user	to	update	their	payment	information.	You	may
configure	how	past	due	subscriptions	are	handled	in	your	Paddle	subscription	settings.

If	you	would	like	subscriptions	to	still	be	considered	active	when	they	are	past_due,	you	may	use	the	
keepPastDueSubscriptionsActive	method	provided	by	Cashier.	Typically,	this	method	should	be	called	in	the	
register	method	of	your	AppServiceProvider:

use	Laravel\Paddle\Cashier;

/**

	*	Register	any	application	services.

	*

	*	@return	void

	*/

public	function	register()

{

				Cashier::keepPastDueSubscriptionsActive();

}

NOTE	When	a	subscription	is	in	a	past_due	state	it	cannot	be	changed	until	payment	information	has	been
updated.	Therefore,	the	swap	and	updateQuantity	methods	will	throw	an	exception	when	the	subscription	is
in	a	past_due	state.

Subscription	Single	Charges

Subscription	single	charges	allow	you	to	charge	subscribers	with	a	one-time	charge	on	top	of	their
subscriptions:

Laravel	Documentation	-	7.x	/	Cashier	(Paddle) 551

https://vendors.paddle.com/subscription-settings

$response	=	$user->subscription('default')->charge(12.99,	'Support	Add-on');

In	contrast	to	single	charges,	this	method	will	immediately	charge	the	customer's	stored	payment	method	for	the
subscription.	The	charge	amount	is	always	in	the	currency	of	which	the	subscription	currently	is	set	to.

Updating	Payment	Information

Paddle	always	saves	a	payment	method	per	subscription.	If	you	want	to	update	the	default	payment	method	for
a	subscription,	you	should	first	generate	a	subscription	"update	URL"	using	the	updateUrl	method	on	the
subscription	model:

$user	=	App\User::find(1);

$updateUrl	=	$user->subscription('default')->updateUrl();

Then,	you	may	use	the	generated	URL	in	combination	with	Cashier's	provided	paddle-button	Blade	component
to	allow	the	user	to	initiate	the	Paddle	widget	and	update	their	payment	information:

<x-paddle-button	:url="$updateUrl"	class="px-8	py-4">

				Update	Card

</x-paddle-button>

When	a	user	has	finished	updating	their	information,	a	subscription_updated	webhook	will	be	dispatched	by
Paddle	and	the	subscription	details	will	be	updated	in	your	application's	database.

Changing	Plans

After	a	user	has	subscribed	to	your	application,	they	may	occasionally	want	to	change	to	a	new	subscription
plan.	To	swap	a	user	to	a	new	subscription,	you	should	pass	the	Paddle	plan's	identifier	to	the	subscription's	
swap	method:

$user	=	App\User::find(1);

$user->subscription('default')->swap($premium	=	34567);

If	the	user	is	on	trial,	the	trial	period	will	be	maintained.	Also,	if	a	"quantity"	exists	for	the	subscription,	that
quantity	will	also	be	maintained.

If	you	would	like	to	swap	plans	and	cancel	any	trial	period	the	user	is	currently	on,	you	may	use	the	skipTrial
method:

$user->subscription('default')

								->skipTrial()

								->swap($premium	=	34567);

If	you	would	like	to	swap	plans	and	immediately	invoice	the	user	instead	of	waiting	for	their	next	billing	cycle,
you	may	use	the	swapAndInvoice	method:

$user	=	App\User::find(1);

$user->subscription('default')->swapAndInvoice($premium	=	34567);

Prorations

By	default,	Paddle	prorates	charges	when	swapping	between	plans.	The	noProrate	method	may	be	used	to
update	the	subscription's	without	prorating	the	charges:

$user->subscription('default')->noProrate()->swap($premium	=	34567);

Subscription	Quantity

Sometimes	subscriptions	are	affected	by	"quantity".	For	example,	your	application	might	charge	$10	per	month
per	user	on	an	account.	To	easily	increment	or	decrement	your	subscription	quantity,	use	the	incrementQuantity
and	decrementQuantity	methods:

Laravel	Documentation	-	7.x	/	Cashier	(Paddle) 552

$user	=	User::find(1);

$user->subscription('default')->incrementQuantity();

//	Add	five	to	the	subscription's	current	quantity...

$user->subscription('default')->incrementQuantity(5);

$user->subscription('default')->decrementQuantity();

//	Subtract	five	to	the	subscription's	current	quantity...

$user->subscription('default')->decrementQuantity(5);

Alternatively,	you	may	set	a	specific	quantity	using	the	updateQuantity	method:

$user->subscription('default')->updateQuantity(10);

The	noProrate	method	may	be	used	to	update	the	subscription's	quantity	without	prorating	the	charges:

$user->subscription('default')->noProrate()->updateQuantity(10);

Pausing	Subscriptions

To	pause	a	subscription,	call	the	pause	method	on	the	user's	subscription:

$user->subscription('default')->pause();

When	a	subscription	is	paused,	Cashier	will	automatically	set	the	paused_from	column	in	your	database.	This
column	is	used	to	know	when	the	paused	method	should	begin	returning	true.	For	example,	if	a	customer
pauses	a	subscription	on	March	1st,	but	the	subscription	was	not	scheduled	to	recur	until	March	5th,	the	paused
method	will	continue	to	return	false	until	March	5th.

You	may	determine	if	a	user	has	paused	their	subscription	but	are	still	on	their	"grace	period"	using	the	
onPausedGracePeriod	method:

if	($user->subscription('default')->onPausedGracePeriod())	{

				//

}

To	resume	a	paused	a	subscription,	you	may	call	the	unpause	method	on	the	user's	subscription:

$user->subscription('default')->unpause();

NOTE	A	subscription	cannot	be	modified	while	it	is	paused.	If	you	want	to	swap	to	a	different	plan	or
update	quantities	you	must	resume	the	subscription	first.

Cancelling	Subscriptions

To	cancel	a	subscription,	call	the	cancel	method	on	the	user's	subscription:

$user->subscription('default')->cancel();

When	a	subscription	is	cancelled,	Cashier	will	automatically	set	the	ends_at	column	in	your	database.	This
column	is	used	to	know	when	the	subscribed	method	should	begin	returning	false.	For	example,	if	a	customer
cancels	a	subscription	on	March	1st,	but	the	subscription	was	not	scheduled	to	end	until	March	5th,	the	
subscribed	method	will	continue	to	return	true	until	March	5th.

You	may	determine	if	a	user	has	cancelled	their	subscription	but	are	still	on	their	"grace	period"	using	the	
onGracePeriod	method:

if	($user->subscription('default')->onGracePeriod())	{

				//

}

If	you	wish	to	cancel	a	subscription	immediately,	you	may	call	the	cancelNow	method	on	the	user's	subscription:

$user->subscription('default')->cancelNow();

NOTE	Paddle's	subscriptions	cannot	be	resumed	after	cancellation.	If	your	customer	wishes	to	resume

Laravel	Documentation	-	7.x	/	Cashier	(Paddle) 553

their	subscription,	they	will	have	to	subscribe	to	a	new	subscription.

Subscription	Trials

With	Payment	Method	Up	Front

NOTE	While	trialing	and	collecting	payment	method	details	up	front,	Paddle	prevents	any	subscription
changes	such	as	swapping	plans	or	updating	quantities.	If	you	want	to	allow	a	customer	to	swap	plans
during	a	trial	the	subscription	must	be	cancelled	and	recreated.

If	you	would	like	to	offer	trial	periods	to	your	customers	while	still	collecting	payment	method	information	up
front,	you	should	use	the	trialDays	method	when	creating	your	subscription	pay	links:

$user	=	User::find(1);

$payLink	=	$user->newSubscription('default',	$monthly	=	12345)

												->returnTo(route('home'))

												->trialDays(10)

												->create();

return	view('billing',	['payLink'	=>	$payLink]);

This	method	will	set	the	trial	period	ending	date	on	the	subscription	record	within	the	database,	as	well	as
instruct	Paddle	to	not	begin	billing	the	customer	until	after	this	date.

NOTE	If	the	customer's	subscription	is	not	cancelled	before	the	trial	ending	date	they	will	be	charged	as
soon	as	the	trial	expires,	so	you	should	be	sure	to	notify	your	users	of	their	trial	ending	date.

You	may	determine	if	the	user	is	within	their	trial	period	using	either	the	onTrial	method	of	the	user	instance	or
the	onTrial	method	of	the	subscription	instance.	The	two	examples	below	have	identical	behavior:

if	($user->onTrial('default'))	{

				//

}

if	($user->subscription('default')->onTrial())	{

				//

}

Defining	Trial	Days	In	Paddle	/	Cashier

You	may	choose	to	define	how	many	trial	days	your	plan's	receive	in	the	Paddle	dashboard	or	always	pass	them
explicitly	using	Cashier.	If	you	choose	to	define	your	plan's	trial	days	in	Paddle	you	should	be	aware	that	new
subscriptions,	including	new	subscriptions	for	a	customer	that	had	a	subscription	in	the	past,	will	always
receive	a	trial	period	unless	you	explicitly	call	the	trialDays(0)	method.

Without	Payment	Method	Up	Front

If	you	would	like	to	offer	trial	periods	without	collecting	the	user's	payment	method	information	up	front,	you
may	set	the	trial_ends_at	column	on	the	customer	record	attached	to	your	user	to	your	desired	trial	ending
date.	This	is	typically	done	during	user	registration:

$user	=	User::create([

				//	Other	user	properties...

]);

$user->createAsCustomer([

				'trial_ends_at'	=>	now()->addDays(10)

]);

Cashier	refers	to	this	type	of	trial	as	a	"generic	trial",	since	it	is	not	attached	to	any	existing	subscription.	The	
onTrial	method	on	the	User	instance	will	return	true	if	the	current	date	is	not	past	the	value	of	trial_ends_at:

if	($user->onTrial())	{

				//	User	is	within	their	trial	period...

}

Laravel	Documentation	-	7.x	/	Cashier	(Paddle) 554

You	may	also	use	the	onGenericTrial	method	if	you	wish	to	know	specifically	that	the	user	is	within	their
"generic"	trial	period	and	has	not	created	an	actual	subscription	yet:

if	($user->onGenericTrial())	{

				//	User	is	within	their	"generic"	trial	period...

}

Once	you	are	ready	to	create	an	actual	subscription	for	the	user,	you	may	use	the	newSubscription	method	as
usual:

$user	=	User::find(1);

$payLink	=	$user->newSubscription('default',	$monthly	=	12345)

				->returnTo(route('home'))

				->create();

NOTE	There	is	no	way	to	extend	or	modify	a	trial	period	on	a	Paddle	subscription	after	it	has	been
created.

Handling	Paddle	Webhooks

TIP	You	may	use	Valet's	share	command	to	help	test	webhooks	during	local	development.

Paddle	can	notify	your	application	of	a	variety	of	events	via	webhooks.	By	default,	a	route	that	points	to
Cashier's	webhook	controller	is	configured	through	the	Cashier	service	provider.	This	controller	will	handle	all
incoming	webhook	requests.

By	default,	this	controller	will	automatically	handle	cancelling	subscriptions	that	have	too	many	failed	charges
(as	defined	by	your	Paddle	subscription	settings),	subscription	updates,	and	payment	method	changes;	however,
as	we'll	soon	discover,	you	can	extend	this	controller	to	handle	any	webhook	event	you	like.

To	ensure	your	application	can	handle	Paddle	webhooks,	be	sure	to	configure	the	webhook	URL	in	the	Paddle
control	panel.	By	default,	Cashier's	webhook	controller	listens	to	the	/paddle/webhook	URL	path.	The	full	list	of
all	webhooks	you	should	configure	in	the	Paddle	control	panel	are:

Subscription	Created
Subscription	Updated
Subscription	Deleted
Payment	Succeeded
Subscription	Payment	Succeeded

NOTE	Make	sure	you	protect	incoming	requests	with	Cashier's	included	webhook	signature	verification
middleware.

Webhooks	&	CSRF	Protection

Since	Paddle	webhooks	need	to	bypass	Laravel's	CSRF	protection,	be	sure	to	list	the	URI	as	an	exception	in
your	VerifyCsrfToken	middleware	or	list	the	route	outside	of	the	web	middleware	group:

protected	$except	=	[

				'paddle/*',

];

Defining	Webhook	Event	Handlers

Cashier	automatically	handles	subscription	cancellation	on	failed	charges,	but	if	you	have	additional	webhook
events	you	would	like	to	handle,	you	should	extend	the	WebhookController.	Your	method	names	should
correspond	to	Cashier's	expected	convention,	specifically,	methods	should	be	prefixed	with	handle	and	the
"camel	case"	name	of	the	webhook	you	wish	to	handle.	For	example,	if	you	wish	to	handle	the	
payment_succeeded	webhook,	you	should	add	a	handlePaymentSucceeded	method	to	the	controller:

<?php

namespace	App\Http\Controllers;

Laravel	Documentation	-	7.x	/	Cashier	(Paddle) 555

https://laravel.com/docs/{{version}}/valet#sharing-sites
https://vendors.paddle.com/subscription-settings
https://vendors.paddle.com/alerts-webhooks

use	Laravel\Paddle\Http\Controllers\WebhookController	as	CashierController;

class	WebhookController	extends	CashierController

{

				/**

					*	Handle	payment	succeeded.

					*

					*	@param		array		$payload

					*	@return	void

					*/

				public	function	handlePaymentSucceeded($payload)

				{

								//	Handle	The	Event

				}

}

Next,	define	a	route	to	your	Cashier	controller	within	your	routes/web.php	file.	This	will	overwrite	the	route
included	with	Cashier:

Route::post(

				'paddle/webhook',

				'\App\Http\Controllers\WebhookController'

);

Cashier	emits	a	Laravel\Paddle\Events\WebhookReceived	event	when	a	webhook	is	received	and	a	
Laravel\Paddle\Events\WebhookHandled	event	when	a	webhook	was	handled.	Both	events	contain	the	full
payload	of	the	Paddle	webhook.

Cashier	also	emit	events	dedicated	to	the	type	of	the	received	webhook.	In	addition	to	the	full	payload	from
Paddle,	they	also	contain	the	relevant	models	that	were	used	to	process	the	webhook	such	as	the	billable	model,
the	subscription,	or	the	receipt:

PaymentSucceeded

SubscriptionPaymentSucceeded

SubscriptionCreated

SubscriptionUpdated

SubscriptionCancelled

You	can	optionally	also	override	the	default,	built-in	webhook	route	by	setting	the	CASHIER_WEBHOOK	env	variable
in	your	.env	file.	This	value	should	be	the	full	URL	to	your	webhook	route	and	needs	to	match	the	URL	set	in
your	Paddle	control	panel:

CASHIER_WEBHOOK=https://example.com/my-paddle-webhook-url

Failed	Subscriptions

What	if	a	customer's	credit	card	expires?	No	worries	-	Cashier's	Webhook	controller	will	cancel	the	customer's
subscription	for	you.	Failed	payments	will	automatically	be	captured	and	handled	by	the	controller.	The
controller	will	cancel	the	customer's	subscription	when	Paddle	determines	the	subscription	has	failed	(normally
after	three	failed	payment	attempts).

Verifying	Webhook	Signatures

To	secure	your	webhooks,	you	may	use	Paddle's	webhook	signatures.	For	convenience,	Cashier	automatically
includes	a	middleware	which	validates	that	the	incoming	Paddle	webhook	request	is	valid.

To	enable	webhook	verification,	ensure	that	the	PADDLE_PUBLIC_KEY	environment	variable	is	set	in	your	.env	file.
The	public	key	may	be	retrieved	from	your	Paddle	account	dashboard.

Single	Charges

Simple	Charge

If	you	would	like	to	make	a	"one	off"	charge	against	a	customer,	you	may	use	the	charge	method	on	a	billable

Laravel	Documentation	-	7.x	/	Cashier	(Paddle) 556

https://developer.paddle.com/webhook-reference/verifying-webhooks

model	instance	to	generate	a	pay	link	for	the	charge.	The	charge	method	accepts	the	charge	amount	(float)	as	its
first	argument	and	a	charge	description	as	its	second	argument:

$payLink	=	$user->charge(12.99,	'Product	Title');

return	view('pay',	['payLink'	=>	$payLink]);

After	generating	the	pay	link,	you	may	use	Cashier's	provided	paddle-button	Blade	component	to	allow	the	user
to	initiate	the	Paddle	widget	and	complete	the	charge:

<x-paddle-button	:url="$payLink"	class="px-8	py-4">

				Buy

</x-paddle-button>

The	charge	method	accepts	an	array	as	its	third	argument,	allowing	you	to	pass	any	options	you	wish	to	the
underlying	Paddle	pay	link	creation.	Please	consult	the	Paddle	documentation	to	learn	more	about	the	options
available	to	you	when	creating	charges:

$payLink	=	$user->charge(12.99,	'Product	Title',	[

				'custom_option'	=>	$value,

]);

Charges	happen	in	the	currency	specified	in	the	cashier.currency	configuration	option.	By	default,	this	is	set	to
USD.	You	may	override	the	default	currency	by	setting	the	CASHIER_CURRENCY	in	your	.env	file:

CASHIER_CURRENCY=EUR

You	can	also	override	prices	per	currency	using	Paddle's	dynamic	pricing	matching	system.	To	do	so,	pass	an
array	of	prices	instead	of	a	fixed	amount:

$payLink	=	$user->charge([

				'USD:19.99',

				'EUR:15.99',

],	'Product	Title');

Charging	Products

If	you	would	like	to	make	a	"one	off"	charge	against	a	specific	product	configured	within	Paddle,	you	may	use
the	chargeProduct	method	on	a	billable	model	instance	to	generate	a	pay	link:

$payLink	=	$user->chargeProduct($productId);

return	view('pay',	['payLink'	=>	$payLink]);

Then,	you	may	provide	the	pay	link	to	the	paddle-button	component	to	allow	the	user	to	initialize	the	Paddle
widget:

<x-paddle-button	:url="$payLink"	class="px-8	py-4">

				Buy

</x-paddle-button>

The	chargeProduct	method	accepts	an	array	as	its	second	argument,	allowing	you	to	pass	any	options	you	wish
to	the	underlying	Paddle	pay	link	creation.	Please	consult	the	Paddle	documentation	regarding	the	options	that
are	available	to	you	when	creating	charges:

$payLink	=	$user->chargeProduct($productId,	[

				'custom_option'	=>	$value,

]);

Refunding	Orders

If	you	need	to	refund	a	Paddle	order,	you	may	use	the	refund	method.	This	method	accepts	the	Paddle	Order	ID
as	its	first	argument.	You	may	retrieve	receipts	for	a	given	billable	entity	using	the	receipts	method:

$receipt	=	$user->receipts()->first();

$refundRequestId	=	$user->refund($receipt->order_id);

Laravel	Documentation	-	7.x	/	Cashier	(Paddle) 557

https://developer.paddle.com/api-reference/product-api/pay-links/createpaylink
https://developer.paddle.com/api-reference/product-api/pay-links/createpaylink#price-overrides
https://developer.paddle.com/api-reference/product-api/pay-links/createpaylink

You	may	also	optionally	specify	a	specific	amount	to	refund	as	well	as	a	reason	for	the	refund:

$receipt	=	$user->receipts()->first();

$refundRequestId	=	$user->refund(

				$receipt->order_id,	5.00,	'Unused	product	time'

);

TIP	You	can	use	the	$refundRequestId	as	a	reference	for	the	refund	when	contacting	Paddle	support.

Receipts

You	may	easily	retrieve	an	array	of	a	billable	model's	receipts	using	the	receipts	method:

$receipts	=	$user->receipts();

When	listing	the	receipts	for	the	customer,	you	may	use	the	receipt's	helper	methods	to	display	the	relevant
receipt	information.	For	example,	you	may	wish	to	list	every	receipt	in	a	table,	allowing	the	user	to	easily
download	any	of	the	receipts:

<table>

				@foreach	($receipts	as	$receipt)

								<tr>

												<td>{{	$receipt->paid_at->toFormattedDateString()	}}</td>

												<td>{{	$receipt->amount()	}}</td>

												<td>receipt_url	}}"	target="_blank">Download</td>

								</tr>

				@endforeach

</table>

Past	&	Upcoming	Payments

You	may	use	the	lastPayment	and	nextPayment	methods	to	display	a	customer's	past	or	upcoming	payments	for
recurring	subscriptions:

$subscription	=	$user->subscription('default');

$lastPayment	=	$subscription->lastPayment();

$nextPayment	=	$subscription->nextPayment();

Both	of	these	methods	will	return	an	instance	of	Laravel\Paddle\Payment;	however,	nextPayment	will	return	null
when	the	billing	cycle	has	ended	(such	as	when	a	subscription	has	been	cancelled):

Next	payment:	{{	$nextPayment->amount()	}}	due	on	{{	$nextPayment->date()->format('d/m/Y')	}}

Handling	Failed	Payments

Subscription	payments	fail	for	various	reasons,	such	as	expired	cards	or	a	card	having	insufficient	funds.	When
this	happens,	we	recommend	that	you	let	Paddle	handle	payment	failures	for	you.	Specifically,	you	may	setup
Paddle's	automatic	billing	emails	in	your	Paddle	dashboard.

Alternatively,	you	can	perform	more	precise	customization	by	catching	the	subscription_payment_failed
webhook	and	enabling	the	"Subscription	Payment	Failed"	option	in	the	Webhook	settings	of	your	Paddle
dashboard:

<?php

namespace	App\Http\Controllers;

use	Laravel\Paddle\Http\Controllers\WebhookController	as	CashierController;

class	WebhookController	extends	CashierController

{

				/**

					*	Handle	subscription	payment	failed.

					*

					*	@param		array		$payload

					*	@return	void

					*/

Laravel	Documentation	-	7.x	/	Cashier	(Paddle) 558

https://vendors.paddle.com/subscription-settings
https://developer.paddle.com/webhook-reference/subscription-alerts/subscription-payment-failed

				public	function	handleSubscriptionPaymentFailed($payload)

				{

								//	Handle	the	failed	subscription	payment...

				}

}

Testing

Paddle	currently	lacks	a	proper	CRUD	API	so	you	will	need	to	manually	test	your	billing	flow.	Paddle	also
lacks	a	sandboxed	developer	environment	so	any	card	charges	you	make	are	live	charges.	In	order	to	work
around	this,	we	recommend	you	use	coupons	with	a	100%	discount	or	free	products	during	testing.

Laravel	Documentation	-	7.x	/	Cashier	(Paddle) 559

Official	Packages

Laravel	Dusk
Introduction
Installation

Managing	ChromeDriver	Installations
Using	Other	Browsers

Getting	Started
Generating	Tests
Running	Tests
Environment	Handling
Creating	Browsers
Browser	Macros
Authentication
Database	Migrations
Cookies
Taking	A	Screenshot
Storing	Console	Output	To	Disk
Storing	Page	Source	To	Disk

Interacting	With	Elements
Dusk	Selectors
Clicking	Links
Text,	Values,	&	Attributes
Using	Forms
Attaching	Files
Using	The	Keyboard
Using	The	Mouse
JavaScript	Dialogs
Scoping	Selectors
Waiting	For	Elements
Scrolling	An	Element	Into	View
Making	Vue	Assertions

Available	Assertions
Pages

Generating	Pages
Configuring	Pages
Navigating	To	Pages
Shorthand	Selectors
Page	Methods

Components
Generating	Components
Using	Components

Continuous	Integration
CircleCI
Codeship
Heroku	CI
Travis	CI
GitHub	Actions

Introduction

Laravel	Dusk	provides	an	expressive,	easy-to-use	browser	automation	and	testing	API.	By	default,	Dusk	does
not	require	you	to	install	JDK	or	Selenium	on	your	machine.	Instead,	Dusk	uses	a	standalone	ChromeDriver
installation.	However,	you	are	free	to	utilize	any	other	Selenium	compatible	driver	you	wish.

Installation

Laravel	Documentation	-	7.x	/	Dusk 560

https://sites.google.com/a/chromium.org/chromedriver/home

To	get	started,	you	should	add	the	laravel/dusk	Composer	dependency	to	your	project:

composer	require	--dev	laravel/dusk

NOTE	If	you	are	manually	registering	Dusk's	service	provider,	you	should	never	register	it	in	your
production	environment,	as	doing	so	could	lead	to	arbitrary	users	being	able	to	authenticate	with	your
application.

After	installing	the	Dusk	package,	run	the	dusk:install	Artisan	command:

php	artisan	dusk:install

A	Browser	directory	will	be	created	within	your	tests	directory	and	will	contain	an	example	test.	Next,	set	the	
APP_URL	environment	variable	in	your	.env	file.	This	value	should	match	the	URL	you	use	to	access	your
application	in	a	browser.

To	run	your	tests,	use	the	dusk	Artisan	command.	The	dusk	command	accepts	any	argument	that	is	also	accepted
by	the	phpunit	command:

php	artisan	dusk

If	you	had	test	failures	the	last	time	you	ran	the	dusk	command,	you	may	save	time	by	re-running	the	failing
tests	first	using	the	dusk:fails	command:

php	artisan	dusk:fails

Managing	ChromeDriver	Installations

If	you	would	like	to	install	a	different	version	of	ChromeDriver	than	what	is	included	with	Laravel	Dusk,	you
may	use	the	dusk:chrome-driver	command:

#	Install	the	latest	version	of	ChromeDriver	for	your	OS...

php	artisan	dusk:chrome-driver

#	Install	a	given	version	of	ChromeDriver	for	your	OS...

php	artisan	dusk:chrome-driver	74

#	Install	a	given	version	of	ChromeDriver	for	all	supported	OSs...

php	artisan	dusk:chrome-driver	--all

NOTE	Dusk	requires	the	chromedriver	binaries	to	be	executable.	If	you're	having	problems	running	Dusk,
you	should	ensure	the	binaries	are	executable	using	the	following	command:	chmod	-R	0755	
vendor/laravel/dusk/bin/.

Using	Other	Browsers

By	default,	Dusk	uses	Google	Chrome	and	a	standalone	ChromeDriver	installation	to	run	your	browser	tests.
However,	you	may	start	your	own	Selenium	server	and	run	your	tests	against	any	browser	you	wish.

To	get	started,	open	your	tests/DuskTestCase.php	file,	which	is	the	base	Dusk	test	case	for	your	application.
Within	this	file,	you	can	remove	the	call	to	the	startChromeDriver	method.	This	will	stop	Dusk	from
automatically	starting	the	ChromeDriver:

/**

	*	Prepare	for	Dusk	test	execution.

	*

	*	@beforeClass

	*	@return	void

	*/

public	static	function	prepare()

{

				//	static::startChromeDriver();

}

Next,	you	may	modify	the	driver	method	to	connect	to	the	URL	and	port	of	your	choice.	In	addition,	you	may
modify	the	"desired	capabilities"	that	should	be	passed	to	the	WebDriver:

/**

Laravel	Documentation	-	7.x	/	Dusk 561

https://sites.google.com/a/chromium.org/chromedriver/home

	*	Create	the	RemoteWebDriver	instance.

	*

	*	@return	\Facebook\WebDriver\Remote\RemoteWebDriver

	*/

protected	function	driver()

{

				return	RemoteWebDriver::create(

								'http://localhost:4444/wd/hub',	DesiredCapabilities::phantomjs()

);

}

Getting	Started

Generating	Tests

To	generate	a	Dusk	test,	use	the	dusk:make	Artisan	command.	The	generated	test	will	be	placed	in	the	
tests/Browser	directory:

php	artisan	dusk:make	LoginTest

Running	Tests

To	run	your	browser	tests,	use	the	dusk	Artisan	command:

php	artisan	dusk

If	you	had	test	failures	the	last	time	you	ran	the	dusk	command,	you	may	save	time	by	re-running	the	failing
tests	first	using	the	dusk:fails	command:

php	artisan	dusk:fails

The	dusk	command	accepts	any	argument	that	is	normally	accepted	by	the	PHPUnit	test	runner,	allowing	you	to
only	run	the	tests	for	a	given	group,	etc:

php	artisan	dusk	--group=foo

Manually	Starting	ChromeDriver

By	default,	Dusk	will	automatically	attempt	to	start	ChromeDriver.	If	this	does	not	work	for	your	particular
system,	you	may	manually	start	ChromeDriver	before	running	the	dusk	command.	If	you	choose	to	start
ChromeDriver	manually,	you	should	comment	out	the	following	line	of	your	tests/DuskTestCase.php	file:

/**

	*	Prepare	for	Dusk	test	execution.

	*

	*	@beforeClass

	*	@return	void

	*/

public	static	function	prepare()

{

				//	static::startChromeDriver();

}

In	addition,	if	you	start	ChromeDriver	on	a	port	other	than	9515,	you	should	modify	the	driver	method	of	the
same	class:

/**

	*	Create	the	RemoteWebDriver	instance.

	*

	*	@return	\Facebook\WebDriver\Remote\RemoteWebDriver

	*/

protected	function	driver()

{

				return	RemoteWebDriver::create(

								'http://localhost:9515',	DesiredCapabilities::chrome()

);

}

Environment	Handling

Laravel	Documentation	-	7.x	/	Dusk 562

https://phpunit.de/manual/current/en/appendixes.annotations.html#appendixes.annotations.group

To	force	Dusk	to	use	its	own	environment	file	when	running	tests,	create	a	.env.dusk.{environment}	file	in	the
root	of	your	project.	For	example,	if	you	will	be	initiating	the	dusk	command	from	your	local	environment,	you
should	create	a	.env.dusk.local	file.

When	running	tests,	Dusk	will	back-up	your	.env	file	and	rename	your	Dusk	environment	to	.env.	Once	the
tests	have	completed,	your	.env	file	will	be	restored.

Creating	Browsers

To	get	started,	let's	write	a	test	that	verifies	we	can	log	into	our	application.	After	generating	a	test,	we	can
modify	it	to	navigate	to	the	login	page,	enter	some	credentials,	and	click	the	"Login"	button.	To	create	a
browser	instance,	call	the	browse	method:

<?php

namespace	Tests\Browser;

use	App\User;

use	Illuminate\Foundation\Testing\DatabaseMigrations;

use	Laravel\Dusk\Chrome;

use	Tests\DuskTestCase;

class	ExampleTest	extends	DuskTestCase

{

				use	DatabaseMigrations;

				/**

					*	A	basic	browser	test	example.

					*

					*	@return	void

					*/

				public	function	testBasicExample()

				{

								$user	=	factory(User::class)->create([

												'email'	=>	'taylor@laravel.com',

]);

								$this->browse(function	($browser)	use	($user)	{

												$browser->visit('/login')

																				->type('email',	$user->email)

																				->type('password',	'password')

																				->press('Login')

																				->assertPathIs('/home');

								});

				}

}

As	you	can	see	in	the	example	above,	the	browse	method	accepts	a	callback.	A	browser	instance	will
automatically	be	passed	to	this	callback	by	Dusk	and	is	the	main	object	used	to	interact	with	and	make
assertions	against	your	application.

Creating	Multiple	Browsers

Sometimes	you	may	need	multiple	browsers	in	order	to	properly	carry	out	a	test.	For	example,	multiple
browsers	may	be	needed	to	test	a	chat	screen	that	interacts	with	websockets.	To	create	multiple	browsers,	"ask"
for	more	than	one	browser	in	the	signature	of	the	callback	given	to	the	browse	method:

$this->browse(function	($first,	$second)	{

				$first->loginAs(User::find(1))

										->visit('/home')

										->waitForText('Message');

				$second->loginAs(User::find(2))

											->visit('/home')

											->waitForText('Message')

											->type('message',	'Hey	Taylor')

											->press('Send');

				$first->waitForText('Hey	Taylor')

										->assertSee('Jeffrey	Way');

});

Laravel	Documentation	-	7.x	/	Dusk 563

Resizing	Browser	Windows

You	may	use	the	resize	method	to	adjust	the	size	of	the	browser	window:

$browser->resize(1920,	1080);

The	maximize	method	may	be	used	to	maximize	the	browser	window:

$browser->maximize();

The	fitContent	method	will	resize	the	browser	window	to	match	the	size	of	the	content:

$browser->fitContent();

When	a	test	fails,	Dusk	will	automatically	resize	the	browser	to	fit	the	content	prior	to	taking	a	screenshot.	You
may	disable	this	feature	by	calling	the	disableFitOnFailure	method	within	your	test:

$browser->disableFitOnFailure();

You	may	use	the	move	method	to	move	the	browser	window	to	a	different	position	on	your	screen:

$browser->move(100,	100);

Browser	Macros

If	you	would	like	to	define	a	custom	browser	method	that	you	can	re-use	in	a	variety	of	your	tests,	you	may	use
the	macro	method	on	the	Browser	class.	Typically,	you	should	call	this	method	from	a	service	provider's	boot
method:

<?php

namespace	App\Providers;

use	Illuminate\Support\ServiceProvider;

use	Laravel\Dusk\Browser;

class	DuskServiceProvider	extends	ServiceProvider

{

				/**

					*	Register	the	Dusk's	browser	macros.

					*

					*	@return	void

					*/

				public	function	boot()

				{

								Browser::macro('scrollToElement',	function	($element	=	null)	{

												$this->script("$('html,	body').animate({	scrollTop:	$('$element').offset().top	},	0);");

												return	$this;

								});

				}

}

The	macro	function	accepts	a	name	as	its	first	argument,	and	a	Closure	as	its	second.	The	macro's	Closure	will
be	executed	when	calling	the	macro	as	a	method	on	a	Browser	implementation:

$this->browse(function	($browser)	use	($user)	{

				$browser->visit('/pay')

												->scrollToElement('#credit-card-details')

												->assertSee('Enter	Credit	Card	Details');

});

Authentication

Often,	you	will	be	testing	pages	that	require	authentication.	You	can	use	Dusk's	loginAs	method	in	order	to
avoid	interacting	with	the	login	screen	during	every	test.	The	loginAs	method	accepts	a	user	ID	or	user	model
instance:

$this->browse(function	($first,	$second)	{

				$first->loginAs(User::find(1))

Laravel	Documentation	-	7.x	/	Dusk 564

										->visit('/home');

});

NOTE	After	using	the	loginAs	method,	the	user	session	will	be	maintained	for	all	tests	within	the	file.

Database	Migrations

When	your	test	requires	migrations,	like	the	authentication	example	above,	you	should	never	use	the	
RefreshDatabase	trait.	The	RefreshDatabase	trait	leverages	database	transactions	which	will	not	be	applicable
across	HTTP	requests.	Instead,	use	the	DatabaseMigrations	trait:

<?php

namespace	Tests\Browser;

use	App\User;

use	Illuminate\Foundation\Testing\DatabaseMigrations;

use	Laravel\Dusk\Chrome;

use	Tests\DuskTestCase;

class	ExampleTest	extends	DuskTestCase

{

				use	DatabaseMigrations;

}

Cookies

You	may	use	the	cookie	method	to	get	or	set	an	encrypted	cookie's	value:

$browser->cookie('name');

$browser->cookie('name',	'Taylor');

You	may	use	the	plainCookie	method	to	get	or	set	an	unencrypted	cookie's	value:

$browser->plainCookie('name');

$browser->plainCookie('name',	'Taylor');

You	may	use	the	deleteCookie	method	to	delete	the	given	cookie:

$browser->deleteCookie('name');

Taking	A	Screenshot

You	may	use	the	screenshot	method	to	take	a	screenshot	and	store	it	with	the	given	filename.	All	screenshots
will	be	stored	within	the	tests/Browser/screenshots	directory:

$browser->screenshot('filename');

Storing	Console	Output	To	Disk

You	may	use	the	storeConsoleLog	method	to	write	the	console	output	to	disk	with	the	given	filename.	Console
output	will	be	stored	within	the	tests/Browser/console	directory:

$browser->storeConsoleLog('filename');

Storing	Page	Source	To	Disk

You	may	use	the	storeSource	method	to	write	the	page's	current	source	to	disk	with	the	given	filename.	The
page	source	will	be	stored	within	the	tests/Browser/source	directory:

$browser->storeSource('filename');

Interacting	With	Elements

Laravel	Documentation	-	7.x	/	Dusk 565

Dusk	Selectors

Choosing	good	CSS	selectors	for	interacting	with	elements	is	one	of	the	hardest	parts	of	writing	Dusk	tests.
Over	time,	frontend	changes	can	cause	CSS	selectors	like	the	following	to	break	your	tests:

//	HTML...

<button>Login</button>

//	Test...

$browser->click('.login-page	.container	div	>	button');

Dusk	selectors	allow	you	to	focus	on	writing	effective	tests	rather	than	remembering	CSS	selectors.	To	define	a
selector,	add	a	dusk	attribute	to	your	HTML	element.	Then,	prefix	the	selector	with	@	to	manipulate	the	attached
element	within	a	Dusk	test:

//	HTML...

<button	dusk="login-button">Login</button>

//	Test...

$browser->click('@login-button');

Clicking	Links

To	click	a	link,	you	may	use	the	clickLink	method	on	the	browser	instance.	The	clickLink	method	will	click	the
link	that	has	the	given	display	text:

$browser->clickLink($linkText);

You	may	use	the	seeLink	method	to	determine	if	a	link	that	has	the	given	display	text	is	visible	on	the	page:

if	($browser->seeLink($linkText))	{

				//	...

}

NOTE	These	methods	interact	with	jQuery.	If	jQuery	is	not	available	on	the	page,	Dusk	will	automatically
inject	it	into	the	page	so	it	is	available	for	the	test's	duration.

Text,	Values,	&	Attributes

Retrieving	&	Setting	Values

Dusk	provides	several	methods	for	interacting	with	the	current	display	text,	value,	and	attributes	of	elements	on
the	page.	For	example,	to	get	the	"value"	of	an	element	that	matches	a	given	selector,	use	the	value	method:

//	Retrieve	the	value...

$value	=	$browser->value('selector');

//	Set	the	value...

$browser->value('selector',	'value');

You	may	use	the	inputValue	method	to	get	the	"value"	of	an	input	element	that	has	a	given	field	name:

//	Retrieve	the	value	of	an	input	element...

$inputValue	=	$browser->inputValue('field');

Retrieving	Text

The	text	method	may	be	used	to	retrieve	the	display	text	of	an	element	that	matches	the	given	selector:

$text	=	$browser->text('selector');

Retrieving	Attributes

Laravel	Documentation	-	7.x	/	Dusk 566

Finally,	the	attribute	method	may	be	used	to	retrieve	an	attribute	of	an	element	matching	the	given	selector:

$attribute	=	$browser->attribute('selector',	'value');

Using	Forms

Typing	Values

Dusk	provides	a	variety	of	methods	for	interacting	with	forms	and	input	elements.	First,	let's	take	a	look	at	an
example	of	typing	text	into	an	input	field:

$browser->type('email',	'taylor@laravel.com');

Note	that,	although	the	method	accepts	one	if	necessary,	we	are	not	required	to	pass	a	CSS	selector	into	the	type
method.	If	a	CSS	selector	is	not	provided,	Dusk	will	search	for	an	input	field	with	the	given	name	attribute.
Finally,	Dusk	will	attempt	to	find	a	textarea	with	the	given	name	attribute.

To	append	text	to	a	field	without	clearing	its	content,	you	may	use	the	append	method:

$browser->type('tags',	'foo')

								->append('tags',	',	bar,	baz');

You	may	clear	the	value	of	an	input	using	the	clear	method:

$browser->clear('email');

You	can	instruct	Dusk	to	type	slowly	using	the	typeSlowly	method.	By	default,	Dusk	will	pause	for	100
milliseconds	between	key	presses.	To	customize	the	amount	of	time	between	key	presses,	you	may	pass	the
appropriate	number	of	milliseconds	as	the	third	argument	to	the	method:

$browser->typeSlowly('mobile',	'+1	(202)	555-5555');

$browser->typeSlowly('mobile',	'+1	(202)	555-5555',	300);

You	may	use	the	appendSlowly	method	to	append	text	slowly:

$browser->type('tags',	'foo')

								->appendSlowly('tags',	',	bar,	baz');

Dropdowns

To	select	a	value	in	a	dropdown	selection	box,	you	may	use	the	select	method.	Like	the	type	method,	the	
select	method	does	not	require	a	full	CSS	selector.	When	passing	a	value	to	the	select	method,	you	should
pass	the	underlying	option	value	instead	of	the	display	text:

$browser->select('size',	'Large');

You	may	select	a	random	option	by	omitting	the	second	parameter:

$browser->select('size');

Checkboxes

To	"check"	a	checkbox	field,	you	may	use	the	check	method.	Like	many	other	input	related	methods,	a	full	CSS
selector	is	not	required.	If	an	exact	selector	match	can't	be	found,	Dusk	will	search	for	a	checkbox	with	a
matching	name	attribute:

$browser->check('terms');

$browser->uncheck('terms');

Radio	Buttons

To	"select"	a	radio	button	option,	you	may	use	the	radio	method.	Like	many	other	input	related	methods,	a	full
CSS	selector	is	not	required.	If	an	exact	selector	match	can't	be	found,	Dusk	will	search	for	a	radio	with

Laravel	Documentation	-	7.x	/	Dusk 567

matching	name	and	value	attributes:

$browser->radio('version',	'php7');

Attaching	Files

The	attach	method	may	be	used	to	attach	a	file	to	a	file	input	element.	Like	many	other	input	related	methods,
a	full	CSS	selector	is	not	required.	If	an	exact	selector	match	can't	be	found,	Dusk	will	search	for	a	file	input
with	matching	name	attribute:

$browser->attach('photo',	__DIR__.'/photos/me.png');

NOTE	The	attach	function	requires	the	Zip	PHP	extension	to	be	installed	and	enabled	on	your	server.

Using	The	Keyboard

The	keys	method	allows	you	to	provide	more	complex	input	sequences	to	a	given	element	than	normally
allowed	by	the	type	method.	For	example,	you	may	hold	modifier	keys	entering	values.	In	this	example,	the	
shift	key	will	be	held	while	taylor	is	entered	into	the	element	matching	the	given	selector.	After	taylor	is
typed,	otwell	will	be	typed	without	any	modifier	keys:

$browser->keys('selector',	['{shift}',	'taylor'],	'otwell');

You	may	even	send	a	"hot	key"	to	the	primary	CSS	selector	that	contains	your	application:

$browser->keys('.app',	['{command}',	'j']);

TIP	All	modifier	keys	are	wrapped	in	{}	characters,	and	match	the	constants	defined	in	the	
Facebook\WebDriver\WebDriverKeys	class,	which	can	be	found	on	GitHub.

Using	The	Mouse

Clicking	On	Elements

The	click	method	may	be	used	to	"click"	on	an	element	matching	the	given	selector:

$browser->click('.selector');

The	clickAtXPath	method	may	be	used	to	"click"	on	an	element	matching	the	given	XPath	expression:

$browser->clickAtXPath('//div[@class	=	"selector"]');

The	clickAtPoint	method	may	be	used	to	"click"	on	the	topmost	element	at	a	given	pair	of	coordinates	relative
to	the	viewable	area	of	the	browser:

$browser->clickAtPoint(0,	0);

The	doubleClick	method	may	be	used	to	simulate	the	double	"click"	of	a	mouse:

$browser->doubleClick();

The	rightClick	method	may	be	used	to	simulate	the	right	"click"	of	a	mouse:

$browser->rightClick();

$browser->rightClick('.selector');

The	clickAndHold	method	may	be	used	to	simulate	a	mouse	button	being	clicked	and	held	down.	A	subsequent
call	to	the	releaseMouse	method	will	undo	this	behavior	and	release	the	mouse	button:

$browser->clickAndHold()

								->pause(1000)

								->releaseMouse();

Mouseover

Laravel	Documentation	-	7.x	/	Dusk 568

https://github.com/php-webdriver/php-webdriver/blob/master/lib/WebDriverKeys.php

The	mouseover	method	may	be	used	when	you	need	to	move	the	mouse	over	an	element	matching	the	given
selector:

$browser->mouseover('.selector');

Drag	&	Drop

The	drag	method	may	be	used	to	drag	an	element	matching	the	given	selector	to	another	element:

$browser->drag('.from-selector',	'.to-selector');

Or,	you	may	drag	an	element	in	a	single	direction:

$browser->dragLeft('.selector',	10);

$browser->dragRight('.selector',	10);

$browser->dragUp('.selector',	10);

$browser->dragDown('.selector',	10);

Finally,	you	may	drag	an	element	by	a	given	offset:

$browser->dragOffset('.selector',	10,	10);

JavaScript	Dialogs

Dusk	provides	various	methods	to	interact	with	JavaScript	Dialogs:

//	Wait	for	a	dialog	to	appear:

$browser->waitForDialog($seconds	=	null);

//	Assert	that	a	dialog	has	been	displayed	and	that	its	message	matches	the	given	value:

$browser->assertDialogOpened('value');

//	Type	the	given	value	in	an	open	JavaScript	prompt	dialog:

$browser->typeInDialog('Hello	World');

To	close	an	opened	JavaScript	Dialog,	clicking	the	OK	button:

$browser->acceptDialog();

To	close	an	opened	JavaScript	Dialog,	clicking	the	Cancel	button	(for	a	confirmation	dialog	only):

$browser->dismissDialog();

Scoping	Selectors

Sometimes	you	may	wish	to	perform	several	operations	while	scoping	all	of	the	operations	within	a	given
selector.	For	example,	you	may	wish	to	assert	that	some	text	exists	only	within	a	table	and	then	click	a	button
within	that	table.	You	may	use	the	with	method	to	accomplish	this.	All	operations	performed	within	the
callback	given	to	the	with	method	will	be	scoped	to	the	original	selector:

$browser->with('.table',	function	($table)	{

				$table->assertSee('Hello	World')

										->clickLink('Delete');

});

You	may	occasionally	need	to	execute	assertions	outside	of	the	current	scope.	You	may	use	the	elsewhere
method	to	accomplish	this:

	$browser->with('.table',	function	($table)	{

				//	Current	scope	is	`body	.table`...

				$browser->elsewhere('.page-title',	function	($title)	{

								//	Current	scope	is	`body	.page-title`...

								$title->assertSee('Hello	World');

				});

	});

Waiting	For	Elements

Laravel	Documentation	-	7.x	/	Dusk 569

When	testing	applications	that	use	JavaScript	extensively,	it	often	becomes	necessary	to	"wait"	for	certain
elements	or	data	to	be	available	before	proceeding	with	a	test.	Dusk	makes	this	a	cinch.	Using	a	variety	of
methods,	you	may	wait	for	elements	to	be	visible	on	the	page	or	even	wait	until	a	given	JavaScript	expression
evaluates	to	true.

Waiting

If	you	need	to	pause	the	test	for	a	given	number	of	milliseconds,	use	the	pause	method:

$browser->pause(1000);

Waiting	For	Selectors

The	waitFor	method	may	be	used	to	pause	the	execution	of	the	test	until	the	element	matching	the	given	CSS
selector	is	displayed	on	the	page.	By	default,	this	will	pause	the	test	for	a	maximum	of	five	seconds	before
throwing	an	exception.	If	necessary,	you	may	pass	a	custom	timeout	threshold	as	the	second	argument	to	the
method:

//	Wait	a	maximum	of	five	seconds	for	the	selector...

$browser->waitFor('.selector');

//	Wait	a	maximum	of	one	second	for	the	selector...

$browser->waitFor('.selector',	1);

You	may	also	wait	until	the	given	selector	is	missing	from	the	page:

$browser->waitUntilMissing('.selector');

$browser->waitUntilMissing('.selector',	1);

Scoping	Selectors	When	Available

Occasionally,	you	may	wish	to	wait	for	a	given	selector	and	then	interact	with	the	element	matching	the
selector.	For	example,	you	may	wish	to	wait	until	a	modal	window	is	available	and	then	press	the	"OK"	button
within	the	modal.	The	whenAvailable	method	may	be	used	in	this	case.	All	element	operations	performed	within
the	given	callback	will	be	scoped	to	the	original	selector:

$browser->whenAvailable('.modal',	function	($modal)	{

				$modal->assertSee('Hello	World')

										->press('OK');

});

Waiting	For	Text

The	waitForText	method	may	be	used	to	wait	until	the	given	text	is	displayed	on	the	page:

//	Wait	a	maximum	of	five	seconds	for	the	text...

$browser->waitForText('Hello	World');

//	Wait	a	maximum	of	one	second	for	the	text...

$browser->waitForText('Hello	World',	1);

You	may	use	the	waitUntilMissingText	method	to	wait	until	the	displayed	text	has	been	removed	from	the	page:

//	Wait	a	maximum	of	five	seconds	for	the	text	to	be	removed...

$browser->waitUntilMissingText('Hello	World');

//	Wait	a	maximum	of	one	second	for	the	text	to	be	removed...

$browser->waitUntilMissingText('Hello	World',	1);

Waiting	For	Links

The	waitForLink	method	may	be	used	to	wait	until	the	given	link	text	is	displayed	on	the	page:

//	Wait	a	maximum	of	five	seconds	for	the	link...

$browser->waitForLink('Create');

Laravel	Documentation	-	7.x	/	Dusk 570

//	Wait	a	maximum	of	one	second	for	the	link...

$browser->waitForLink('Create',	1);

Waiting	On	The	Page	Location

When	making	a	path	assertion	such	as	$browser->assertPathIs('/home'),	the	assertion	can	fail	if	
window.location.pathname	is	being	updated	asynchronously.	You	may	use	the	waitForLocation	method	to	wait
for	the	location	to	be	a	given	value:

$browser->waitForLocation('/secret');

You	may	also	wait	for	a	named	route's	location:

$browser->waitForRoute($routeName,	$parameters);

Waiting	for	Page	Reloads

If	you	need	to	make	assertions	after	a	page	has	been	reloaded,	use	the	waitForReload	method:

$browser->click('.some-action')

								->waitForReload()

								->assertSee('something');

Waiting	On	JavaScript	Expressions

Sometimes	you	may	wish	to	pause	the	execution	of	a	test	until	a	given	JavaScript	expression	evaluates	to	true.
You	may	easily	accomplish	this	using	the	waitUntil	method.	When	passing	an	expression	to	this	method,	you
do	not	need	to	include	the	return	keyword	or	an	ending	semi-colon:

//	Wait	a	maximum	of	five	seconds	for	the	expression	to	be	true...

$browser->waitUntil('App.dataLoaded');

$browser->waitUntil('App.data.servers.length	>	0');

//	Wait	a	maximum	of	one	second	for	the	expression	to	be	true...

$browser->waitUntil('App.data.servers.length	>	0',	1);

Waiting	On	Vue	Expressions

The	following	methods	may	be	used	to	wait	until	a	given	Vue	component	attribute	has	a	given	value:

//	Wait	until	the	component	attribute	contains	the	given	value...

$browser->waitUntilVue('user.name',	'Taylor',	'@user');

//	Wait	until	the	component	attribute	doesn't	contain	the	given	value...

$browser->waitUntilVueIsNot('user.name',	null,	'@user');

Waiting	With	A	Callback

Many	of	the	"wait"	methods	in	Dusk	rely	on	the	underlying	waitUsing	method.	You	may	use	this	method
directly	to	wait	for	a	given	callback	to	return	true.	The	waitUsing	method	accepts	the	maximum	number	of
seconds	to	wait,	the	interval	at	which	the	Closure	should	be	evaluated,	the	Closure,	and	an	optional	failure
message:

$browser->waitUsing(10,	1,	function	()	use	($something)	{

				return	$something->isReady();

},	"Something	wasn't	ready	in	time.");

Scrolling	An	Element	Into	View

Sometimes	you	may	not	be	able	to	click	on	an	element	because	it	is	outside	of	the	viewable	area	of	the	browser.
The	scrollIntoView	method	will	scroll	the	browser	window	until	the	element	at	the	given	selector	is	within	the
view:

$browser->scrollIntoView('selector')

								->click('selector');

Laravel	Documentation	-	7.x	/	Dusk 571

Making	Vue	Assertions

Dusk	even	allows	you	to	make	assertions	on	the	state	of	Vue	component	data.	For	example,	imagine	your
application	contains	the	following	Vue	component:

//	HTML...

<profile	dusk="profile-component"></profile>

//	Component	Definition...

Vue.component('profile',	{

				template:	'<div>{{	user.name	}}</div>',

				data:	function	()	{

								return	{

												user:	{

																name:	'Taylor'

												}

								};

				}

});

You	may	assert	on	the	state	of	the	Vue	component	like	so:

/**

	*	A	basic	Vue	test	example.

	*

	*	@return	void

	*/

public	function	testVue()

{

				$this->browse(function	(Browser	$browser)	{

								$browser->visit('/')

																->assertVue('user.name',	'Taylor',	'@profile-component');

				});

}

Available	Assertions

Dusk	provides	a	variety	of	assertions	that	you	may	make	against	your	application.	All	of	the	available
assertions	are	documented	in	the	list	below:

assertTitle	assertTitleContains	assertUrlIs	assertSchemeIs	assertSchemeIsNot	assertHostIs	assertHostIsNot
assertPortIs	assertPortIsNot	assertPathBeginsWith	assertPathIs	assertPathIsNot	assertRouteIs
assertQueryStringHas	assertQueryStringMissing	assertFragmentIs	assertFragmentBeginsWith
assertFragmentIsNot	assertHasCookie	assertHasPlainCookie	assertCookieMissing	assertPlainCookieMissing
assertCookieValue	assertPlainCookieValue	assertSee	assertDontSee	assertSeeIn	assertDontSeeIn
assertSourceHas	assertSourceMissing	assertSeeLink	assertDontSeeLink	assertInputValue
assertInputValueIsNot	assertChecked	assertNotChecked	assertRadioSelected	assertRadioNotSelected
assertSelected	assertNotSelected	assertSelectHasOptions	assertSelectMissingOption
assertSelectMissingOptions	assertSelectHasOption	assertValue	assertAttribute	assertAriaAttribute
assertDataAttribute	assertVisible	assertPresent	assertMissing	assertDialogOpened	assertEnabled	assertDisabled
assertButtonEnabled	assertButtonDisabled	assertFocused	assertNotFocused	assertAuthenticated	assertGuest
assertAuthenticatedAs	assertVue	assertVueIsNot	assertVueContains	assertVueDoesNotContain

assertTitle

Assert	that	the	page	title	matches	the	given	text:

$browser->assertTitle($title);

assertTitleContains

Assert	that	the	page	title	contains	the	given	text:

$browser->assertTitleContains($title);

Laravel	Documentation	-	7.x	/	Dusk 572

https://vuejs.org

assertUrlIs

Assert	that	the	current	URL	(without	the	query	string)	matches	the	given	string:

$browser->assertUrlIs($url);

assertSchemeIs

Assert	that	the	current	URL	scheme	matches	the	given	scheme:

$browser->assertSchemeIs($scheme);

assertSchemeIsNot

Assert	that	the	current	URL	scheme	does	not	match	the	given	scheme:

$browser->assertSchemeIsNot($scheme);

assertHostIs

Assert	that	the	current	URL	host	matches	the	given	host:

$browser->assertHostIs($host);

assertHostIsNot

Assert	that	the	current	URL	host	does	not	match	the	given	host:

$browser->assertHostIsNot($host);

assertPortIs

Assert	that	the	current	URL	port	matches	the	given	port:

$browser->assertPortIs($port);

assertPortIsNot

Assert	that	the	current	URL	port	does	not	match	the	given	port:

$browser->assertPortIsNot($port);

assertPathBeginsWith

Assert	that	the	current	URL	path	begins	with	the	given	path:

$browser->assertPathBeginsWith($path);

assertPathIs

Assert	that	the	current	path	matches	the	given	path:

$browser->assertPathIs('/home');

assertPathIsNot

Assert	that	the	current	path	does	not	match	the	given	path:

$browser->assertPathIsNot('/home');

assertRouteIs

Laravel	Documentation	-	7.x	/	Dusk 573

Assert	that	the	current	URL	matches	the	given	named	route's	URL:

$browser->assertRouteIs($name,	$parameters);

assertQueryStringHas

Assert	that	the	given	query	string	parameter	is	present:

$browser->assertQueryStringHas($name);

Assert	that	the	given	query	string	parameter	is	present	and	has	a	given	value:

$browser->assertQueryStringHas($name,	$value);

assertQueryStringMissing

Assert	that	the	given	query	string	parameter	is	missing:

$browser->assertQueryStringMissing($name);

assertFragmentIs

Assert	that	the	current	fragment	matches	the	given	fragment:

$browser->assertFragmentIs('anchor');

assertFragmentBeginsWith

Assert	that	the	current	fragment	begins	with	the	given	fragment:

$browser->assertFragmentBeginsWith('anchor');

assertFragmentIsNot

Assert	that	the	current	fragment	does	not	match	the	given	fragment:

$browser->assertFragmentIsNot('anchor');

assertHasCookie

Assert	that	the	given	encrypted	cookie	is	present:

$browser->assertHasCookie($name);

assertHasPlainCookie

Assert	that	the	given	unencrypted	cookie	is	present:

$browser->assertHasPlainCookie($name);

assertCookieMissing

Assert	that	the	given	encrypted	cookie	is	not	present:

$browser->assertCookieMissing($name);

assertPlainCookieMissing

Assert	that	the	given	unencrypted	cookie	is	not	present:

$browser->assertPlainCookieMissing($name);

Laravel	Documentation	-	7.x	/	Dusk 574

assertCookieValue

Assert	that	an	encrypted	cookie	has	a	given	value:

$browser->assertCookieValue($name,	$value);

assertPlainCookieValue

Assert	that	an	unencrypted	cookie	has	a	given	value:

$browser->assertPlainCookieValue($name,	$value);

assertSee

Assert	that	the	given	text	is	present	on	the	page:

$browser->assertSee($text);

assertDontSee

Assert	that	the	given	text	is	not	present	on	the	page:

$browser->assertDontSee($text);

assertSeeIn

Assert	that	the	given	text	is	present	within	the	selector:

$browser->assertSeeIn($selector,	$text);

assertDontSeeIn

Assert	that	the	given	text	is	not	present	within	the	selector:

$browser->assertDontSeeIn($selector,	$text);

assertSourceHas

Assert	that	the	given	source	code	is	present	on	the	page:

$browser->assertSourceHas($code);

assertSourceMissing

Assert	that	the	given	source	code	is	not	present	on	the	page:

$browser->assertSourceMissing($code);

assertSeeLink

Assert	that	the	given	link	is	present	on	the	page:

$browser->assertSeeLink($linkText);

assertDontSeeLink

Assert	that	the	given	link	is	not	present	on	the	page:

$browser->assertDontSeeLink($linkText);

assertInputValue

Laravel	Documentation	-	7.x	/	Dusk 575

Assert	that	the	given	input	field	has	the	given	value:

$browser->assertInputValue($field,	$value);

assertInputValueIsNot

Assert	that	the	given	input	field	does	not	have	the	given	value:

$browser->assertInputValueIsNot($field,	$value);

assertChecked

Assert	that	the	given	checkbox	is	checked:

$browser->assertChecked($field);

assertNotChecked

Assert	that	the	given	checkbox	is	not	checked:

$browser->assertNotChecked($field);

assertRadioSelected

Assert	that	the	given	radio	field	is	selected:

$browser->assertRadioSelected($field,	$value);

assertRadioNotSelected

Assert	that	the	given	radio	field	is	not	selected:

$browser->assertRadioNotSelected($field,	$value);

assertSelected

Assert	that	the	given	dropdown	has	the	given	value	selected:

$browser->assertSelected($field,	$value);

assertNotSelected

Assert	that	the	given	dropdown	does	not	have	the	given	value	selected:

$browser->assertNotSelected($field,	$value);

assertSelectHasOptions

Assert	that	the	given	array	of	values	are	available	to	be	selected:

$browser->assertSelectHasOptions($field,	$values);

assertSelectMissingOption

Assert	that	the	given	value	is	not	available	to	be	selected:

$browser->assertSelectMissingOption($field,	$value);

assertSelectMissingOptions

Assert	that	the	given	array	of	values	are	not	available	to	be	selected:

Laravel	Documentation	-	7.x	/	Dusk 576

$browser->assertSelectMissingOptions($field,	$values);

assertSelectHasOption

Assert	that	the	given	value	is	available	to	be	selected	on	the	given	field:

$browser->assertSelectHasOption($field,	$value);

assertValue

Assert	that	the	element	matching	the	given	selector	has	the	given	value:

$browser->assertValue($selector,	$value);

assertAttribute

Assert	that	the	element	matching	the	given	selector	has	the	given	value	in	the	provided	attribute:

$browser->assertAttribute($selector,	$attribute,	$value);

assertAriaAttribute

Assert	that	the	element	matching	the	given	selector	has	the	given	value	in	the	provided	aria	attribute:

$browser->assertAriaAttribute($selector,	$attribute,	$value);

For	example,	given	the	markup	<button	aria-label="Add"></button>,	you	may	assert	against	the	aria-label
attribute	like	so:

$browser->assertAriaAttribute('button',	'label',	'Add')

assertDataAttribute

Assert	that	the	element	matching	the	given	selector	has	the	given	value	in	the	provided	data	attribute:

$browser->assertDataAttribute($selector,	$attribute,	$value);

For	example,	given	the	markup	<tr	id="row-1"	data-content="attendees"></tr>,	you	may	assert	against	the	
data-label	attribute	like	so:

$browser->assertDataAttribute('#row-1',	'content',	'attendees')

assertVisible

Assert	that	the	element	matching	the	given	selector	is	visible:

$browser->assertVisible($selector);

assertPresent

Assert	that	the	element	matching	the	given	selector	is	present:

$browser->assertPresent($selector);

assertMissing

Assert	that	the	element	matching	the	given	selector	is	not	visible:

$browser->assertMissing($selector);

assertDialogOpened

Assert	that	a	JavaScript	dialog	with	the	given	message	has	been	opened:

Laravel	Documentation	-	7.x	/	Dusk 577

$browser->assertDialogOpened($message);

assertEnabled

Assert	that	the	given	field	is	enabled:

$browser->assertEnabled($field);

assertDisabled

Assert	that	the	given	field	is	disabled:

$browser->assertDisabled($field);

assertButtonEnabled

Assert	that	the	given	button	is	enabled:

$browser->assertButtonEnabled($button);

assertButtonDisabled

Assert	that	the	given	button	is	disabled:

$browser->assertButtonDisabled($button);

assertFocused

Assert	that	the	given	field	is	focused:

$browser->assertFocused($field);

assertNotFocused

Assert	that	the	given	field	is	not	focused:

$browser->assertNotFocused($field);

assertAuthenticated

Assert	that	the	user	is	authenticated:

$browser->assertAuthenticated();

assertGuest

Assert	that	the	user	is	not	authenticated:

$browser->assertGuest();

assertAuthenticatedAs

Assert	that	the	user	is	authenticated	as	the	given	user:

$browser->assertAuthenticatedAs($user);

assertVue

Assert	that	a	given	Vue	component	data	property	matches	the	given	value:

$browser->assertVue($property,	$value,	$componentSelector	=	null);

Laravel	Documentation	-	7.x	/	Dusk 578

assertVueIsNot

Assert	that	a	given	Vue	component	data	property	does	not	match	the	given	value:

$browser->assertVueIsNot($property,	$value,	$componentSelector	=	null);

assertVueContains

Assert	that	a	given	Vue	component	data	property	is	an	array	and	contains	the	given	value:

$browser->assertVueContains($property,	$value,	$componentSelector	=	null);

assertVueDoesNotContain

Assert	that	a	given	Vue	component	data	property	is	an	array	and	does	not	contain	the	given	value:

$browser->assertVueDoesNotContain($property,	$value,	$componentSelector	=	null);

Pages

Sometimes,	tests	require	several	complicated	actions	to	be	performed	in	sequence.	This	can	make	your	tests
harder	to	read	and	understand.	Pages	allow	you	to	define	expressive	actions	that	may	then	be	performed	on	a
given	page	using	a	single	method.	Pages	also	allow	you	to	define	short-cuts	to	common	selectors	for	your
application	or	a	single	page.

Generating	Pages

To	generate	a	page	object,	use	the	dusk:page	Artisan	command.	All	page	objects	will	be	placed	in	the	
tests/Browser/Pages	directory:

php	artisan	dusk:page	Login

Configuring	Pages

By	default,	pages	have	three	methods:	url,	assert,	and	elements.	We	will	discuss	the	url	and	assert	methods
now.	The	elements	method	will	be	discussed	in	more	detail	below.

The	url	Method

The	url	method	should	return	the	path	of	the	URL	that	represents	the	page.	Dusk	will	use	this	URL	when
navigating	to	the	page	in	the	browser:

/**

	*	Get	the	URL	for	the	page.

	*

	*	@return	string

	*/

public	function	url()

{

				return	'/login';

}

The	assert	Method

The	assert	method	may	make	any	assertions	necessary	to	verify	that	the	browser	is	actually	on	the	given	page.
Completing	this	method	is	not	necessary;	however,	you	are	free	to	make	these	assertions	if	you	wish.	These
assertions	will	be	run	automatically	when	navigating	to	the	page:

/**

	*	Assert	that	the	browser	is	on	the	page.

	*

	*	@return	void

	*/

Laravel	Documentation	-	7.x	/	Dusk 579

public	function	assert(Browser	$browser)

{

				$browser->assertPathIs($this->url());

}

Navigating	To	Pages

Once	a	page	has	been	configured,	you	may	navigate	to	it	using	the	visit	method:

use	Tests\Browser\Pages\Login;

$browser->visit(new	Login);

You	may	use	the	visitRoute	method	to	navigate	to	a	named	route:

$browser->visitRoute('login');

You	may	navigate	"back"	and	"forward"	using	the	back	and	forward	methods:

$browser->back();

$browser->forward();

You	may	use	the	refresh	method	to	refresh	the	page:

$browser->refresh();

Sometimes	you	may	already	be	on	a	given	page	and	need	to	"load"	the	page's	selectors	and	methods	into	the
current	test	context.	This	is	common	when	pressing	a	button	and	being	redirected	to	a	given	page	without
explicitly	navigating	to	it.	In	this	situation,	you	may	use	the	on	method	to	load	the	page:

use	Tests\Browser\Pages\CreatePlaylist;

$browser->visit('/dashboard')

								->clickLink('Create	Playlist')

								->on(new	CreatePlaylist)

								->assertSee('@create');

Shorthand	Selectors

The	elements	method	of	pages	allows	you	to	define	quick,	easy-to-remember	shortcuts	for	any	CSS	selector	on
your	page.	For	example,	let's	define	a	shortcut	for	the	"email"	input	field	of	the	application's	login	page:

/**

	*	Get	the	element	shortcuts	for	the	page.

	*

	*	@return	array

	*/

public	function	elements()

{

				return	[

								'@email'	=>	'input[name=email]',

];

}

Now,	you	may	use	this	shorthand	selector	anywhere	you	would	use	a	full	CSS	selector:

$browser->type('@email',	'taylor@laravel.com');

Global	Shorthand	Selectors

After	installing	Dusk,	a	base	Page	class	will	be	placed	in	your	tests/Browser/Pages	directory.	This	class	contains
a	siteElements	method	which	may	be	used	to	define	global	shorthand	selectors	that	should	be	available	on
every	page	throughout	your	application:

/**

	*	Get	the	global	element	shortcuts	for	the	site.

	*

	*	@return	array

	*/

Laravel	Documentation	-	7.x	/	Dusk 580

public	static	function	siteElements()

{

				return	[

								'@element'	=>	'#selector',

];

}

Page	Methods

In	addition	to	the	default	methods	defined	on	pages,	you	may	define	additional	methods	which	may	be	used
throughout	your	tests.	For	example,	let's	imagine	we	are	building	a	music	management	application.	A	common
action	for	one	page	of	the	application	might	be	to	create	a	playlist.	Instead	of	re-writing	the	logic	to	create	a
playlist	in	each	test,	you	may	define	a	createPlaylist	method	on	a	page	class:

<?php

namespace	Tests\Browser\Pages;

use	Laravel\Dusk\Browser;

class	Dashboard	extends	Page

{

				//	Other	page	methods...

				/**

					*	Create	a	new	playlist.

					*

					*	@param		\Laravel\Dusk\Browser		$browser

					*	@param		string		$name

					*	@return	void

					*/

				public	function	createPlaylist(Browser	$browser,	$name)

				{

								$browser->type('name',	$name)

																->check('share')

																->press('Create	Playlist');

				}

}

Once	the	method	has	been	defined,	you	may	use	it	within	any	test	that	utilizes	the	page.	The	browser	instance
will	automatically	be	passed	to	the	page	method:

use	Tests\Browser\Pages\Dashboard;

$browser->visit(new	Dashboard)

								->createPlaylist('My	Playlist')

								->assertSee('My	Playlist');

Components

Components	are	similar	to	Dusk’s	“page	objects”,	but	are	intended	for	pieces	of	UI	and	functionality	that	are
re-used	throughout	your	application,	such	as	a	navigation	bar	or	notification	window.	As	such,	components	are
not	bound	to	specific	URLs.

Generating	Components

To	generate	a	component,	use	the	dusk:component	Artisan	command.	New	components	are	placed	in	the	
tests/Browser/Components	directory:

php	artisan	dusk:component	DatePicker

As	shown	above,	a	"date	picker"	is	an	example	of	a	component	that	might	exist	throughout	your	application	on
a	variety	of	pages.	It	can	become	cumbersome	to	manually	write	the	browser	automation	logic	to	select	a	date
in	dozens	of	tests	throughout	your	test	suite.	Instead,	we	can	define	a	Dusk	component	to	represent	the	date
picker,	allowing	us	to	encapsulate	that	logic	within	the	component:

<?php

namespace	Tests\Browser\Components;

Laravel	Documentation	-	7.x	/	Dusk 581

use	Laravel\Dusk\Browser;

use	Laravel\Dusk\Component	as	BaseComponent;

class	DatePicker	extends	BaseComponent

{

				/**

					*	Get	the	root	selector	for	the	component.

					*

					*	@return	string

					*/

				public	function	selector()

				{

								return	'.date-picker';

				}

				/**

					*	Assert	that	the	browser	page	contains	the	component.

					*

					*	@param		Browser		$browser

					*	@return	void

					*/

				public	function	assert(Browser	$browser)

				{

								$browser->assertVisible($this->selector());

				}

				/**

					*	Get	the	element	shortcuts	for	the	component.

					*

					*	@return	array

					*/

				public	function	elements()

				{

								return	[

												'@date-field'	=>	'input.datepicker-input',

												'@year-list'	=>	'div	>	div.datepicker-years',

												'@month-list'	=>	'div	>	div.datepicker-months',

												'@day-list'	=>	'div	>	div.datepicker-days',

];

				}

				/**

					*	Select	the	given	date.

					*

					*	@param		\Laravel\Dusk\Browser		$browser

					*	@param		int		$year

					*	@param		int		$month

					*	@param		int		$day

					*	@return	void

					*/

				public	function	selectDate($browser,	$year,	$month,	$day)

				{

								$browser->click('@date-field')

																->within('@year-list',	function	($browser)	use	($year)	{

																				$browser->click($year);

																})

																->within('@month-list',	function	($browser)	use	($month)	{

																				$browser->click($month);

																})

																->within('@day-list',	function	($browser)	use	($day)	{

																				$browser->click($day);

																});

				}

}

Using	Components

Once	the	component	has	been	defined,	we	can	easily	select	a	date	within	the	date	picker	from	any	test.	And,	if
the	logic	necessary	to	select	a	date	changes,	we	only	need	to	update	the	component:

<?php

namespace	Tests\Browser;

use	Illuminate\Foundation\Testing\DatabaseMigrations;

use	Laravel\Dusk\Browser;

use	Tests\Browser\Components\DatePicker;

use	Tests\DuskTestCase;

Laravel	Documentation	-	7.x	/	Dusk 582

class	ExampleTest	extends	DuskTestCase

{

				/**

					*	A	basic	component	test	example.

					*

					*	@return	void

					*/

				public	function	testBasicExample()

				{

								$this->browse(function	(Browser	$browser)	{

												$browser->visit('/')

																				->within(new	DatePicker,	function	($browser)	{

																								$browser->selectDate(2019,	1,	30);

																				})

																				->assertSee('January');

								});

				}

}

Continuous	Integration

NOTE	Before	adding	a	continous	integration	configuration	file,	ensure	that	your	.env.testing	file	contains
an	APP_URL	entry	with	a	value	of	http://127.0.0.1:8000.

CircleCI

If	you	are	using	CircleCI	to	run	your	Dusk	tests,	you	may	use	this	configuration	file	as	a	starting	point.	Like
TravisCI,	we	will	use	the	php	artisan	serve	command	to	launch	PHP's	built-in	web	server:

version:	2

jobs:

				build:

								steps:

												-	run:	sudo	apt-get	install	-y	libsqlite3-dev

												-	run:	cp	.env.testing	.env

												-	run:	composer	install	-n	--ignore-platform-reqs

												-	run:	php	artisan	key:generate

												-	run:	php	artisan	dusk:chrome-driver

												-	run:	npm	install

												-	run:	npm	run	production

												-	run:	vendor/bin/phpunit

												-	run:

																name:	Start	Chrome	Driver

																command:	./vendor/laravel/dusk/bin/chromedriver-linux

																background:	true

												-	run:

																name:	Run	Laravel	Server

																command:	php	artisan	serve

																background:	true

												-	run:

																name:	Run	Laravel	Dusk	Tests

																command:	php	artisan	dusk

												-	store_artifacts:

																path:	tests/Browser/screenshots

												-	store_artifacts:

																path:	tests/Browser/console

												-	store_artifacts:

																path:	storage/logs

Codeship

To	run	Dusk	tests	on	Codeship,	add	the	following	commands	to	your	Codeship	project.	These	commands	are
just	a	starting	point	and	you	are	free	to	add	additional	commands	as	needed:

phpenv	local	7.2

cp	.env.testing	.env

Laravel	Documentation	-	7.x	/	Dusk 583

https://codeship.com

mkdir	-p	./bootstrap/cache

composer	install	--no-interaction	--prefer-dist

php	artisan	key:generate

php	artisan	dusk:chrome-driver

nohup	bash	-c	"php	artisan	serve	2>&1	&"	&&	sleep	5

php	artisan	dusk

Heroku	CI

To	run	Dusk	tests	on	Heroku	CI,	add	the	following	Google	Chrome	buildpack	and	scripts	to	your	Heroku	
app.json	file:

{

		"environments":	{

				"test":	{

						"buildpacks":	[

								{	"url":	"heroku/php"	},

								{	"url":	"https://github.com/heroku/heroku-buildpack-google-chrome"	}

],

						"scripts":	{

								"test-setup":	"cp	.env.testing	.env",

								"test":	"nohup	bash	-c	'./vendor/laravel/dusk/bin/chromedriver-linux	>	/dev/null	2>&1	&'	&&	

nohup	bash	-c	'php	artisan	serve	>	/dev/null	2>&1	&'	&&	php	artisan	dusk"

						}

				}

		}

}

Travis	CI

To	run	your	Dusk	tests	on	Travis	CI,	use	the	following	.travis.yml	configuration.	Since	Travis	CI	is	not	a
graphical	environment,	we	will	need	to	take	some	extra	steps	in	order	to	launch	a	Chrome	browser.	In	addition,
we	will	use	php	artisan	serve	to	launch	PHP's	built-in	web	server:

language:	php

php:

		-	7.3

addons:

		chrome:	stable

install:

		-	cp	.env.testing	.env

		-	travis_retry	composer	install	--no-interaction	--prefer-dist	--no-suggest

		-	php	artisan	key:generate

		-	php	artisan	dusk:chrome-driver

before_script:

		-	google-chrome-stable	--headless	--disable-gpu	--remote-debugging-port=9222	http://localhost	&

		-	php	artisan	serve	&

script:

		-	php	artisan	dusk

GitHub	Actions

If	you	are	using	Github	Actions	to	run	your	Dusk	tests,	you	may	use	this	configuration	file	as	a	starting	point.
Like	TravisCI,	we	will	use	the	php	artisan	serve	command	to	launch	PHP's	built-in	web	server:

name:	CI

on:	[push]

jobs:

		dusk-php:

				runs-on:	ubuntu-latest

				steps:

						-	uses:	actions/checkout@v2

						-	name:	Prepare	The	Environment

								run:	cp	.env.example	.env

						-	name:	Create	Database

								run:	|

										sudo	systemctl	start	mysql

Laravel	Documentation	-	7.x	/	Dusk 584

https://www.heroku.com/continuous-integration
https://travis-ci.org
https://github.com/features/actions

										mysql	--user="root"	--password="root"	-e	"CREATE	DATABASE	'my-database'	character	set	UTF8mb4	

collate	utf8mb4_bin;"

						-	name:	Install	Composer	Dependencies

								run:	composer	install	--no-progress	--no-suggest	--prefer-dist	--optimize-autoloader

						-	name:	Generate	Application	Key

								run:	php	artisan	key:generate

						-	name:	Upgrade	Chrome	Driver

								run:	php	artisan	dusk:chrome-driver	`/opt/google/chrome/chrome	--version	|	cut	-d	"	"	-f3	|	cut	

-d	"."	-f1`

						-	name:	Start	Chrome	Driver

								run:	./vendor/laravel/dusk/bin/chromedriver-linux	&

						-	name:	Run	Laravel	Server

								run:	php	artisan	serve	&

						-	name:	Run	Dusk	Tests

								env:

										APP_URL:	"http://127.0.0.1:8000"

								run:	php	artisan	dusk

Laravel	Documentation	-	7.x	/	Dusk 585

Official	Packages

Laravel	Envoy
Introduction

Installation
Writing	Tasks

Setup
Variables
Stories
Multiple	Servers

Running	Tasks
Confirming	Task	Execution

Notifications
Slack
Discord
Telegram

Introduction

Laravel	Envoy	provides	a	clean,	minimal	syntax	for	defining	common	tasks	you	run	on	your	remote	servers.
Using	Blade	style	syntax,	you	can	easily	setup	tasks	for	deployment,	Artisan	commands,	and	more.	Currently,
Envoy	only	supports	the	Mac	and	Linux	operating	systems.

Installation

First,	install	Envoy	using	the	Composer	global	require	command:

composer	global	require	laravel/envoy

Since	global	Composer	libraries	can	sometimes	cause	package	version	conflicts,	you	may	wish	to	consider
using	cgr,	which	is	a	drop-in	replacement	for	the	composer	global	require	command.	The	cgr	library's
installation	instructions	can	be	found	on	GitHub.

NOTE	Make	sure	to	place	the	$HOME/.config/composer/vendor/bin	or	$HOME/.composer/vendor/bin	directory
in	your	PATH	so	the	envoy	executable	is	found	when	running	the	envoy	command	in	your	terminal.

Updating	Envoy

You	may	also	use	Composer	to	keep	your	Envoy	installation	up	to	date.	Issuing	the	composer	global	update
command	will	update	all	of	your	globally	installed	Composer	packages:

composer	global	update

Writing	Tasks

All	of	your	Envoy	tasks	should	be	defined	in	an	Envoy.blade.php	file	in	the	root	of	your	project.	Here's	an
example	to	get	you	started:

@servers(['web'	=>	['user@192.168.1.1']])

@task('foo',	['on'	=>	'web'])

				ls	-la

@endtask

As	you	can	see,	an	array	of	@servers	is	defined	at	the	top	of	the	file,	allowing	you	to	reference	these	servers	in
the	on	option	of	your	task	declarations.	The	@servers	declaration	should	always	be	placed	on	a	single	line.
Within	your	@task	declarations,	you	should	place	the	Bash	code	that	should	run	on	your	server	when	the	task	is
executed.

You	can	force	a	script	to	run	locally	by	specifying	the	server's	IP	address	as	127.0.0.1:

Laravel	Documentation	-	7.x	/	Envoy 586

https://github.com/laravel/envoy
https://github.com/consolidation-org/cgr

@servers(['localhost'	=>	'127.0.0.1'])

Setup

Sometimes,	you	may	need	to	execute	some	PHP	code	before	executing	your	Envoy	tasks.	You	may	use	the	
@setup	directive	to	declare	variables	and	do	other	general	PHP	work	before	any	of	your	other	tasks	are
executed:

@setup

				$now	=	new	DateTime();

				$environment	=	isset($env)	?	$env	:	"testing";

@endsetup

If	you	need	to	require	other	PHP	files	before	your	task	is	executed,	you	may	use	the	@include	directive	at	the
top	of	your	Envoy.blade.php	file:

@include('vendor/autoload.php')

@task('foo')

				#	...

@endtask

You	may	also	import	other	Envoy	files	so	their	stories	and	tasks	are	added	to	yours.	After	they	have	been
imported,	you	may	execute	the	tasks	in	those	files	as	if	they	were	defined	in	your	own.	You	should	use	the	
@import	directive	at	the	top	of	your	Envoy.blade.php	file:

@import('package/Envoy.blade.php')

Variables

If	needed,	you	may	pass	option	values	into	Envoy	tasks	using	the	command	line:

envoy	run	deploy	--branch=master

You	may	access	the	options	in	your	tasks	via	Blade's	"echo"	syntax.	You	may	also	use	if	statements	and	loops
within	your	tasks.	For	example,	let's	verify	the	presence	of	the	$branch	variable	before	executing	the	git	pull
command:

@servers(['web'	=>	'192.168.1.1'])

@task('deploy',	['on'	=>	'web'])

				cd	site

				@if	($branch)

								git	pull	origin	{{	$branch	}}

				@endif

				php	artisan	migrate

@endtask

Stories

Stories	group	a	set	of	tasks	under	a	single,	convenient	name,	allowing	you	to	group	small,	focused	tasks	into
large	tasks.	For	instance,	a	deploy	story	may	run	the	git	and	composer	tasks	by	listing	the	task	names	within	its
definition:

@servers(['web'	=>	'192.168.1.1'])

@story('deploy')

				git

				composer

@endstory

@task('git')

				git	pull	origin	master

@endtask

@task('composer')

				composer	install

Laravel	Documentation	-	7.x	/	Envoy 587

@endtask

Once	the	story	has	been	written,	you	may	run	it	just	like	a	typical	task:

envoy	run	deploy

Multiple	Servers

Envoy	allows	you	to	easily	run	a	task	across	multiple	servers.	First,	add	additional	servers	to	your	@servers
declaration.	Each	server	should	be	assigned	a	unique	name.	Once	you	have	defined	your	additional	servers,	list
each	of	the	servers	in	the	task's	on	array:

@servers(['web-1'	=>	'192.168.1.1',	'web-2'	=>	'192.168.1.2'])

@task('deploy',	['on'	=>	['web-1',	'web-2']])

				cd	site

				git	pull	origin	{{	$branch	}}

				php	artisan	migrate

@endtask

Parallel	Execution

By	default,	tasks	will	be	executed	on	each	server	serially.	In	other	words,	a	task	will	finish	running	on	the	first
server	before	proceeding	to	execute	on	the	second	server.	If	you	would	like	to	run	a	task	across	multiple	servers
in	parallel,	add	the	parallel	option	to	your	task	declaration:

@servers(['web-1'	=>	'192.168.1.1',	'web-2'	=>	'192.168.1.2'])

@task('deploy',	['on'	=>	['web-1',	'web-2'],	'parallel'	=>	true])

				cd	site

				git	pull	origin	{{	$branch	}}

				php	artisan	migrate

@endtask

Running	Tasks

To	run	a	task	or	story	that	is	defined	in	your	Envoy.blade.php	file,	execute	Envoy's	run	command,	passing	the
name	of	the	task	or	story	you	would	like	to	execute.	Envoy	will	run	the	task	and	display	the	output	from	the
servers	as	the	task	is	running:

envoy	run	deploy

Confirming	Task	Execution

If	you	would	like	to	be	prompted	for	confirmation	before	running	a	given	task	on	your	servers,	you	should	add
the	confirm	directive	to	your	task	declaration.	This	option	is	particularly	useful	for	destructive	operations:

@task('deploy',	['on'	=>	'web',	'confirm'	=>	true])

				cd	site

				git	pull	origin	{{	$branch	}}

				php	artisan	migrate

@endtask

Notifications

Slack

Envoy	also	supports	sending	notifications	to	Slack	after	each	task	is	executed.	The	@slack	directive	accepts	a
Slack	hook	URL	and	a	channel	name.	You	may	retrieve	your	webhook	URL	by	creating	an	"Incoming
WebHooks"	integration	in	your	Slack	control	panel.	You	should	pass	the	entire	webhook	URL	into	the	@slack
directive:

@finished

				@slack('webhook-url',	'#bots')

@endfinished

Laravel	Documentation	-	7.x	/	Envoy 588

https://slack.com

You	may	provide	one	of	the	following	as	the	channel	argument:

To	send	the	notification	to	a	channel:	#channel
To	send	the	notification	to	a	user:	@user

Discord

Envoy	also	supports	sending	notifications	to	Discord	after	each	task	is	executed.	The	@discord	directive	accepts
a	Discord	hook	URL	and	a	message.	You	may	retrieve	your	webhook	URL	by	creating	a	"Webhook"	in	your
Server	Settings	and	choosing	which	channel	the	webhook	should	post	to.	You	should	pass	the	entire	Webhook
URL	into	the	@discord	directive:

@finished

				@discord('discord-webhook-url')

@endfinished

Telegram

Envoy	also	supports	sending	notifications	to	Telegram	after	each	task	is	executed.	The	@telegram	directive
accepts	a	Telegram	Bot	ID	and	a	Chat	ID.	You	may	retrieve	your	Bot	ID	by	creating	a	new	bot	using	BotFather.
You	can	retrieve	a	valid	Chat	ID	using	@username_to_id_bot.	You	should	pass	the	entire	Bot	ID	and	Chat	ID
into	the	@telegram	directive:

@finished

				@telegram('<bot-id>','<chat-id>')

@endfinished

Laravel	Documentation	-	7.x	/	Envoy 589

https://discord.com
https://telegram.org
https://t.me/botfather
https://t.me/username_to_id_bot

Official	Packages

Laravel	Horizon
Introduction
Installation

Configuration
Dashboard	Authorization

Upgrading	Horizon
Running	Horizon

Deploying	Horizon
Tags
Notifications
Metrics

Introduction

Horizon	provides	a	beautiful	dashboard	and	code-driven	configuration	for	your	Laravel	powered	Redis	queues.
Horizon	allows	you	to	easily	monitor	key	metrics	of	your	queue	system	such	as	job	throughput,	runtime,	and
job	failures.

All	of	your	worker	configuration	is	stored	in	a	single,	simple	configuration	file,	allowing	your	configuration	to
stay	in	source	control	where	your	entire	team	can	collaborate.

Installation

NOTE	You	should	ensure	that	your	queue	connection	is	set	to	redis	in	your	queue	configuration	file.

You	may	use	Composer	to	install	Horizon	into	your	Laravel	project:

composer	require	laravel/horizon

After	installing	Horizon,	publish	its	assets	using	the	horizon:install	Artisan	command:

php	artisan	horizon:install

Configuration

After	publishing	Horizon's	assets,	its	primary	configuration	file	will	be	located	at	config/horizon.php.	This
configuration	file	allows	you	to	configure	your	worker	options	and	each	configuration	option	includes	a
description	of	its	purpose,	so	be	sure	to	thoroughly	explore	this	file.

NOTE	You	should	ensure	that	the	environments	portion	of	your	horizon	configuration	file	contains	an	entry
for	each	environment	on	which	you	plan	to	run	Horizon.

Balance	Options

Horizon	allows	you	to	choose	from	three	balancing	strategies:	simple,	auto,	and	false.	The	simple	strategy,
which	is	the	configuration	file's	default,	splits	incoming	jobs	evenly	between	processes:

'balance'	=>	'simple',

The	auto	strategy	adjusts	the	number	of	worker	processes	per	queue	based	on	the	current	workload	of	the
queue.	For	example,	if	your	notifications	queue	has	1,000	waiting	jobs	while	your	render	queue	is	empty,
Horizon	will	allocate	more	workers	to	your	notifications	queue	until	it	is	empty.	When	the	balance	option	is
set	to	false,	the	default	Laravel	behavior	will	be	used,	which	processes	queues	in	the	order	they	are	listed	in
your	configuration.

When	using	the	auto	strategy,	you	may	define	the	minProcesses	and	maxProcesses	configuration	options	to
control	the	minimum	and	maximum	number	of	processes	Horizon	should	scale	up	and	down	to:

Laravel	Documentation	-	7.x	/	Horizon 590

'environments'	=>	[

				'production'	=>	[

								'supervisor-1'	=>	[

												'connection'	=>	'redis',

												'queue'	=>	['default'],

												'balance'	=>	'auto',

												'minProcesses'	=>	1,

												'maxProcesses'	=>	10,

												'tries'	=>	3,

],

],

],

Job	Trimming

The	horizon	configuration	file	allows	you	to	configure	how	long	recent	and	failed	jobs	should	be	persisted	(in
minutes).	By	default,	recent	jobs	are	kept	for	one	hour	while	failed	jobs	are	kept	for	a	week:

'trim'	=>	[

				'recent'	=>	60,

				'failed'	=>	10080,

],

Dashboard	Authorization

Horizon	exposes	a	dashboard	at	/horizon.	By	default,	you	will	only	be	able	to	access	this	dashboard	in	the	local
environment.	Within	your	app/Providers/HorizonServiceProvider.php	file,	there	is	a	gate	method.	This
authorization	gate	controls	access	to	Horizon	in	non-local	environments.	You	are	free	to	modify	this	gate	as
needed	to	restrict	access	to	your	Horizon	installation:

/**

	*	Register	the	Horizon	gate.

	*

	*	This	gate	determines	who	can	access	Horizon	in	non-local	environments.

	*

	*	@return	void

	*/

protected	function	gate()

{

				Gate::define('viewHorizon',	function	($user)	{

								return	in_array($user->email,	[

												'taylor@laravel.com',

]);

				});

}

NOTE	Remember	that	Laravel	injects	the	authenticated	user	to	the	Gate	automatically.	If	your	app	is
providing	Horizon	security	via	another	method,	such	as	IP	restrictions,	then	your	Horizon	users	may	not
need	to	"login".	Therefore,	you	will	need	to	change	function	($user)	above	to	function	($user	=	null)	to
force	Laravel	to	not	require	authentication.

Upgrading	Horizon

When	upgrading	to	a	new	major	version	of	Horizon,	it's	important	that	you	carefully	review	the	upgrade	guide.

In	addition,	when	upgrading	to	any	new	Horizon	version,	you	should	re-publish	Horizon's	assets:

php	artisan	horizon:publish

To	keep	the	assets	up-to-date	and	avoid	issues	in	future	updates,	you	may	add	the	command	to	the	post-update-
cmd	scripts	in	your	composer.json	file:

{

				"scripts":	{

								"post-update-cmd":	[

												"@php	artisan	horizon:publish	--ansi"

]

				}

}

Laravel	Documentation	-	7.x	/	Horizon 591

https://github.com/laravel/horizon/blob/master/UPGRADE.md

Running	Horizon

Once	you	have	configured	your	workers	in	the	config/horizon.php	configuration	file,	you	may	start	Horizon
using	the	horizon	Artisan	command.	This	single	command	will	start	all	of	your	configured	workers:

php	artisan	horizon

You	may	pause	the	Horizon	process	and	instruct	it	to	continue	processing	jobs	using	the	horizon:pause	and	
horizon:continue	Artisan	commands:

php	artisan	horizon:pause

php	artisan	horizon:continue

You	may	check	the	current	status	of	the	Horizon	process	using	the	horizon:status	Artisan	command:

php	artisan	horizon:status

You	may	gracefully	terminate	the	master	Horizon	process	on	your	machine	using	the	horizon:terminate	Artisan
command.	Any	jobs	that	Horizon	is	currently	processing	will	be	completed	and	then	Horizon	will	exit:

php	artisan	horizon:terminate

Deploying	Horizon

If	you	are	deploying	Horizon	to	a	live	server,	you	should	configure	a	process	monitor	to	monitor	the	php	
artisan	horizon	command	and	restart	it	if	it	quits	unexpectedly.	When	deploying	fresh	code	to	your	server,	you
will	need	to	instruct	the	master	Horizon	process	to	terminate	so	it	can	be	restarted	by	your	process	monitor	and
receive	your	code	changes.

Installing	Supervisor

Supervisor	is	a	process	monitor	for	the	Linux	operating	system,	and	will	automatically	restart	your	horizon
process	if	it	fails.	To	install	Supervisor	on	Ubuntu,	you	may	use	the	following	command:

sudo	apt-get	install	supervisor

TIP	If	configuring	Supervisor	yourself	sounds	overwhelming,	consider	using	Laravel	Forge,	which	will
automatically	install	and	configure	Supervisor	for	your	Laravel	projects.

Supervisor	Configuration

Supervisor	configuration	files	are	typically	stored	in	the	/etc/supervisor/conf.d	directory.	Within	this	directory,
you	may	create	any	number	of	configuration	files	that	instruct	supervisor	how	your	processes	should	be
monitored.	For	example,	let's	create	a	horizon.conf	file	that	starts	and	monitors	a	horizon	process:

[program:horizon]

process_name=%(program_name)s

command=php	/home/forge/app.com/artisan	horizon

autostart=true

autorestart=true

user=forge

redirect_stderr=true

stdout_logfile=/home/forge/app.com/horizon.log

stopwaitsecs=3600

NOTE	You	should	ensure	that	the	value	of	stopwaitsecs	is	greater	than	the	number	of	seconds	consumed
by	your	longest	running	job.	Otherwise,	Supervisor	may	kill	the	job	before	it	is	finished	processing.

Starting	Supervisor

Once	the	configuration	file	has	been	created,	you	may	update	the	Supervisor	configuration	and	start	the
processes	using	the	following	commands:

sudo	supervisorctl	reread

Laravel	Documentation	-	7.x	/	Horizon 592

https://forge.laravel.com

sudo	supervisorctl	update

sudo	supervisorctl	start	horizon

For	more	information	on	Supervisor,	consult	the	Supervisor	documentation.

Tags

Horizon	allows	you	to	assign	“tags”	to	jobs,	including	mailables,	event	broadcasts,	notifications,	and	queued
event	listeners.	In	fact,	Horizon	will	intelligently	and	automatically	tag	most	jobs	depending	on	the	Eloquent
models	that	are	attached	to	the	job.	For	example,	take	a	look	at	the	following	job:

<?php

namespace	App\Jobs;

use	App\Video;

use	Illuminate\Bus\Queueable;

use	Illuminate\Contracts\Queue\ShouldQueue;

use	Illuminate\Foundation\Bus\Dispatchable;

use	Illuminate\Queue\InteractsWithQueue;

use	Illuminate\Queue\SerializesModels;

class	RenderVideo	implements	ShouldQueue

{

				use	Dispatchable,	InteractsWithQueue,	Queueable,	SerializesModels;

				/**

					*	The	video	instance.

					*

					*	@var	\App\Video

					*/

				public	$video;

				/**

					*	Create	a	new	job	instance.

					*

					*	@param		\App\Video		$video

					*	@return	void

					*/

				public	function	__construct(Video	$video)

				{

								$this->video	=	$video;

				}

				/**

					*	Execute	the	job.

					*

					*	@return	void

					*/

				public	function	handle()

				{

								//

				}

}

If	this	job	is	queued	with	an	App\Video	instance	that	has	an	id	of	1,	it	will	automatically	receive	the	tag	
App\Video:1.	This	is	because	Horizon	will	examine	the	job's	properties	for	any	Eloquent	models.	If	Eloquent
models	are	found,	Horizon	will	intelligently	tag	the	job	using	the	model's	class	name	and	primary	key:

$video	=	App\Video::find(1);

App\Jobs\RenderVideo::dispatch($video);

Manually	Tagging

If	you	would	like	to	manually	define	the	tags	for	one	of	your	queueable	objects,	you	may	define	a	tags	method
on	the	class:

class	RenderVideo	implements	ShouldQueue

{

				/**

					*	Get	the	tags	that	should	be	assigned	to	the	job.

Laravel	Documentation	-	7.x	/	Horizon 593

http://supervisord.org/index.html

					*

					*	@return	array

					*/

				public	function	tags()

				{

								return	['render',	'video:'.$this->video->id];

				}

}

Notifications

Note:	When	configuring	Horizon	to	send	Slack	or	SMS	notifications,	you	should	review	the	prerequisites
for	the	relevant	notification	driver.

If	you	would	like	to	be	notified	when	one	of	your	queues	has	a	long	wait	time,	you	may	use	the	
Horizon::routeMailNotificationsTo,	Horizon::routeSlackNotificationsTo,	and	
Horizon::routeSmsNotificationsTo	methods.	You	may	call	these	methods	from	your	application's	
HorizonServiceProvider:

Horizon::routeMailNotificationsTo('example@example.com');

Horizon::routeSlackNotificationsTo('slack-webhook-url',	'#channel');

Horizon::routeSmsNotificationsTo('15556667777');

Configuring	Notification	Wait	Time	Thresholds

You	may	configure	how	many	seconds	are	considered	a	"long	wait"	within	your	config/horizon.php
configuration	file.	The	waits	configuration	option	within	this	file	allows	you	to	control	the	long	wait	threshold
for	each	connection	/	queue	combination:

'waits'	=>	[

				'redis:default'	=>	60,

				'redis:critical,high'	=>	90,

],

Metrics

Horizon	includes	a	metrics	dashboard	which	provides	information	on	your	job	and	queue	wait	times	and
throughput.	In	order	to	populate	this	dashboard,	you	should	configure	Horizon's	snapshot	Artisan	command	to
run	every	five	minutes	via	your	application's	scheduler:

/**

	*	Define	the	application's	command	schedule.

	*

	*	@param		\Illuminate\Console\Scheduling\Schedule		$schedule

	*	@return	void

	*/

protected	function	schedule(Schedule	$schedule)

{

				$schedule->command('horizon:snapshot')->everyFiveMinutes();

}

Laravel	Documentation	-	7.x	/	Horizon 594

Official	Packages

Laravel	Passport
Introduction
Upgrading	Passport
Installation

Frontend	Quickstart
Deploying	Passport
Migration	Customization

Configuration
Client	Secret	Hashing
Token	Lifetimes
Overriding	Default	Models

Issuing	Access	Tokens
Managing	Clients
Requesting	Tokens
Refreshing	Tokens
Revoking	Tokens
Purging	Tokens

Authorization	Code	Grant	with	PKCE
Creating	The	Client
Requesting	Tokens

Password	Grant	Tokens
Creating	A	Password	Grant	Client
Requesting	Tokens
Requesting	All	Scopes
Customizing	The	User	Provider
Customizing	The	Username	Field
Customizing	The	Password	Validation

Implicit	Grant	Tokens
Client	Credentials	Grant	Tokens
Personal	Access	Tokens

Creating	A	Personal	Access	Client
Managing	Personal	Access	Tokens

Protecting	Routes
Via	Middleware
Passing	The	Access	Token

Token	Scopes
Defining	Scopes
Default	Scope
Assigning	Scopes	To	Tokens
Checking	Scopes

Consuming	Your	API	With	JavaScript
Events
Testing

Introduction

Laravel	already	makes	it	easy	to	perform	authentication	via	traditional	login	forms,	but	what	about	APIs?	APIs
typically	use	tokens	to	authenticate	users	and	do	not	maintain	session	state	between	requests.	Laravel	makes
API	authentication	a	breeze	using	Laravel	Passport,	which	provides	a	full	OAuth2	server	implementation	for
your	Laravel	application	in	a	matter	of	minutes.	Passport	is	built	on	top	of	the	League	OAuth2	server	that	is
maintained	by	Andy	Millington	and	Simon	Hamp.

NOTE	This	documentation	assumes	you	are	already	familiar	with	OAuth2.	If	you	do	not	know	anything
about	OAuth2,	consider	familiarizing	yourself	with	the	general	terminology	and	features	of	OAuth2	before
continuing.

Laravel	Documentation	-	7.x	/	Passport 595

https://github.com/thephpleague/oauth2-server
https://oauth2.thephpleague.com/terminology/

Upgrading	Passport

When	upgrading	to	a	new	major	version	of	Passport,	it's	important	that	you	carefully	review	the	upgrade	guide.

Installation

To	get	started,	install	Passport	via	the	Composer	package	manager:

composer	require	laravel/passport	"~9.0"

The	Passport	service	provider	registers	its	own	database	migration	directory	with	the	framework,	so	you	should
migrate	your	database	after	installing	the	package.	The	Passport	migrations	will	create	the	tables	your
application	needs	to	store	clients	and	access	tokens:

php	artisan	migrate

Next,	you	should	run	the	passport:install	command.	This	command	will	create	the	encryption	keys	needed	to
generate	secure	access	tokens.	In	addition,	the	command	will	create	"personal	access"	and	"password	grant"
clients	which	will	be	used	to	generate	access	tokens:

php	artisan	passport:install

TIP	If	you	would	like	to	use	UUIDs	as	the	primary	key	value	of	the	Passport	Client	model	instead	of	auto-
incrementing	integers,	please	install	Passport	using	the	uuids	option.

After	running	the	passport:install	command,	add	the	Laravel\Passport\HasApiTokens	trait	to	your	App\User
model.	This	trait	will	provide	a	few	helper	methods	to	your	model	which	allow	you	to	inspect	the	authenticated
user's	token	and	scopes:

<?php

namespace	App;

use	Illuminate\Foundation\Auth\User	as	Authenticatable;

use	Illuminate\Notifications\Notifiable;

use	Laravel\Passport\HasApiTokens;

class	User	extends	Authenticatable

{

				use	HasApiTokens,	Notifiable;

}

Next,	you	should	call	the	Passport::routes	method	within	the	boot	method	of	your	AuthServiceProvider.	This
method	will	register	the	routes	necessary	to	issue	access	tokens	and	revoke	access	tokens,	clients,	and	personal
access	tokens:

<?php

namespace	App\Providers;

use	Illuminate\Foundation\Support\Providers\AuthServiceProvider	as	ServiceProvider;

use	Illuminate\Support\Facades\Gate;

use	Laravel\Passport\Passport;

class	AuthServiceProvider	extends	ServiceProvider

{

				/**

					*	The	policy	mappings	for	the	application.

					*

					*	@var	array

					*/

				protected	$policies	=	[

								'App\Model'	=>	'App\Policies\ModelPolicy',

];

				/**

					*	Register	any	authentication	/	authorization	services.

					*

					*	@return	void

					*/

				public	function	boot()

Laravel	Documentation	-	7.x	/	Passport 596

https://github.com/laravel/passport/blob/master/UPGRADE.md

				{

								$this->registerPolicies();

								Passport::routes();

				}

}

Finally,	in	your	config/auth.php	configuration	file,	you	should	set	the	driver	option	of	the	api	authentication
guard	to	passport.	This	will	instruct	your	application	to	use	Passport's	TokenGuard	when	authenticating	incoming
API	requests:

'guards'	=>	[

				'web'	=>	[

								'driver'	=>	'session',

								'provider'	=>	'users',

],

				'api'	=>	[

								'driver'	=>	'passport',

								'provider'	=>	'users',

],

],

Client	UUIDs

You	may	run	the	passport:install	command	with	the	--uuids	option	present.	This	flag	will	instruct	Passport
that	you	would	like	to	use	UUIDs	instead	of	auto-incrementing	integers	as	the	Passport	Client	model's	primary
key	values.	After	running	the	passport:install	command	with	the	--uuids	option,	you	will	be	given	additional
instructions	regarding	disabling	Passport's	default	migrations:

php	artisan	passport:install	--uuids

Frontend	Quickstart

NOTE	In	order	to	use	the	Passport	Vue	components,	you	must	be	using	the	Vue	JavaScript	framework.
These	components	also	use	the	Bootstrap	CSS	framework.	However,	even	if	you	are	not	using	these	tools,
the	components	serve	as	a	valuable	reference	for	your	own	frontend	implementation.

Passport	ships	with	a	JSON	API	that	you	may	use	to	allow	your	users	to	create	clients	and	personal	access
tokens.	However,	it	can	be	time	consuming	to	code	a	frontend	to	interact	with	these	APIs.	So,	Passport	also
includes	pre-built	Vue	components	you	may	use	as	an	example	implementation	or	starting	point	for	your	own
implementation.

To	publish	the	Passport	Vue	components,	use	the	vendor:publish	Artisan	command:

php	artisan	vendor:publish	--tag=passport-components

The	published	components	will	be	placed	in	your	resources/js/components	directory.	Once	the	components
have	been	published,	you	should	register	them	in	your	resources/js/app.js	file:

Vue.component(

				'passport-clients',

				require('./components/passport/Clients.vue').default

);

Vue.component(

				'passport-authorized-clients',

				require('./components/passport/AuthorizedClients.vue').default

);

Vue.component(

				'passport-personal-access-tokens',

				require('./components/passport/PersonalAccessTokens.vue').default

);

NOTE	Prior	to	Laravel	v5.7.19,	appending	.default	when	registering	components	results	in	a	console
error.	An	explanation	for	this	change	can	be	found	in	the	Laravel	Mix	v4.0.0	release	notes.

After	registering	the	components,	make	sure	to	run	npm	run	dev	to	recompile	your	assets.	Once	you	have

Laravel	Documentation	-	7.x	/	Passport 597

https://vuejs.org
https://vuejs.org
https://github.com/JeffreyWay/laravel-mix/releases/tag/v4.0.0

recompiled	your	assets,	you	may	drop	the	components	into	one	of	your	application's	templates	to	get	started
creating	clients	and	personal	access	tokens:

<passport-clients></passport-clients>

<passport-authorized-clients></passport-authorized-clients>

<passport-personal-access-tokens></passport-personal-access-tokens>

Deploying	Passport

When	deploying	Passport	to	your	production	servers	for	the	first	time,	you	will	likely	need	to	run	the	
passport:keys	command.	This	command	generates	the	encryption	keys	Passport	needs	in	order	to	generate
access	token.	The	generated	keys	are	not	typically	kept	in	source	control:

php	artisan	passport:keys

If	necessary,	you	may	define	the	path	where	Passport's	keys	should	be	loaded	from.	You	may	use	the	
Passport::loadKeysFrom	method	to	accomplish	this:

/**

	*	Register	any	authentication	/	authorization	services.

	*

	*	@return	void

	*/

public	function	boot()

{

				$this->registerPolicies();

				Passport::routes();

				Passport::loadKeysFrom('/secret-keys/oauth');

}

Additionally,	you	may	publish	Passport's	configuration	file	using	php	artisan	vendor:publish	--tag=passport-
config,	which	will	then	provide	the	option	to	load	the	encryption	keys	from	your	environment	variables:

PASSPORT_PRIVATE_KEY="-----BEGIN	RSA	PRIVATE	KEY-----

<private	key	here>

-----END	RSA	PRIVATE	KEY-----"

PASSPORT_PUBLIC_KEY="-----BEGIN	PUBLIC	KEY-----

<public	key	here>

-----END	PUBLIC	KEY-----"

Migration	Customization

If	you	are	not	going	to	use	Passport's	default	migrations,	you	should	call	the	Passport::ignoreMigrations
method	in	the	register	method	of	your	AppServiceProvider.	You	may	export	the	default	migrations	using	php	
artisan	vendor:publish	--tag=passport-migrations.

Configuration

Client	Secret	Hashing

If	you	would	like	your	client's	secrets	to	be	hashed	when	stored	in	your	database,	you	should	call	the	
Passport::hashClientSecrets	method	in	the	boot	method	of	your	AppServiceProvider:

Passport::hashClientSecrets();

Once	enabled,	all	of	your	client	secrets	will	only	be	shown	one	time	when	your	client	is	created.	Since	the
plain-text	client	secret	value	is	never	stored	in	the	database,	it	is	not	possible	to	recover	if	lost.

Token	Lifetimes

By	default,	Passport	issues	long-lived	access	tokens	that	expire	after	one	year.	If	you	would	like	to	configure	a
longer	/	shorter	token	lifetime,	you	may	use	the	tokensExpireIn,	refreshTokensExpireIn,	and	
personalAccessTokensExpireIn	methods.	These	methods	should	be	called	from	the	boot	method	of	your	

Laravel	Documentation	-	7.x	/	Passport 598

AuthServiceProvider:

/**

	*	Register	any	authentication	/	authorization	services.

	*

	*	@return	void

	*/

public	function	boot()

{

				$this->registerPolicies();

				Passport::routes();

				Passport::tokensExpireIn(now()->addDays(15));

				Passport::refreshTokensExpireIn(now()->addDays(30));

				Passport::personalAccessTokensExpireIn(now()->addMonths(6));

}

NOTE	The	expires_at	columns	on	the	Passport	database	tables	are	read-only	and	for	display	purposes
only.	When	issuing	tokens,	Passport	stores	the	expiration	information	within	the	signed	and	encrypted
tokens.	If	you	need	to	invalidate	a	token	you	should	revoke	it.

Overriding	Default	Models

You	are	free	to	extend	the	models	used	internally	by	Passport:

use	Laravel\Passport\Client	as	PassportClient;

class	Client	extends	PassportClient

{

				//	...

}

Then,	you	may	instruct	Passport	to	use	your	custom	models	via	the	Passport	class:

use	App\Models\Passport\AuthCode;

use	App\Models\Passport\Client;

use	App\Models\Passport\PersonalAccessClient;

use	App\Models\Passport\Token;

/**

	*	Register	any	authentication	/	authorization	services.

	*

	*	@return	void

	*/

public	function	boot()

{

				$this->registerPolicies();

				Passport::routes();

				Passport::useTokenModel(Token::class);

				Passport::useClientModel(Client::class);

				Passport::useAuthCodeModel(AuthCode::class);

				Passport::usePersonalAccessClientModel(PersonalAccessClient::class);

}

Issuing	Access	Tokens

Using	OAuth2	with	authorization	codes	is	how	most	developers	are	familiar	with	OAuth2.	When	using
authorization	codes,	a	client	application	will	redirect	a	user	to	your	server	where	they	will	either	approve	or
deny	the	request	to	issue	an	access	token	to	the	client.

Managing	Clients

First,	developers	building	applications	that	need	to	interact	with	your	application's	API	will	need	to	register
their	application	with	yours	by	creating	a	"client".	Typically,	this	consists	of	providing	the	name	of	their
application	and	a	URL	that	your	application	can	redirect	to	after	users	approve	their	request	for	authorization.

Laravel	Documentation	-	7.x	/	Passport 599

The	passport:client	Command

The	simplest	way	to	create	a	client	is	using	the	passport:client	Artisan	command.	This	command	may	be	used
to	create	your	own	clients	for	testing	your	OAuth2	functionality.	When	you	run	the	client	command,	Passport
will	prompt	you	for	more	information	about	your	client	and	will	provide	you	with	a	client	ID	and	secret:

php	artisan	passport:client

Redirect	URLs

If	you	would	like	to	allow	multiple	redirect	URLs	for	your	client,	you	may	specify	them	using	a	comma-
delimited	list	when	prompted	for	the	URL	by	the	passport:client	command:

http://example.com/callback,http://examplefoo.com/callback

NOTE	Any	URL	which	contains	commas	must	be	encoded.

JSON	API

Since	your	users	will	not	be	able	to	utilize	the	client	command,	Passport	provides	a	JSON	API	that	you	may
use	to	create	clients.	This	saves	you	the	trouble	of	having	to	manually	code	controllers	for	creating,	updating,
and	deleting	clients.

However,	you	will	need	to	pair	Passport's	JSON	API	with	your	own	frontend	to	provide	a	dashboard	for	your
users	to	manage	their	clients.	Below,	we'll	review	all	of	the	API	endpoints	for	managing	clients.	For
convenience,	we'll	use	Axios	to	demonstrate	making	HTTP	requests	to	the	endpoints.

The	JSON	API	is	guarded	by	the	web	and	auth	middleware;	therefore,	it	may	only	be	called	from	your	own
application.	It	is	not	able	to	be	called	from	an	external	source.

TIP	If	you	don't	want	to	implement	the	entire	client	management	frontend	yourself,	you	can	use	the
frontend	quickstart	to	have	a	fully	functional	frontend	in	a	matter	of	minutes.

GET	/oauth/clients

This	route	returns	all	of	the	clients	for	the	authenticated	user.	This	is	primarily	useful	for	listing	all	of	the	user's
clients	so	that	they	may	edit	or	delete	them:

axios.get('/oauth/clients')

				.then(response	=>	{

								console.log(response.data);

				});

POST	/oauth/clients

This	route	is	used	to	create	new	clients.	It	requires	two	pieces	of	data:	the	client's	name	and	a	redirect	URL.	The
redirect	URL	is	where	the	user	will	be	redirected	after	approving	or	denying	a	request	for	authorization.

When	a	client	is	created,	it	will	be	issued	a	client	ID	and	client	secret.	These	values	will	be	used	when
requesting	access	tokens	from	your	application.	The	client	creation	route	will	return	the	new	client	instance:

const	data	=	{

				name:	'Client	Name',

				redirect:	'http://example.com/callback'

};

axios.post('/oauth/clients',	data)

				.then(response	=>	{

								console.log(response.data);

				})

				.catch	(response	=>	{

								//	List	errors	on	response...

				});

PUT	/oauth/clients/{client-id}

Laravel	Documentation	-	7.x	/	Passport 600

https://github.com/axios/axios

This	route	is	used	to	update	clients.	It	requires	two	pieces	of	data:	the	client's	name	and	a	redirect	URL.	The	
redirect	URL	is	where	the	user	will	be	redirected	after	approving	or	denying	a	request	for	authorization.	The
route	will	return	the	updated	client	instance:

const	data	=	{

				name:	'New	Client	Name',

				redirect:	'http://example.com/callback'

};

axios.put('/oauth/clients/'	+	clientId,	data)

				.then(response	=>	{

								console.log(response.data);

				})

				.catch	(response	=>	{

								//	List	errors	on	response...

				});

DELETE	/oauth/clients/{client-id}

This	route	is	used	to	delete	clients:

axios.delete('/oauth/clients/'	+	clientId)

				.then(response	=>	{

								//

				});

Requesting	Tokens

Redirecting	For	Authorization

Once	a	client	has	been	created,	developers	may	use	their	client	ID	and	secret	to	request	an	authorization	code
and	access	token	from	your	application.	First,	the	consuming	application	should	make	a	redirect	request	to	your
application's	/oauth/authorize	route	like	so:

Route::get('/redirect',	function	(Request	$request)	{

				$request->session()->put('state',	$state	=	Str::random(40));

				$query	=	http_build_query([

								'client_id'	=>	'client-id',

								'redirect_uri'	=>	'http://example.com/callback',

								'response_type'	=>	'code',

								'scope'	=>	'',

								'state'	=>	$state,

]);

				return	redirect('http://your-app.com/oauth/authorize?'.$query);

});

TIP	Remember,	the	/oauth/authorize	route	is	already	defined	by	the	Passport::routes	method.	You	do	not
need	to	manually	define	this	route.

Approving	The	Request

When	receiving	authorization	requests,	Passport	will	automatically	display	a	template	to	the	user	allowing	them
to	approve	or	deny	the	authorization	request.	If	they	approve	the	request,	they	will	be	redirected	back	to	the	
redirect_uri	that	was	specified	by	the	consuming	application.	The	redirect_uri	must	match	the	redirect	URL
that	was	specified	when	the	client	was	created.

If	you	would	like	to	customize	the	authorization	approval	screen,	you	may	publish	Passport's	views	using	the	
vendor:publish	Artisan	command.	The	published	views	will	be	placed	in	resources/views/vendor/passport:

php	artisan	vendor:publish	--tag=passport-views

Sometimes	you	may	wish	to	skip	the	authorization	prompt,	such	as	when	authorizing	a	first-party	client.	You
may	accomplish	this	by	extending	the	Client	model	and	defining	a	skipsAuthorization	method.	If	
skipsAuthorization	returns	true	the	client	will	be	approved	and	the	user	will	be	redirected	back	to	the	
redirect_uri	immediately:

Laravel	Documentation	-	7.x	/	Passport 601

<?php

namespace	App\Models\Passport;

use	Laravel\Passport\Client	as	BaseClient;

class	Client	extends	BaseClient

{

				/**

					*	Determine	if	the	client	should	skip	the	authorization	prompt.

					*

					*	@return	bool

					*/

				public	function	skipsAuthorization()

				{

								return	$this->firstParty();

				}

}

Converting	Authorization	Codes	To	Access	Tokens

If	the	user	approves	the	authorization	request,	they	will	be	redirected	back	to	the	consuming	application.	The
consumer	should	first	verify	the	state	parameter	against	the	value	that	was	stored	prior	to	the	redirect.	If	the
state	parameter	matches	the	consumer	should	issue	a	POST	request	to	your	application	to	request	an	access
token.	The	request	should	include	the	authorization	code	that	was	issued	by	your	application	when	the	user
approved	the	authorization	request.	In	this	example,	we'll	use	the	Guzzle	HTTP	library	to	make	the	POST
request:

Route::get('/callback',	function	(Request	$request)	{

				$state	=	$request->session()->pull('state');

				throw_unless(

								strlen($state)	>	0	&&	$state	===	$request->state,

								InvalidArgumentException::class

);

				$http	=	new	GuzzleHttp\Client;

				$response	=	$http->post('http://your-app.com/oauth/token',	[

								'form_params'	=>	[

												'grant_type'	=>	'authorization_code',

												'client_id'	=>	'client-id',

												'client_secret'	=>	'client-secret',

												'redirect_uri'	=>	'http://example.com/callback',

												'code'	=>	$request->code,

],

]);

				return	json_decode((string)	$response->getBody(),	true);

});

This	/oauth/token	route	will	return	a	JSON	response	containing	access_token,	refresh_token,	and	expires_in
attributes.	The	expires_in	attribute	contains	the	number	of	seconds	until	the	access	token	expires.

TIP	Like	the	/oauth/authorize	route,	the	/oauth/token	route	is	defined	for	you	by	the	Passport::routes
method.	There	is	no	need	to	manually	define	this	route.	By	default,	this	route	is	throttled	using	the	settings
of	the	ThrottleRequests	middleware.

JSON	API

Passport	also	includes	a	JSON	API	for	managing	authorized	access	tokens.	You	may	pair	this	with	your	own
frontend	to	offer	your	users	a	dashboard	for	managing	access	tokens.	For	convenience,	we'll	use	Axios	to
demonstrate	making	HTTP	requests	to	the	endpoints.	The	JSON	API	is	guarded	by	the	web	and	auth
middleware;	therefore,	it	may	only	be	called	from	your	own	application.

GET	/oauth/tokens

This	route	returns	all	of	the	authorized	access	tokens	that	the	authenticated	user	has	created.	This	is	primarily
useful	for	listing	all	of	the	user's	tokens	so	that	they	can	revoke	them:

axios.get('/oauth/tokens')

Laravel	Documentation	-	7.x	/	Passport 602

https://github.com/mzabriskie/axios

				.then(response	=>	{

								console.log(response.data);

				});

DELETE	/oauth/tokens/{token-id}

This	route	may	be	used	to	revoke	authorized	access	tokens	and	their	related	refresh	tokens:

axios.delete('/oauth/tokens/'	+	tokenId);

Refreshing	Tokens

If	your	application	issues	short-lived	access	tokens,	users	will	need	to	refresh	their	access	tokens	via	the	refresh
token	that	was	provided	to	them	when	the	access	token	was	issued.	In	this	example,	we'll	use	the	Guzzle	HTTP
library	to	refresh	the	token:

$http	=	new	GuzzleHttp\Client;

$response	=	$http->post('http://your-app.com/oauth/token',	[

				'form_params'	=>	[

								'grant_type'	=>	'refresh_token',

								'refresh_token'	=>	'the-refresh-token',

								'client_id'	=>	'client-id',

								'client_secret'	=>	'client-secret',

								'scope'	=>	'',

],

]);

return	json_decode((string)	$response->getBody(),	true);

This	/oauth/token	route	will	return	a	JSON	response	containing	access_token,	refresh_token,	and	expires_in
attributes.	The	expires_in	attribute	contains	the	number	of	seconds	until	the	access	token	expires.

Revoking	Tokens

You	may	revoke	a	token	by	using	the	revokeAccessToken	method	on	the	TokenRepository.	You	may	revoke	a
token's	refresh	tokens	using	the	revokeRefreshTokensByAccessTokenId	method	on	the	RefreshTokenRepository:

$tokenRepository	=	app('Laravel\Passport\TokenRepository');

$refreshTokenRepository	=	app('Laravel\Passport\RefreshTokenRepository');

//	Revoke	an	access	token...

$tokenRepository->revokeAccessToken($tokenId);

//	Revoke	all	of	the	token's	refresh	tokens...

$refreshTokenRepository->revokeRefreshTokensByAccessTokenId($tokenId);

Purging	Tokens

When	tokens	have	been	revoked	or	expired,	you	might	want	to	purge	them	from	the	database.	Passport	ships
with	a	command	that	can	do	this	for	you:

#	Purge	revoked	and	expired	tokens	and	auth	codes...

php	artisan	passport:purge

#	Only	purge	revoked	tokens	and	auth	codes...

php	artisan	passport:purge	--revoked

#	Only	purge	expired	tokens	and	auth	codes...

php	artisan	passport:purge	--expired

You	may	also	configure	a	scheduled	job	in	your	console	Kernel	class	to	automatically	prune	your	tokens	on	a
schedule:

/**

	*	Define	the	application's	command	schedule.

	*

	*	@param		\Illuminate\Console\Scheduling\Schedule		$schedule

	*	@return	void

	*/

Laravel	Documentation	-	7.x	/	Passport 603

protected	function	schedule(Schedule	$schedule)

{

				$schedule->command('passport:purge')->hourly();

}

Authorization	Code	Grant	with	PKCE

The	Authorization	Code	grant	with	"Proof	Key	for	Code	Exchange"	(PKCE)	is	a	secure	way	to	authenticate
single	page	applications	or	native	applications	to	access	your	API.	This	grant	should	be	used	when	you	can't
guarantee	that	the	client	secret	will	be	stored	confidentially	or	in	order	to	mitigate	the	threat	of	having	the
authorization	code	intercepted	by	an	attacker.	A	combination	of	a	"code	verifier"	and	a	"code	challenge"
replaces	the	client	secret	when	exchanging	the	authorization	code	for	an	access	token.

Creating	The	Client

Before	your	application	can	issue	tokens	via	the	authorization	code	grant	with	PKCE,	you	will	need	to	create	a
PKCE-enabled	client.	You	may	do	this	using	the	passport:client	command	with	the	--public	option:

php	artisan	passport:client	--public

Requesting	Tokens

Code	Verifier	&	Code	Challenge

As	this	authorization	grant	does	not	provide	a	client	secret,	developers	will	need	to	generate	a	combination	of	a
code	verifier	and	a	code	challenge	in	order	to	request	a	token.

The	code	verifier	should	be	a	random	string	of	between	43	and	128	characters	containing	letters,	numbers	and
"-",	".",	"_",	"~",	as	defined	in	the	RFC	7636	specification.

The	code	challenge	should	be	a	Base64	encoded	string	with	URL	and	filename-safe	characters.	The	trailing	'='
characters	should	be	removed	and	no	line	breaks,	whitespace,	or	other	additional	characters	should	be	present.

$encoded	=	base64_encode(hash('sha256',	$code_verifier,	true));

$codeChallenge	=	strtr(rtrim($encoded,	'='),	'+/',	'-_');

Redirecting	For	Authorization

Once	a	client	has	been	created,	you	may	use	the	client	ID	and	the	generated	code	verifier	and	code	challenge	to
request	an	authorization	code	and	access	token	from	your	application.	First,	the	consuming	application	should
make	a	redirect	request	to	your	application's	/oauth/authorize	route:

Route::get('/redirect',	function	(Request	$request)	{

				$request->session()->put('state',	$state	=	Str::random(40));

				$request->session()->put('code_verifier',	$code_verifier	=	Str::random(128));

				$codeChallenge	=	strtr(rtrim(

								base64_encode(hash('sha256',	$code_verifier,	true))

				,	'='),	'+/',	'-_');

				$query	=	http_build_query([

								'client_id'	=>	'client-id',

								'redirect_uri'	=>	'http://example.com/callback',

								'response_type'	=>	'code',

								'scope'	=>	'',

								'state'	=>	$state,

								'code_challenge'	=>	$codeChallenge,

								'code_challenge_method'	=>	'S256',

]);

				return	redirect('http://your-app.com/oauth/authorize?'.$query);

});

Converting	Authorization	Codes	To	Access	Tokens

Laravel	Documentation	-	7.x	/	Passport 604

https://tools.ietf.org/html/rfc7636

If	the	user	approves	the	authorization	request,	they	will	be	redirected	back	to	the	consuming	application.	The
consumer	should	verify	the	state	parameter	against	the	value	that	was	stored	prior	to	the	redirect,	as	in	the
standard	Authorization	Code	Grant.

If	the	state	parameter	matches,	the	consumer	should	issue	a	POST	request	to	your	application	to	request	an	access
token.	The	request	should	include	the	authorization	code	that	was	issued	by	your	application	when	the	user
approved	the	authorization	request	along	with	the	originally	generated	code	verifier:

Route::get('/callback',	function	(Request	$request)	{

				$state	=	$request->session()->pull('state');

				$codeVerifier	=	$request->session()->pull('code_verifier');

				throw_unless(

								strlen($state)	>	0	&&	$state	===	$request->state,

								InvalidArgumentException::class

);

				$response	=	(new	GuzzleHttp\Client)->post('http://your-app.com/oauth/token',	[

								'form_params'	=>	[

												'grant_type'	=>	'authorization_code',

												'client_id'	=>	'client-id',

												'redirect_uri'	=>	'http://example.com/callback',

												'code_verifier'	=>	$codeVerifier,

												'code'	=>	$request->code,

],

]);

				return	json_decode((string)	$response->getBody(),	true);

});

Password	Grant	Tokens

The	OAuth2	password	grant	allows	your	other	first-party	clients,	such	as	a	mobile	application,	to	obtain	an
access	token	using	an	e-mail	address	/	username	and	password.	This	allows	you	to	issue	access	tokens	securely
to	your	first-party	clients	without	requiring	your	users	to	go	through	the	entire	OAuth2	authorization	code
redirect	flow.

Creating	A	Password	Grant	Client

Before	your	application	can	issue	tokens	via	the	password	grant,	you	will	need	to	create	a	password	grant
client.	You	may	do	this	using	the	passport:client	command	with	the	--password	option.	If	you	have	already	run
the	passport:install	command,	you	do	not	need	to	run	this	command:

php	artisan	passport:client	--password

Requesting	Tokens

Once	you	have	created	a	password	grant	client,	you	may	request	an	access	token	by	issuing	a	POST	request	to
the	/oauth/token	route	with	the	user's	email	address	and	password.	Remember,	this	route	is	already	registered
by	the	Passport::routes	method	so	there	is	no	need	to	define	it	manually.	If	the	request	is	successful,	you	will
receive	an	access_token	and	refresh_token	in	the	JSON	response	from	the	server:

$http	=	new	GuzzleHttp\Client;

$response	=	$http->post('http://your-app.com/oauth/token',	[

				'form_params'	=>	[

								'grant_type'	=>	'password',

								'client_id'	=>	'client-id',

								'client_secret'	=>	'client-secret',

								'username'	=>	'taylor@laravel.com',

								'password'	=>	'my-password',

								'scope'	=>	'',

],

]);

return	json_decode((string)	$response->getBody(),	true);

TIP	Remember,	access	tokens	are	long-lived	by	default.	However,	you	are	free	to	configure	your

Laravel	Documentation	-	7.x	/	Passport 605

maximum	access	token	lifetime	if	needed.

Requesting	All	Scopes

When	using	the	password	grant	or	client	credentials	grant,	you	may	wish	to	authorize	the	token	for	all	of	the
scopes	supported	by	your	application.	You	can	do	this	by	requesting	the	*	scope.	If	you	request	the	*	scope,	the	
can	method	on	the	token	instance	will	always	return	true.	This	scope	may	only	be	assigned	to	a	token	that	is
issued	using	the	password	or	client_credentials	grant:

$response	=	$http->post('http://your-app.com/oauth/token',	[

				'form_params'	=>	[

								'grant_type'	=>	'password',

								'client_id'	=>	'client-id',

								'client_secret'	=>	'client-secret',

								'username'	=>	'taylor@laravel.com',

								'password'	=>	'my-password',

								'scope'	=>	'*',

],

]);

Customizing	The	User	Provider

If	your	application	uses	more	than	one	authentication	user	provider,	you	may	specify	which	user	provider	the
password	grant	client	uses	by	providing	a	--provider	option	when	creating	the	client	via	the	artisan	
passport:client	--password	command.	The	given	provider	name	should	match	a	valid	provider	defined	in	your	
config/auth.php	configuration	file.	You	can	then	protect	your	route	using	middleware	to	ensure	that	only	users
from	the	guard's	specified	provider	are	authorized.

Customizing	The	Username	Field

When	authenticating	using	the	password	grant,	Passport	will	use	the	email	attribute	of	your	model	as	the
"username".	However,	you	may	customize	this	behavior	by	defining	a	findForPassport	method	on	your	model:

<?php

namespace	App;

use	Illuminate\Foundation\Auth\User	as	Authenticatable;

use	Illuminate\Notifications\Notifiable;

use	Laravel\Passport\HasApiTokens;

class	User	extends	Authenticatable

{

				use	HasApiTokens,	Notifiable;

				/**

					*	Find	the	user	instance	for	the	given	username.

					*

					*	@param		string		$username

					*	@return	\App\User

					*/

				public	function	findForPassport($username)

				{

								return	$this->where('username',	$username)->first();

				}

}

Customizing	The	Password	Validation

When	authenticating	using	the	password	grant,	Passport	will	use	the	password	attribute	of	your	model	to
validate	the	given	password.	If	your	model	does	not	have	a	password	attribute	or	you	wish	to	customize	the
password	validation	logic,	you	can	define	a	validateForPassportPasswordGrant	method	on	your	model:

<?php

namespace	App;

use	Illuminate\Foundation\Auth\User	as	Authenticatable;

use	Illuminate\Notifications\Notifiable;

Laravel	Documentation	-	7.x	/	Passport 606

use	Illuminate\Support\Facades\Hash;

use	Laravel\Passport\HasApiTokens;

class	User	extends	Authenticatable

{

				use	HasApiTokens,	Notifiable;

				/**

					*	Validate	the	password	of	the	user	for	the	Passport	password	grant.

					*

					*	@param		string		$password

					*	@return	bool

					*/

				public	function	validateForPassportPasswordGrant($password)

				{

								return	Hash::check($password,	$this->password);

				}

}

Implicit	Grant	Tokens

The	implicit	grant	is	similar	to	the	authorization	code	grant;	however,	the	token	is	returned	to	the	client	without
exchanging	an	authorization	code.	This	grant	is	most	commonly	used	for	JavaScript	or	mobile	applications
where	the	client	credentials	can't	be	securely	stored.	To	enable	the	grant,	call	the	enableImplicitGrant	method	in
your	AuthServiceProvider:

/**

	*	Register	any	authentication	/	authorization	services.

	*

	*	@return	void

	*/

public	function	boot()

{

				$this->registerPolicies();

				Passport::routes();

				Passport::enableImplicitGrant();

}

Once	a	grant	has	been	enabled,	developers	may	use	their	client	ID	to	request	an	access	token	from	your
application.	The	consuming	application	should	make	a	redirect	request	to	your	application's	/oauth/authorize
route	like	so:

Route::get('/redirect',	function	(Request	$request)	{

				$request->session()->put('state',	$state	=	Str::random(40));

				$query	=	http_build_query([

								'client_id'	=>	'client-id',

								'redirect_uri'	=>	'http://example.com/callback',

								'response_type'	=>	'token',

								'scope'	=>	'',

								'state'	=>	$state,

]);

				return	redirect('http://your-app.com/oauth/authorize?'.$query);

});

TIP	Remember,	the	/oauth/authorize	route	is	already	defined	by	the	Passport::routes	method.	You	do	not
need	to	manually	define	this	route.

Client	Credentials	Grant	Tokens

The	client	credentials	grant	is	suitable	for	machine-to-machine	authentication.	For	example,	you	might	use	this
grant	in	a	scheduled	job	which	is	performing	maintenance	tasks	over	an	API.

Before	your	application	can	issue	tokens	via	the	client	credentials	grant,	you	will	need	to	create	a	client
credentials	grant	client.	You	may	do	this	using	the	--client	option	of	the	passport:client	command:

php	artisan	passport:client	--client

Laravel	Documentation	-	7.x	/	Passport 607

Next,	to	use	this	grant	type,	you	need	to	add	the	CheckClientCredentials	middleware	to	the	$routeMiddleware
property	of	your	app/Http/Kernel.php	file:

use	Laravel\Passport\Http\Middleware\CheckClientCredentials;

protected	$routeMiddleware	=	[

				'client'	=>	CheckClientCredentials::class,

];

Then,	attach	the	middleware	to	a	route:

Route::get('/orders',	function	(Request	$request)	{

				...

})->middleware('client');

To	restrict	access	to	the	route	to	specific	scopes	you	may	provide	a	comma-delimited	list	of	the	required	scopes
when	attaching	the	client	middleware	to	the	route:

Route::get('/orders',	function	(Request	$request)	{

				...

})->middleware('client:check-status,your-scope');

Retrieving	Tokens

To	retrieve	a	token	using	this	grant	type,	make	a	request	to	the	oauth/token	endpoint:

$guzzle	=	new	GuzzleHttp\Client;

$response	=	$guzzle->post('http://your-app.com/oauth/token',	[

				'form_params'	=>	[

								'grant_type'	=>	'client_credentials',

								'client_id'	=>	'client-id',

								'client_secret'	=>	'client-secret',

								'scope'	=>	'your-scope',

],

]);

return	json_decode((string)	$response->getBody(),	true)['access_token'];

Personal	Access	Tokens

Sometimes,	your	users	may	want	to	issue	access	tokens	to	themselves	without	going	through	the	typical
authorization	code	redirect	flow.	Allowing	users	to	issue	tokens	to	themselves	via	your	application's	UI	can	be
useful	for	allowing	users	to	experiment	with	your	API	or	may	serve	as	a	simpler	approach	to	issuing	access
tokens	in	general.

Creating	A	Personal	Access	Client

Before	your	application	can	issue	personal	access	tokens,	you	will	need	to	create	a	personal	access	client.	You
may	do	this	using	the	passport:client	command	with	the	--personal	option.	If	you	have	already	run	the	
passport:install	command,	you	do	not	need	to	run	this	command:

php	artisan	passport:client	--personal

After	creating	your	personal	access	client,	place	the	client's	ID	and	plain-text	secret	value	in	your	application's	
.env	file:

PASSPORT_PERSONAL_ACCESS_CLIENT_ID=client-id-value

PASSPORT_PERSONAL_ACCESS_CLIENT_SECRET=unhashed-client-secret-value

Next,	you	should	register	these	values	by	placing	the	following	calls	to	Passport::personalAccessClientId	and	
Passport::personalAccessClientSecret	within	the	boot	method	of	your	AuthServiceProvider:

/**

	*	Register	any	authentication	/	authorization	services.

	*

	*	@return	void

	*/

public	function	boot()

Laravel	Documentation	-	7.x	/	Passport 608

{

				$this->registerPolicies();

				Passport::routes();

				Passport::personalAccessClientId(

								config('passport.personal_access_client.id')

);

				Passport::personalAccessClientSecret(

								config('passport.personal_access_client.secret')

);

}

Managing	Personal	Access	Tokens

Once	you	have	created	a	personal	access	client,	you	may	issue	tokens	for	a	given	user	using	the	createToken
method	on	the	User	model	instance.	The	createToken	method	accepts	the	name	of	the	token	as	its	first	argument
and	an	optional	array	of	scopes	as	its	second	argument:

$user	=	App\User::find(1);

//	Creating	a	token	without	scopes...

$token	=	$user->createToken('Token	Name')->accessToken;

//	Creating	a	token	with	scopes...

$token	=	$user->createToken('My	Token',	['place-orders'])->accessToken;

JSON	API

Passport	also	includes	a	JSON	API	for	managing	personal	access	tokens.	You	may	pair	this	with	your	own
frontend	to	offer	your	users	a	dashboard	for	managing	personal	access	tokens.	Below,	we'll	review	all	of	the
API	endpoints	for	managing	personal	access	tokens.	For	convenience,	we'll	use	Axios	to	demonstrate	making
HTTP	requests	to	the	endpoints.

The	JSON	API	is	guarded	by	the	web	and	auth	middleware;	therefore,	it	may	only	be	called	from	your	own
application.	It	is	not	able	to	be	called	from	an	external	source.

TIP	If	you	don't	want	to	implement	the	personal	access	token	frontend	yourself,	you	can	use	the	frontend
quickstart	to	have	a	fully	functional	frontend	in	a	matter	of	minutes.

GET	/oauth/scopes

This	route	returns	all	of	the	scopes	defined	for	your	application.	You	may	use	this	route	to	list	the	scopes	a	user
may	assign	to	a	personal	access	token:

axios.get('/oauth/scopes')

				.then(response	=>	{

								console.log(response.data);

				});

GET	/oauth/personal-access-tokens

This	route	returns	all	of	the	personal	access	tokens	that	the	authenticated	user	has	created.	This	is	primarily
useful	for	listing	all	of	the	user's	tokens	so	that	they	may	edit	or	revoke	them:

axios.get('/oauth/personal-access-tokens')

				.then(response	=>	{

								console.log(response.data);

				});

POST	/oauth/personal-access-tokens

This	route	creates	new	personal	access	tokens.	It	requires	two	pieces	of	data:	the	token's	name	and	the	scopes
that	should	be	assigned	to	the	token:

const	data	=	{

				name:	'Token	Name',

Laravel	Documentation	-	7.x	/	Passport 609

https://github.com/mzabriskie/axios

				scopes:	[]

};

axios.post('/oauth/personal-access-tokens',	data)

				.then(response	=>	{

								console.log(response.data.accessToken);

				})

				.catch	(response	=>	{

								//	List	errors	on	response...

				});

DELETE	/oauth/personal-access-tokens/{token-id}

This	route	may	be	used	to	revoke	personal	access	tokens:

axios.delete('/oauth/personal-access-tokens/'	+	tokenId);

Protecting	Routes

Via	Middleware

Passport	includes	an	authentication	guard	that	will	validate	access	tokens	on	incoming	requests.	Once	you	have
configured	the	api	guard	to	use	the	passport	driver,	you	only	need	to	specify	the	auth:api	middleware	on	any
routes	that	require	a	valid	access	token:

Route::get('/user',	function	()	{

				//

})->middleware('auth:api');

Multiple	Authentication	Guards

If	your	application	authenticates	different	types	of	users	that	perhaps	use	entirely	different	Eloquent	models,
you	will	likely	need	to	define	a	guard	configuration	for	each	user	provider	type	in	your	application.	This	allows
you	to	protect	requests	intended	for	specific	user	providers.	For	example,	given	the	following	guard
configuration	the	config/auth.php	configuration	file:

'api'	=>	[

				'driver'	=>	'passport',

				'provider'	=>	'users',

],

'api-customers'	=>	[

				'driver'	=>	'passport',

				'provider'	=>	'customers',

],

The	following	route	will	utilize	the	api-customers	guard,	which	uses	the	customers	user	provider,	to	authenticate
incoming	requests:

Route::get('/customer',	function	()	{

				//

})->middleware('auth:api-customers');

TIP	For	more	information	on	using	multiple	user	providers	with	Passport,	please	consult	the	password
grant	documentation.

Passing	The	Access	Token

When	calling	routes	that	are	protected	by	Passport,	your	application's	API	consumers	should	specify	their
access	token	as	a	Bearer	token	in	the	Authorization	header	of	their	request.	For	example,	when	using	the	Guzzle
HTTP	library:

$response	=	$client->request('GET',	'/api/user',	[

				'headers'	=>	[

								'Accept'	=>	'application/json',

								'Authorization'	=>	'Bearer	'.$accessToken,

],

]);

Laravel	Documentation	-	7.x	/	Passport 610

Token	Scopes

Scopes	allow	your	API	clients	to	request	a	specific	set	of	permissions	when	requesting	authorization	to	access
an	account.	For	example,	if	you	are	building	an	e-commerce	application,	not	all	API	consumers	will	need	the
ability	to	place	orders.	Instead,	you	may	allow	the	consumers	to	only	request	authorization	to	access	order
shipment	statuses.	In	other	words,	scopes	allow	your	application's	users	to	limit	the	actions	a	third-party
application	can	perform	on	their	behalf.

Defining	Scopes

You	may	define	your	API's	scopes	using	the	Passport::tokensCan	method	in	the	boot	method	of	your	
AuthServiceProvider.	The	tokensCan	method	accepts	an	array	of	scope	names	and	scope	descriptions.	The	scope
description	may	be	anything	you	wish	and	will	be	displayed	to	users	on	the	authorization	approval	screen:

use	Laravel\Passport\Passport;

Passport::tokensCan([

				'place-orders'	=>	'Place	orders',

				'check-status'	=>	'Check	order	status',

]);

Default	Scope

If	a	client	does	not	request	any	specific	scopes,	you	may	configure	your	Passport	server	to	attach	a	default
scope	to	the	token	using	the	setDefaultScope	method.	Typically,	you	should	call	this	method	from	the	boot
method	of	your	AuthServiceProvider:

use	Laravel\Passport\Passport;

Passport::setDefaultScope([

				'check-status',

				'place-orders',

]);

Assigning	Scopes	To	Tokens

When	Requesting	Authorization	Codes

When	requesting	an	access	token	using	the	authorization	code	grant,	consumers	should	specify	their	desired
scopes	as	the	scope	query	string	parameter.	The	scope	parameter	should	be	a	space-delimited	list	of	scopes:

Route::get('/redirect',	function	()	{

				$query	=	http_build_query([

								'client_id'	=>	'client-id',

								'redirect_uri'	=>	'http://example.com/callback',

								'response_type'	=>	'code',

								'scope'	=>	'place-orders	check-status',

]);

				return	redirect('http://your-app.com/oauth/authorize?'.$query);

});

When	Issuing	Personal	Access	Tokens

If	you	are	issuing	personal	access	tokens	using	the	User	model's	createToken	method,	you	may	pass	the	array	of
desired	scopes	as	the	second	argument	to	the	method:

$token	=	$user->createToken('My	Token',	['place-orders'])->accessToken;

Checking	Scopes

Passport	includes	two	middleware	that	may	be	used	to	verify	that	an	incoming	request	is	authenticated	with	a
token	that	has	been	granted	a	given	scope.	To	get	started,	add	the	following	middleware	to	the	$routeMiddleware
property	of	your	app/Http/Kernel.php	file:

Laravel	Documentation	-	7.x	/	Passport 611

'scopes'	=>	\Laravel\Passport\Http\Middleware\CheckScopes::class,

'scope'	=>	\Laravel\Passport\Http\Middleware\CheckForAnyScope::class,

Check	For	All	Scopes

The	scopes	middleware	may	be	assigned	to	a	route	to	verify	that	the	incoming	request's	access	token	has	all	of
the	listed	scopes:

Route::get('/orders',	function	()	{

				//	Access	token	has	both	"check-status"	and	"place-orders"	scopes...

})->middleware(['auth:api',	'scopes:check-status,place-orders']);

Check	For	Any	Scopes

The	scope	middleware	may	be	assigned	to	a	route	to	verify	that	the	incoming	request's	access	token	has	at	least
one	of	the	listed	scopes:

Route::get('/orders',	function	()	{

				//	Access	token	has	either	"check-status"	or	"place-orders"	scope...

})->middleware(['auth:api',	'scope:check-status,place-orders']);

Checking	Scopes	On	A	Token	Instance

Once	an	access	token	authenticated	request	has	entered	your	application,	you	may	still	check	if	the	token	has	a
given	scope	using	the	tokenCan	method	on	the	authenticated	User	instance:

use	Illuminate\Http\Request;

Route::get('/orders',	function	(Request	$request)	{

				if	($request->user()->tokenCan('place-orders'))	{

								//

				}

});

Additional	Scope	Methods

The	scopeIds	method	will	return	an	array	of	all	defined	IDs	/	names:

Laravel\Passport\Passport::scopeIds();

The	scopes	method	will	return	an	array	of	all	defined	scopes	as	instances	of	Laravel\Passport\Scope:

Laravel\Passport\Passport::scopes();

The	scopesFor	method	will	return	an	array	of	Laravel\Passport\Scope	instances	matching	the	given	IDs	/	names:

Laravel\Passport\Passport::scopesFor(['place-orders',	'check-status']);

You	may	determine	if	a	given	scope	has	been	defined	using	the	hasScope	method:

Laravel\Passport\Passport::hasScope('place-orders');

Consuming	Your	API	With	JavaScript

When	building	an	API,	it	can	be	extremely	useful	to	be	able	to	consume	your	own	API	from	your	JavaScript
application.	This	approach	to	API	development	allows	your	own	application	to	consume	the	same	API	that	you
are	sharing	with	the	world.	The	same	API	may	be	consumed	by	your	web	application,	mobile	applications,
third-party	applications,	and	any	SDKs	that	you	may	publish	on	various	package	managers.

Typically,	if	you	want	to	consume	your	API	from	your	JavaScript	application,	you	would	need	to	manually
send	an	access	token	to	the	application	and	pass	it	with	each	request	to	your	application.	However,	Passport
includes	a	middleware	that	can	handle	this	for	you.	All	you	need	to	do	is	add	the	CreateFreshApiToken
middleware	to	your	web	middleware	group	in	your	app/Http/Kernel.php	file:

'web'	=>	[

				//	Other	middleware...

Laravel	Documentation	-	7.x	/	Passport 612

				\Laravel\Passport\Http\Middleware\CreateFreshApiToken::class,

],

NOTE	You	should	ensure	that	the	CreateFreshApiToken	middleware	is	the	last	middleware	listed	in	your
middleware	stack.

This	Passport	middleware	will	attach	a	laravel_token	cookie	to	your	outgoing	responses.	This	cookie	contains
an	encrypted	JWT	that	Passport	will	use	to	authenticate	API	requests	from	your	JavaScript	application.	The
JWT	has	a	lifetime	equal	to	your	session.lifetime	configuration	value.	Now,	you	may	make	requests	to	your
application's	API	without	explicitly	passing	an	access	token:

axios.get('/api/user')

				.then(response	=>	{

								console.log(response.data);

				});

Customizing	The	Cookie	Name

If	needed,	you	can	customize	the	laravel_token	cookie's	name	using	the	Passport::cookie	method.	Typically,
this	method	should	be	called	from	the	boot	method	of	your	AuthServiceProvider:

/**

	*	Register	any	authentication	/	authorization	services.

	*

	*	@return	void

	*/

public	function	boot()

{

				$this->registerPolicies();

				Passport::routes();

				Passport::cookie('custom_name');

}

CSRF	Protection

When	using	this	method	of	authentication,	you	will	need	to	ensure	a	valid	CSRF	token	header	is	included	in
your	requests.	The	default	Laravel	JavaScript	scaffolding	includes	an	Axios	instance,	which	will	automatically
use	the	encrypted	XSRF-TOKEN	cookie	value	to	send	a	X-XSRF-TOKEN	header	on	same-origin	requests.

TIP	If	you	choose	to	send	the	X-CSRF-TOKEN	header	instead	of	X-XSRF-TOKEN,	you	will	need	to	use	the
unencrypted	token	provided	by	csrf_token().

Events

Passport	raises	events	when	issuing	access	tokens	and	refresh	tokens.	You	may	use	these	events	to	prune	or
revoke	other	access	tokens	in	your	database.	You	may	attach	listeners	to	these	events	in	your	application's	
EventServiceProvider:

/**

	*	The	event	listener	mappings	for	the	application.

	*

	*	@var	array

	*/

protected	$listen	=	[

				'Laravel\Passport\Events\AccessTokenCreated'	=>	[

								'App\Listeners\RevokeOldTokens',

],

				'Laravel\Passport\Events\RefreshTokenCreated'	=>	[

								'App\Listeners\PruneOldTokens',

],

];

Testing

Passport's	actingAs	method	may	be	used	to	specify	the	currently	authenticated	user	as	well	as	its	scopes.	The

Laravel	Documentation	-	7.x	/	Passport 613

first	argument	given	to	the	actingAs	method	is	the	user	instance	and	the	second	is	an	array	of	scopes	that	should
be	granted	to	the	user's	token:

use	App\User;

use	Laravel\Passport\Passport;

public	function	testServerCreation()

{

				Passport::actingAs(

								factory(User::class)->create(),

								['create-servers']

);

				$response	=	$this->post('/api/create-server');

				$response->assertStatus(201);

}

Passport's	actingAsClient	method	may	be	used	to	specify	the	currently	authenticated	client	as	well	as	its	scopes.
The	first	argument	given	to	the	actingAsClient	method	is	the	client	instance	and	the	second	is	an	array	of
scopes	that	should	be	granted	to	the	client's	token:

use	Laravel\Passport\Client;

use	Laravel\Passport\Passport;

public	function	testGetOrders()

{

				Passport::actingAsClient(

								factory(Client::class)->create(),

								['check-status']

);

				$response	=	$this->get('/api/orders');

				$response->assertStatus(200);

}

Laravel	Documentation	-	7.x	/	Passport 614

Official	Packages

Laravel	Sanctum
Introduction

How	It	Works
Installation
API	Token	Authentication

Issuing	API	Tokens
Token	Abilities
Protecting	Routes
Revoking	Tokens

SPA	Authentication
Configuration
Authenticating
Protecting	Routes
Authorizing	Private	Broadcast	Channels

Mobile	Application	Authentication
Issuing	API	Tokens
Protecting	Routes
Revoking	Tokens

Testing

Introduction

Laravel	Sanctum	provides	a	featherweight	authentication	system	for	SPAs	(single	page	applications),	mobile
applications,	and	simple,	token	based	APIs.	Sanctum	allows	each	user	of	your	application	to	generate	multiple
API	tokens	for	their	account.	These	tokens	may	be	granted	abilities	/	scopes	which	specify	which	actions	the
tokens	are	allowed	to	perform.

How	It	Works

Laravel	Sanctum	exists	to	solve	two	separate	problems.

API	Tokens

First,	it	is	a	simple	package	to	issue	API	tokens	to	your	users	without	the	complication	of	OAuth.	This	feature
is	inspired	by	GitHub	"access	tokens".	For	example,	imagine	the	"account	settings"	of	your	application	has	a
screen	where	a	user	may	generate	an	API	token	for	their	account.	You	may	use	Sanctum	to	generate	and
manage	those	tokens.	These	tokens	typically	have	a	very	long	expiration	time	(years),	but	may	be	manually
revoked	by	the	user	at	anytime.

Laravel	Sanctum	offers	this	feature	by	storing	user	API	tokens	in	a	single	database	table	and	authenticating
incoming	requests	via	the	Authorization	header	which	should	contain	a	valid	API	token.

SPA	Authentication

Second,	Sanctum	exists	to	offer	a	simple	way	to	authenticate	single	page	applications	(SPAs)	that	need	to
communicate	with	a	Laravel	powered	API.	These	SPAs	might	exist	in	the	same	repository	as	your	Laravel
application	or	might	be	an	entirely	separate	repository,	such	as	a	SPA	created	using	Vue	CLI.

For	this	feature,	Sanctum	does	not	use	tokens	of	any	kind.	Instead,	Sanctum	uses	Laravel's	built-in	cookie
based	session	authentication	services.	This	provides	the	benefits	of	CSRF	protection,	session	authentication,	as
well	as	protects	against	leakage	of	the	authentication	credentials	via	XSS.	Sanctum	will	only	attempt	to
authenticate	using	cookies	when	the	incoming	request	originates	from	your	own	SPA	frontend.

TIP	It	is	perfectly	fine	to	use	Sanctum	only	for	API	token	authentication	or	only	for	SPA	authentication.
Just	because	you	use	Sanctum	does	not	mean	you	are	required	to	use	both	features	it	offers.

Laravel	Documentation	-	7.x	/	Sanctum 615

Installation

You	may	install	Laravel	Sanctum	via	Composer:

composer	require	laravel/sanctum

Next,	you	should	publish	the	Sanctum	configuration	and	migration	files	using	the	vendor:publish	Artisan
command.	The	sanctum	configuration	file	will	be	placed	in	your	config	directory:

php	artisan	vendor:publish	--provider="Laravel\Sanctum\SanctumServiceProvider"

Finally,	you	should	run	your	database	migrations.	Sanctum	will	create	one	database	table	in	which	to	store	API
tokens:

php	artisan	migrate

Next,	if	you	plan	to	utilize	Sanctum	to	authenticate	an	SPA,	you	should	add	Sanctum's	middleware	to	your	api
middleware	group	within	your	app/Http/Kernel.php	file:

use	Laravel\Sanctum\Http\Middleware\EnsureFrontendRequestsAreStateful;

'api'	=>	[

				EnsureFrontendRequestsAreStateful::class,

				'throttle:60,1',

				\Illuminate\Routing\Middleware\SubstituteBindings::class,

],

Migration	Customization

If	you	are	not	going	to	use	Sanctum's	default	migrations,	you	should	call	the	Sanctum::ignoreMigrations	method
in	the	register	method	of	your	AppServiceProvider.	You	may	export	the	default	migrations	using	php	artisan	
vendor:publish	--tag=sanctum-migrations.

API	Token	Authentication

TIP	You	should	not	use	API	tokens	to	authenticate	your	own	first-party	SPA.	Instead,	use	Sanctum's	built-
in	SPA	authentication.

Issuing	API	Tokens

Sanctum	allows	you	to	issue	API	tokens	/	personal	access	tokens	that	may	be	used	to	authenticate	API	requests.
When	making	requests	using	API	tokens,	the	token	should	be	included	in	the	Authorization	header	as	a	Bearer
token.

To	begin	issuing	tokens	for	users,	your	User	model	should	use	the	HasApiTokens	trait:

use	Laravel\Sanctum\HasApiTokens;

class	User	extends	Authenticatable

{

				use	HasApiTokens,	Notifiable;

}

To	issue	a	token,	you	may	use	the	createToken	method.	The	createToken	method	returns	a	
Laravel\Sanctum\NewAccessToken	instance.	API	tokens	are	hashed	using	SHA-256	hashing	before	being	stored	in
your	database,	but	you	may	access	the	plain-text	value	of	the	token	using	the	plainTextToken	property	of	the	
NewAccessToken	instance.	You	should	display	this	value	to	the	user	immediately	after	the	token	has	been	created:

$token	=	$user->createToken('token-name');

return	$token->plainTextToken;

You	may	access	all	of	the	user's	tokens	using	the	tokens	Eloquent	relationship	provided	by	the	HasApiTokens
trait:

Laravel	Documentation	-	7.x	/	Sanctum 616

foreach	($user->tokens	as	$token)	{

				//

}

Token	Abilities

Sanctum	allows	you	to	assign	"abilities"	to	tokens,	similar	to	OAuth	"scopes".	You	may	pass	an	array	of	string
abilities	as	the	second	argument	to	the	createToken	method:

return	$user->createToken('token-name',	['server:update'])->plainTextToken;

When	handling	an	incoming	request	authenticated	by	Sanctum,	you	may	determine	if	the	token	has	a	given
ability	using	the	tokenCan	method:

if	($user->tokenCan('server:update'))	{

				//

}

TIP	For	convenience,	the	tokenCan	method	will	always	return	true	if	the	incoming	authenticated	request
was	from	your	first-party	SPA	and	you	are	using	Sanctum's	built-in	SPA	authentication.

Protecting	Routes

To	protect	routes	so	that	all	incoming	requests	must	be	authenticated,	you	should	attach	the	sanctum
authentication	guard	to	your	API	routes	within	your	routes/api.php	file.	This	guard	will	ensure	that	incoming
requests	are	authenticated	as	either	a	stateful	authenticated	requests	from	your	SPA	or	contain	a	valid	API	token
header	if	the	request	is	from	a	third	party:

Route::middleware('auth:sanctum')->get('/user',	function	(Request	$request)	{

				return	$request->user();

});

Revoking	Tokens

You	may	"revoke"	tokens	by	deleting	them	from	your	database	using	the	tokens	relationship	that	is	provided	by
the	HasApiTokens	trait:

//	Revoke	all	tokens...

$user->tokens()->delete();

//	Revoke	the	user's	current	token...

$request->user()->currentAccessToken()->delete();				

//	Revoke	a	specific	token...

$user->tokens()->where('id',	$id)->delete();

SPA	Authentication

Sanctum	exists	to	offer	a	simple	way	to	authenticate	single	page	applications	(SPAs)	that	need	to	communicate
with	a	Laravel	powered	API.	These	SPAs	might	exist	in	the	same	repository	as	your	Laravel	application	or
might	be	an	entirely	separate	repository,	such	as	a	SPA	created	using	Vue	CLI.

For	this	feature,	Sanctum	does	not	use	tokens	of	any	kind.	Instead,	Sanctum	uses	Laravel's	built-in	cookie
based	session	authentication	services.	This	provides	the	benefits	of	CSRF	protection,	session	authentication,	as
well	as	protects	against	leakage	of	the	authentication	credentials	via	XSS.	Sanctum	will	only	attempt	to
authenticate	using	cookies	when	the	incoming	request	originates	from	your	own	SPA	frontend.

NOTE	In	order	to	authenticate,	your	SPA	and	API	must	share	the	same	top-level	domain.	However,	they
may	be	placed	on	different	subdomains.

Configuration

Configuring	Your	First-Party	Domains

Laravel	Documentation	-	7.x	/	Sanctum 617

First,	you	should	configure	which	domains	your	SPA	will	be	making	requests	from.	You	may	configure	these
domains	using	the	stateful	configuration	option	in	your	sanctum	configuration	file.	This	configuration	setting
determines	which	domains	will	maintain	"stateful"	authentication	using	Laravel	session	cookies	when	making
requests	to	your	API.

NOTE	If	you	are	accessing	your	application	via	a	URL	that	includes	the	port	(127.0.0.1:8000),	you	should
ensure	that	you	include	the	port	number	with	the	domain.

Sanctum	Middleware

Next,	you	should	add	Sanctum's	middleware	to	your	api	middleware	group	within	your	app/Http/Kernel.php
file.	This	middleware	is	responsible	for	ensuring	that	incoming	requests	from	your	SPA	can	authenticate	using
Laravel's	session	cookies,	while	still	allowing	requests	from	third	parties	or	mobile	applications	to	authenticate
using	API	tokens:

use	Laravel\Sanctum\Http\Middleware\EnsureFrontendRequestsAreStateful;

'api'	=>	[

				EnsureFrontendRequestsAreStateful::class,

				'throttle:60,1',

				\Illuminate\Routing\Middleware\SubstituteBindings::class,

],

CORS	&	Cookies

If	you	are	having	trouble	authenticating	with	your	application	from	an	SPA	that	executes	on	a	separate
subdomain,	you	have	likely	misconfigured	your	CORS	(Cross-Origin	Resource	Sharing)	or	session	cookie
settings.

You	should	ensure	that	your	application's	CORS	configuration	is	returning	the	Access-Control-Allow-
Credentials	header	with	a	value	of	True	by	setting	the	supports_credentials	option	within	your	application's	
cors	configuration	file	to	true.

In	addition,	you	should	enable	the	withCredentials	option	on	your	global	axios	instance.	Typically,	this	should
be	performed	in	your	resources/js/bootstrap.js	file:

axios.defaults.withCredentials	=	true;

Finally,	you	should	ensure	your	application's	session	cookie	domain	configuration	supports	any	subdomain	of
your	root	domain.	You	may	do	this	by	prefixing	the	domain	with	a	leading	.	within	your	session	configuration
file:

'domain'	=>	'.domain.com',

Authenticating

To	authenticate	your	SPA,	your	SPA's	login	page	should	first	make	a	request	to	the	/sanctum/csrf-cookie	route
to	initialize	CSRF	protection	for	the	application:

axios.get('/sanctum/csrf-cookie').then(response	=>	{

				//	Login...

});

During	this	request	Laravel	will	set	an	XSRF-TOKEN	cookie	containing	the	current	CSRF	token.	This	token	should
then	be	passed	in	an	X-XSRF-TOKEN	header	on	subsequent	requests,	which	libraries	like	Axios	and	the	Angular
HttpClient	will	do	automatically	for	you.

Once	CSRF	protection	has	been	initialized,	you	should	make	a	POST	request	to	the	typical	Laravel	/login	route.
This	/login	route	may	be	provided	by	the	laravel/ui	authentication	scaffolding	package.

If	the	login	request	is	successful,	you	will	be	authenticated	and	subsequent	requests	to	your	API	routes	will
automatically	be	authenticated	via	the	session	cookie	that	the	Laravel	backend	issued	to	your	client.

TIP	You	are	free	to	write	your	own	/login	endpoint;	however,	you	should	ensure	that	it	authenticates	the

Laravel	Documentation	-	7.x	/	Sanctum 618

user	using	the	standard,	session	based	authentication	services	that	Laravel	provides.

Protecting	Routes

To	protect	routes	so	that	all	incoming	requests	must	be	authenticated,	you	should	attach	the	sanctum
authentication	guard	to	your	API	routes	within	your	routes/api.php	file.	This	guard	will	ensure	that	incoming
requests	are	authenticated	as	either	a	stateful	authenticated	requests	from	your	SPA	or	contain	a	valid	API	token
header	if	the	request	is	from	a	third	party:

Route::middleware('auth:sanctum')->get('/user',	function	(Request	$request)	{

				return	$request->user();

});

Authorizing	Private	Broadcast	Channels

If	your	SPA	needs	to	authenticate	with	private	/	presence	broadcast	channels,	you	should	place	the	
Broadcast::routes	method	call	within	your	routes/api.php	file:

Broadcast::routes(['middleware'	=>	['auth:sanctum']]);

Next,	in	order	for	Pusher's	authorization	requests	to	succeed,	you	will	need	to	provide	a	custom	Pusher	
authorizer	when	initializing	Laravel	Echo.	This	allows	your	application	to	configure	Pusher	to	use	the	axios
instance	that	is	properly	configured	for	cross-domain	requests:

window.Echo	=	new	Echo({

				broadcaster:	"pusher",

				cluster:	process.env.MIX_PUSHER_APP_CLUSTER,

				encrypted:	true,

				key:	process.env.MIX_PUSHER_APP_KEY,

				authorizer:	(channel,	options)	=>	{

								return	{

												authorize:	(socketId,	callback)	=>	{

																axios.post('/api/broadcasting/auth',	{

																				socket_id:	socketId,

																				channel_name:	channel.name

																})

																.then(response	=>	{

																				callback(false,	response.data);

																})

																.catch(error	=>	{

																				callback(true,	error);

																});

												}

								};

				},

})

Mobile	Application	Authentication

You	may	use	Sanctum	tokens	to	authenticate	your	mobile	application's	requests	to	your	API.	The	process	for
authenticating	mobile	application	requests	is	similar	to	authenticating	third-party	API	requests;	however,	there
are	small	differences	in	how	you	will	issue	the	API	tokens.

Issuing	API	Tokens

To	get	started,	create	a	route	that	accepts	the	user's	email	/	username,	password,	and	device	name,	then
exchanges	those	credentials	for	a	new	Sanctum	token.	The	endpoint	will	return	the	plain-text	Sanctum	token
which	may	then	be	stored	on	the	mobile	device	and	used	to	make	additional	API	requests:

use	App\User;

use	Illuminate\Http\Request;

use	Illuminate\Support\Facades\Hash;

use	Illuminate\Validation\ValidationException;

Route::post('/sanctum/token',	function	(Request	$request)	{

				$request->validate([

								'email'	=>	'required|email',

								'password'	=>	'required',

Laravel	Documentation	-	7.x	/	Sanctum 619

								'device_name'	=>	'required',

]);

				$user	=	User::where('email',	$request->email)->first();

				if	(!	$user	||	!	Hash::check($request->password,	$user->password))	{

								throw	ValidationException::withMessages([

												'email'	=>	['The	provided	credentials	are	incorrect.'],

]);

				}

				return	$user->createToken($request->device_name)->plainTextToken;

});

When	the	mobile	device	uses	the	token	to	make	an	API	request	to	your	application,	it	should	pass	the	token	in
the	Authorization	header	as	a	Bearer	token.

TIP	When	issuing	tokens	for	a	mobile	application,	you	are	also	free	to	specify	token	abilities

Protecting	Routes

As	previously	documented,	you	may	protect	routes	so	that	all	incoming	requests	must	be	authenticated	by
attaching	the	sanctum	authentication	guard	to	the	routes.	Typically,	you	will	attach	this	guard	to	the	routes
defined	within	your	routes/api.php	file:

Route::middleware('auth:sanctum')->get('/user',	function	(Request	$request)	{

				return	$request->user();

});

Revoking	Tokens

To	allow	users	to	revoke	API	tokens	issued	to	mobile	devices,	you	may	list	them	by	name,	along	with	a
"Revoke"	button,	within	an	"account	settings"	portion	of	your	web	application's	UI.	When	the	user	clicks	the
"Revoke"	button,	you	can	delete	the	token	from	the	database.	Remember,	you	can	access	a	user's	API	tokens
via	the	tokens	relationship	provided	by	the	HasApiTokens	trait:

//	Revoke	all	tokens...

$user->tokens()->delete();

//	Revoke	a	specific	token...

$user->tokens()->where('id',	$id)->delete();

Testing

While	testing,	the	Sanctum::actingAs	method	may	be	used	to	authenticate	a	user	and	specify	which	abilities	are
granted	to	their	token:

use	App\User;

use	Laravel\Sanctum\Sanctum;

public	function	test_task_list_can_be_retrieved()

{

				Sanctum::actingAs(

								factory(User::class)->create(),

								['view-tasks']

);

				$response	=	$this->get('/api/task');

				$response->assertOk();

}

If	you	would	like	to	grant	all	abilities	to	the	token,	you	should	include	*	in	the	ability	list	provided	to	the	
actingAs	method:

Sanctum::actingAs(

				factory(User::class)->create(),

				['*']

);

Laravel	Documentation	-	7.x	/	Sanctum 620

Official	Packages

Laravel	Scout
Introduction
Installation

Queueing
Driver	Prerequisites

Configuration
Configuring	Model	Indexes
Configuring	Searchable	Data
Configuring	The	Model	ID
Identifying	Users

Indexing
Batch	Import
Adding	Records
Updating	Records
Removing	Records
Pausing	Indexing
Conditionally	Searchable	Model	Instances

Searching
Where	Clauses
Pagination
Soft	Deleting
Customizing	Engine	Searches

Custom	Engines
Builder	Macros

Introduction

Laravel	Scout	provides	a	simple,	driver	based	solution	for	adding	full-text	search	to	your	Eloquent	models.
Using	model	observers,	Scout	will	automatically	keep	your	search	indexes	in	sync	with	your	Eloquent	records.

Currently,	Scout	ships	with	an	Algolia	driver;	however,	writing	custom	drivers	is	simple	and	you	are	free	to
extend	Scout	with	your	own	search	implementations.

Installation

First,	install	Scout	via	the	Composer	package	manager:

composer	require	laravel/scout

After	installing	Scout,	you	should	publish	the	Scout	configuration	using	the	vendor:publish	Artisan	command.
This	command	will	publish	the	scout.php	configuration	file	to	your	config	directory:

php	artisan	vendor:publish	--provider="Laravel\Scout\ScoutServiceProvider"

Finally,	add	the	Laravel\Scout\Searchable	trait	to	the	model	you	would	like	to	make	searchable.	This	trait	will
register	a	model	observer	to	keep	the	model	in	sync	with	your	search	driver:

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

use	Laravel\Scout\Searchable;

class	Post	extends	Model

{

				use	Searchable;

}

Laravel	Documentation	-	7.x	/	Scout 621

https://www.algolia.com/

Queueing

While	not	strictly	required	to	use	Scout,	you	should	strongly	consider	configuring	a	queue	driver	before	using
the	library.	Running	a	queue	worker	will	allow	Scout	to	queue	all	operations	that	sync	your	model	information
to	your	search	indexes,	providing	much	better	response	times	for	your	application's	web	interface.

Once	you	have	configured	a	queue	driver,	set	the	value	of	the	queue	option	in	your	config/scout.php
configuration	file	to	true:

'queue'	=>	true,

Driver	Prerequisites

Algolia

When	using	the	Algolia	driver,	you	should	configure	your	Algolia	id	and	secret	credentials	in	your	
config/scout.php	configuration	file.	Once	your	credentials	have	been	configured,	you	will	also	need	to	install
the	Algolia	PHP	SDK	via	the	Composer	package	manager:

composer	require	algolia/algoliasearch-client-php:^2.2

Configuration

Configuring	Model	Indexes

Each	Eloquent	model	is	synced	with	a	given	search	"index",	which	contains	all	of	the	searchable	records	for
that	model.	In	other	words,	you	can	think	of	each	index	like	a	MySQL	table.	By	default,	each	model	will	be
persisted	to	an	index	matching	the	model's	typical	"table"	name.	Typically,	this	is	the	plural	form	of	the	model
name;	however,	you	are	free	to	customize	the	model's	index	by	overriding	the	searchableAs	method	on	the
model:

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

use	Laravel\Scout\Searchable;

class	Post	extends	Model

{

				use	Searchable;

				/**

					*	Get	the	index	name	for	the	model.

					*

					*	@return	string

					*/

				public	function	searchableAs()

				{

								return	'posts_index';

				}

}

Configuring	Searchable	Data

By	default,	the	entire	toArray	form	of	a	given	model	will	be	persisted	to	its	search	index.	If	you	would	like	to
customize	the	data	that	is	synchronized	to	the	search	index,	you	may	override	the	toSearchableArray	method	on
the	model:

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

use	Laravel\Scout\Searchable;

class	Post	extends	Model

Laravel	Documentation	-	7.x	/	Scout 622

{

				use	Searchable;

				/**

					*	Get	the	indexable	data	array	for	the	model.

					*

					*	@return	array

					*/

				public	function	toSearchableArray()

				{

								$array	=	$this->toArray();

								//	Customize	array...

								return	$array;

				}

}

Configuring	The	Model	ID

By	default,	Scout	will	use	the	primary	key	of	the	model	as	the	unique	ID	stored	in	the	search	index.	If	you	need
to	customize	this	behavior,	you	may	override	the	getScoutKey	and	the	getScoutKeyName	methods	on	the	model:

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

use	Laravel\Scout\Searchable;

class	User	extends	Model

{

				use	Searchable;

				/**

					*	Get	the	value	used	to	index	the	model.

					*

					*	@return	mixed

					*/

				public	function	getScoutKey()

				{

								return	$this->email;

				}

				/**

					*	Get	the	key	name	used	to	index	the	model.

					*

					*	@return	mixed

					*/

				public	function	getScoutKeyName()

				{

								return	'email';

				}

}

Identifying	Users

Scout	also	allows	you	to	auto	identify	users	when	using	Algolia.	Associating	the	authenticated	user	with	search
operations	may	be	helpful	when	viewing	your	search	analytics	within	Algolia's	dashboard.	You	can	enable	user
identification	by	setting	SCOUT_IDENTIFY	to	true	in	your	.env	file:

SCOUT_IDENTIFY=true

Enabling	this	feature	this	will	also	pass	the	request's	IP	address	and	your	authenticated	user's	primary	identifier
to	Algolia	so	this	data	is	associated	with	any	search	request	that	is	made	by	the	user.

Indexing

Batch	Import

If	you	are	installing	Scout	into	an	existing	project,	you	may	already	have	database	records	you	need	to	import

Laravel	Documentation	-	7.x	/	Scout 623

into	your	search	driver.	Scout	provides	an	import	Artisan	command	that	you	may	use	to	import	all	of	your
existing	records	into	your	search	indexes:

php	artisan	scout:import	"App\Post"

The	flush	command	may	be	used	to	remove	all	of	a	model's	records	from	your	search	indexes:

php	artisan	scout:flush	"App\Post"

Adding	Records

Once	you	have	added	the	Laravel\Scout\Searchable	trait	to	a	model,	all	you	need	to	do	is	save	a	model	instance
and	it	will	automatically	be	added	to	your	search	index.	If	you	have	configured	Scout	to	use	queues	this
operation	will	be	performed	in	the	background	by	your	queue	worker:

$order	=	new	App\Order;

//	...

$order->save();

Adding	Via	Query

If	you	would	like	to	add	a	collection	of	models	to	your	search	index	via	an	Eloquent	query,	you	may	chain	the	
searchable	method	onto	an	Eloquent	query.	The	searchable	method	will	chunk	the	results	of	the	query	and	add
the	records	to	your	search	index.	Again,	if	you	have	configured	Scout	to	use	queues,	all	of	the	chunks	will	be
added	in	the	background	by	your	queue	workers:

//	Adding	via	Eloquent	query...

App\Order::where('price',	'>',	100)->searchable();

//	You	may	also	add	records	via	relationships...

$user->orders()->searchable();

//	You	may	also	add	records	via	collections...

$orders->searchable();

The	searchable	method	can	be	considered	an	"upsert"	operation.	In	other	words,	if	the	model	record	is	already
in	your	index,	it	will	be	updated.	If	it	does	not	exist	in	the	search	index,	it	will	be	added	to	the	index.

Updating	Records

To	update	a	searchable	model,	you	only	need	to	update	the	model	instance's	properties	and	save	the	model	to
your	database.	Scout	will	automatically	persist	the	changes	to	your	search	index:

$order	=	App\Order::find(1);

//	Update	the	order...

$order->save();

You	may	also	use	the	searchable	method	on	an	Eloquent	query	to	update	a	collection	of	models.	If	the	models
do	not	exist	in	your	search	index,	they	will	be	created:

//	Updating	via	Eloquent	query...

App\Order::where('price',	'>',	100)->searchable();

//	You	may	also	update	via	relationships...

$user->orders()->searchable();

//	You	may	also	update	via	collections...

$orders->searchable();

Removing	Records

To	remove	a	record	from	your	index,	delete	the	model	from	the	database.	This	form	of	removal	is	even
compatible	with	soft	deleted	models:

Laravel	Documentation	-	7.x	/	Scout 624

$order	=	App\Order::find(1);

$order->delete();

If	you	do	not	want	to	retrieve	the	model	before	deleting	the	record,	you	may	use	the	unsearchable	method	on	an
Eloquent	query	instance	or	collection:

//	Removing	via	Eloquent	query...

App\Order::where('price',	'>',	100)->unsearchable();

//	You	may	also	remove	via	relationships...

$user->orders()->unsearchable();

//	You	may	also	remove	via	collections...

$orders->unsearchable();

Pausing	Indexing

Sometimes	you	may	need	to	perform	a	batch	of	Eloquent	operations	on	a	model	without	syncing	the	model	data
to	your	search	index.	You	may	do	this	using	the	withoutSyncingToSearch	method.	This	method	accepts	a	single
callback	which	will	be	immediately	executed.	Any	model	operations	that	occur	within	the	callback	will	not	be
synced	to	the	model's	index:

App\Order::withoutSyncingToSearch(function	()	{

				//	Perform	model	actions...

});

Conditionally	Searchable	Model	Instances

Sometimes	you	may	need	to	only	make	a	model	searchable	under	certain	conditions.	For	example,	imagine	you
have	App\Post	model	that	may	be	in	one	of	two	states:	"draft"	and	"published".	You	may	only	want	to	allow
"published"	posts	to	be	searchable.	To	accomplish	this,	you	may	define	a	shouldBeSearchable	method	on	your
model:

public	function	shouldBeSearchable()

{

				return	$this->isPublished();

}

The	shouldBeSearchable	method	is	only	applied	when	manipulating	models	through	the	save	method,	queries,	or
relationships.	Directly	making	models	or	collections	searchable	using	the	searchable	method	will	override	the
result	of	the	shouldBeSearchable	method:

//	Will	respect	"shouldBeSearchable"...

App\Order::where('price',	'>',	100)->searchable();

$user->orders()->searchable();

$order->save();

//	Will	override	"shouldBeSearchable"...

$orders->searchable();

$order->searchable();

Searching

You	may	begin	searching	a	model	using	the	search	method.	The	search	method	accepts	a	single	string	that	will
be	used	to	search	your	models.	You	should	then	chain	the	get	method	onto	the	search	query	to	retrieve	the
Eloquent	models	that	match	the	given	search	query:

$orders	=	App\Order::search('Star	Trek')->get();

Since	Scout	searches	return	a	collection	of	Eloquent	models,	you	may	even	return	the	results	directly	from	a
route	or	controller	and	they	will	automatically	be	converted	to	JSON:

use	Illuminate\Http\Request;

Route::get('/search',	function	(Request	$request)	{

Laravel	Documentation	-	7.x	/	Scout 625

				return	App\Order::search($request->search)->get();

});

If	you	would	like	to	get	the	raw	results	before	they	are	converted	to	Eloquent	models,	you	should	use	the	raw
method:

$orders	=	App\Order::search('Star	Trek')->raw();

Search	queries	will	typically	be	performed	on	the	index	specified	by	the	model's	searchableAs	method.
However,	you	may	use	the	within	method	to	specify	a	custom	index	that	should	be	searched	instead:

$orders	=	App\Order::search('Star	Trek')

				->within('tv_shows_popularity_desc')

				->get();

Where	Clauses

Scout	allows	you	to	add	simple	"where"	clauses	to	your	search	queries.	Currently,	these	clauses	only	support
basic	numeric	equality	checks,	and	are	primarily	useful	for	scoping	search	queries	by	a	tenant	ID.	Since	a
search	index	is	not	a	relational	database,	more	advanced	"where"	clauses	are	not	currently	supported:

$orders	=	App\Order::search('Star	Trek')->where('user_id',	1)->get();

Pagination

In	addition	to	retrieving	a	collection	of	models,	you	may	paginate	your	search	results	using	the	paginate
method.	This	method	will	return	a	Paginator	instance	just	as	if	you	had	paginated	a	traditional	Eloquent	query:

$orders	=	App\Order::search('Star	Trek')->paginate();

You	may	specify	how	many	models	to	retrieve	per	page	by	passing	the	amount	as	the	first	argument	to	the	
paginate	method:

$orders	=	App\Order::search('Star	Trek')->paginate(15);

Once	you	have	retrieved	the	results,	you	may	display	the	results	and	render	the	page	links	using	Blade	just	as	if
you	had	paginated	a	traditional	Eloquent	query:

<div	class="container">

				@foreach	($orders	as	$order)

								{{	$order->price	}}

				@endforeach

</div>

{{	$orders->links()	}}

Soft	Deleting

If	your	indexed	models	are	soft	deleting	and	you	need	to	search	your	soft	deleted	models,	set	the	soft_delete
option	of	the	config/scout.php	configuration	file	to	true:

'soft_delete'	=>	true,

When	this	configuration	option	is	true,	Scout	will	not	remove	soft	deleted	models	from	the	search	index.
Instead,	it	will	set	a	hidden	__soft_deleted	attribute	on	the	indexed	record.	Then,	you	may	use	the	withTrashed
or	onlyTrashed	methods	to	retrieve	the	soft	deleted	records	when	searching:

//	Include	trashed	records	when	retrieving	results...

$orders	=	App\Order::search('Star	Trek')->withTrashed()->get();

//	Only	include	trashed	records	when	retrieving	results...

$orders	=	App\Order::search('Star	Trek')->onlyTrashed()->get();

TIP	When	a	soft	deleted	model	is	permanently	deleted	using	forceDelete,	Scout	will	remove	it	from	the
search	index	automatically.

Laravel	Documentation	-	7.x	/	Scout 626

Customizing	Engine	Searches

If	you	need	to	customize	the	search	behavior	of	an	engine	you	may	pass	a	callback	as	the	second	argument	to
the	search	method.	For	example,	you	could	use	this	callback	to	add	geo-location	data	to	your	search	options
before	the	search	query	is	passed	to	Algolia:

use	Algolia\AlgoliaSearch\SearchIndex;

App\Order::search('Star	Trek',	function	(SearchIndex	$algolia,	string	$query,	array	$options)	{

				$options['body']['query']['bool']['filter']['geo_distance']	=	[

								'distance'	=>	'1000km',

								'location'	=>	['lat'	=>	36,	'lon'	=>	111],

];

				return	$algolia->search($query,	$options);

})->get();

Custom	Engines

Writing	The	Engine

If	one	of	the	built-in	Scout	search	engines	doesn't	fit	your	needs,	you	may	write	your	own	custom	engine	and
register	it	with	Scout.	Your	engine	should	extend	the	Laravel\Scout\Engines\Engine	abstract	class.	This	abstract
class	contains	eight	methods	your	custom	engine	must	implement:

use	Laravel\Scout\Builder;

abstract	public	function	update($models);

abstract	public	function	delete($models);

abstract	public	function	search(Builder	$builder);

abstract	public	function	paginate(Builder	$builder,	$perPage,	$page);

abstract	public	function	mapIds($results);

abstract	public	function	map(Builder	$builder,	$results,	$model);

abstract	public	function	getTotalCount($results);

abstract	public	function	flush($model);

You	may	find	it	helpful	to	review	the	implementations	of	these	methods	on	the	
Laravel\Scout\Engines\AlgoliaEngine	class.	This	class	will	provide	you	with	a	good	starting	point	for	learning
how	to	implement	each	of	these	methods	in	your	own	engine.

Registering	The	Engine

Once	you	have	written	your	custom	engine,	you	may	register	it	with	Scout	using	the	extend	method	of	the
Scout	engine	manager.	You	should	call	the	extend	method	from	the	boot	method	of	your	AppServiceProvider	or
any	other	service	provider	used	by	your	application.	For	example,	if	you	have	written	a	MySqlSearchEngine,	you
may	register	it	like	so:

use	Laravel\Scout\EngineManager;

/**

	*	Bootstrap	any	application	services.

	*

	*	@return	void

	*/

public	function	boot()

{

				resolve(EngineManager::class)->extend('mysql',	function	()	{

								return	new	MySqlSearchEngine;

				});

}

Once	your	engine	has	been	registered,	you	may	specify	it	as	your	default	Scout	driver	in	your	config/scout.php
configuration	file:

'driver'	=>	'mysql',

Builder	Macros

Laravel	Documentation	-	7.x	/	Scout 627

If	you	would	like	to	define	a	custom	builder	method,	you	may	use	the	macro	method	on	the	
Laravel\Scout\Builder	class.	Typically,	"macros"	should	be	defined	within	a	service	provider's	boot	method:

<?php

namespace	App\Providers;

use	Illuminate\Support\Facades\Response;

use	Illuminate\Support\ServiceProvider;

use	Laravel\Scout\Builder;

class	ScoutMacroServiceProvider	extends	ServiceProvider

{

				/**

					*	Register	the	application's	scout	macros.

					*

					*	@return	void

					*/

				public	function	boot()

				{

								Builder::macro('count',	function	()	{

												return	$this->engine->getTotalCount(

																$this->engine()->search($this)

);

								});

				}

}

The	macro	function	accepts	a	name	as	its	first	argument,	and	a	Closure	as	its	second.	The	macro's	Closure	will
be	executed	when	calling	the	macro	name	from	a	Laravel\Scout\Builder	implementation:

App\Order::search('Star	Trek')->count();

Laravel	Documentation	-	7.x	/	Scout 628

Official	Packages

Laravel	Telescope
Introduction
Installation

Configuration
Data	Pruning
Migration	Customization
Dashboard	Authorization

Upgrading	Telescope
Filtering

Entries
Batches

Tagging
Available	Watchers

Cache	Watcher
Command	Watcher
Dump	Watcher
Event	Watcher
Exception	Watcher
Gate	Watcher
Job	Watcher
Log	Watcher
Mail	Watcher
Model	Watcher
Notification	Watcher
Query	Watcher
Redis	Watcher
Request	Watcher
Schedule	Watcher

Displaying	User	Avatars

Introduction

Laravel	Telescope	is	an	elegant	debug	assistant	for	the	Laravel	framework.	Telescope	provides	insight	into	the
requests	coming	into	your	application,	exceptions,	log	entries,	database	queries,	queued	jobs,	mail,
notifications,	cache	operations,	scheduled	tasks,	variable	dumps	and	more.	Telescope	makes	a	wonderful
companion	to	your	local	Laravel	development	environment.

Laravel	Documentation	-	7.x	/	Telescope 629

Installation

You	may	use	Composer	to	install	Telescope	into	your	Laravel	project:

composer	require	laravel/telescope

After	installing	Telescope,	publish	its	assets	using	the	telescope:install	Artisan	command.	After	installing
Telescope,	you	should	also	run	the	migrate	command:

php	artisan	telescope:install

php	artisan	migrate

Installing	Only	In	Specific	Environments

If	you	plan	to	only	use	Telescope	to	assist	your	local	development,	you	may	install	Telescope	using	the	--dev
flag:

composer	require	laravel/telescope	--dev

After	running	telescope:install,	you	should	remove	the	TelescopeServiceProvider	service	provider	registration
from	your	app	configuration	file.	Instead,	manually	register	the	service	provider	in	the	register	method	of	your	
AppServiceProvider:

/**

	*	Register	any	application	services.

	*

	*	@return	void

	*/

public	function	register()

{

				if	($this->app->isLocal())	{

								$this->app->register(\Laravel\Telescope\TelescopeServiceProvider::class);

								$this->app->register(TelescopeServiceProvider::class);

				}

}

You	should	also	prevent	the	Telescope	package	from	being	auto-discovered	by	adding	the	following	to	your	
composer.json	file:

"extra":	{

				"laravel":	{

								"dont-discover":	[

Laravel	Documentation	-	7.x	/	Telescope 630

												"laravel/telescope"

]

				}

},

Migration	Customization

If	you	are	not	going	to	use	Telescope's	default	migrations,	you	should	call	the	Telescope::ignoreMigrations
method	in	the	register	method	of	your	AppServiceProvider.	You	may	export	the	default	migrations	using	the	
php	artisan	vendor:publish	--tag=telescope-migrations	command.

Configuration

After	publishing	Telescope's	assets,	its	primary	configuration	file	will	be	located	at	config/telescope.php.	This
configuration	file	allows	you	to	configure	your	watcher	options	and	each	configuration	option	includes	a
description	of	its	purpose,	so	be	sure	to	thoroughly	explore	this	file.

If	desired,	you	may	disable	Telescope's	data	collection	entirely	using	the	enabled	configuration	option:

'enabled'	=>	env('TELESCOPE_ENABLED',	true),

Data	Pruning

Without	pruning,	the	telescope_entries	table	can	accumulate	records	very	quickly.	To	mitigate	this,	you	should
schedule	the	telescope:prune	Artisan	command	to	run	daily:

$schedule->command('telescope:prune')->daily();

By	default,	all	entries	older	than	24	hours	will	be	pruned.	You	may	use	the	hours	option	when	calling	the
command	to	determine	how	long	to	retain	Telescope	data.	For	example,	the	following	command	will	delete	all
records	created	over	48	hours	ago:

$schedule->command('telescope:prune	--hours=48')->daily();

Dashboard	Authorization

Telescope	exposes	a	dashboard	at	/telescope.	By	default,	you	will	only	be	able	to	access	this	dashboard	in	the	
local	environment.	Within	your	app/Providers/TelescopeServiceProvider.php	file,	there	is	a	gate	method.	This
authorization	gate	controls	access	to	Telescope	in	non-local	environments.	You	are	free	to	modify	this	gate	as
needed	to	restrict	access	to	your	Telescope	installation:

/**

	*	Register	the	Telescope	gate.

	*

	*	This	gate	determines	who	can	access	Telescope	in	non-local	environments.

	*

	*	@return	void

	*/

protected	function	gate()

{

				Gate::define('viewTelescope',	function	($user)	{

								return	in_array($user->email,	[

												'taylor@laravel.com',

]);

				});

}

NOTE	You	should	ensure	you	change	your	APP_ENV	environment	variable	to	production	in	your	production
environment.	Otherwise,	your	Telescope	installation	will	be	publicly	available.

Upgrading	Telescope

When	upgrading	to	a	new	major	version	of	Telescope,	it's	important	that	you	carefully	review	the	upgrade
guide.

Laravel	Documentation	-	7.x	/	Telescope 631

https://github.com/laravel/telescope/blob/master/UPGRADE.md

In	addition,	when	upgrading	to	any	new	Telescope	version,	you	should	re-publish	Telescope's	assets:

php	artisan	telescope:publish

To	keep	the	assets	up-to-date	and	avoid	issues	in	future	updates,	you	may	add	the	telescope:publish	command
to	the	post-update-cmd	scripts	in	your	application's	composer.json	file:

{

				"scripts":	{

								"post-update-cmd":	[

												"@php	artisan	telescope:publish	--ansi"

]

				}

}

Filtering

Entries

You	may	filter	the	data	that	is	recorded	by	Telescope	via	the	filter	callback	that	is	registered	in	your	
TelescopeServiceProvider.	By	default,	this	callback	records	all	data	in	the	local	environment	and	exceptions,
failed	jobs,	scheduled	tasks,	and	data	with	monitored	tags	in	all	other	environments:

/**

	*	Register	any	application	services.

	*

	*	@return	void

	*/

public	function	register()

{

				$this->hideSensitiveRequestDetails();

				Telescope::filter(function	(IncomingEntry	$entry)	{

								if	($this->app->isLocal())	{

												return	true;

								}

								return	$entry->isReportableException()	||

												$entry->isFailedJob()	||

												$entry->isScheduledTask()	||

												$entry->hasMonitoredTag();

				});

}

Batches

While	the	filter	callback	filters	data	for	individual	entries,	you	may	use	the	filterBatch	method	to	register	a
callback	that	filters	all	data	for	a	given	request	or	console	command.	If	the	callback	returns	true,	all	of	the
entries	are	recorded	by	Telescope:

use	Illuminate\Support\Collection;

/**

	*	Register	any	application	services.

	*

	*	@return	void

	*/

public	function	register()

{

				$this->hideSensitiveRequestDetails();

				Telescope::filterBatch(function	(Collection	$entries)	{

								if	($this->app->isLocal())	{

												return	true;

								}

								return	$entries->contains(function	($entry)	{

												return	$entry->isReportableException()	||

																$entry->isFailedJob()	||

																$entry->isScheduledTask()	||

																$entry->hasMonitoredTag();

												});

Laravel	Documentation	-	7.x	/	Telescope 632

				});

}

Tagging

Telescope	allows	you	to	search	entries	by	"tag".	Often,	tags	are	Eloquent	model	class	names	or	authenticated
user	IDs	which	Telescope	automatically	adds	to	entries.	Occasionally,	you	may	want	to	attach	your	own	custom
tags	to	entries.	To	accomplish	this,	you	may	use	the	Telescope::tag	method.	The	tag	method	accepts	a	callback
which	should	return	an	array	of	tags.	The	tags	returned	by	the	callback	will	be	merged	with	any	tags	Telescope
would	automatically	attach	to	the	entry.	You	should	call	the	tag	method	within	your	TelescopeServiceProvider:

use	Laravel\Telescope\Telescope;

/**

	*	Register	any	application	services.

	*

	*	@return	void

	*/

public	function	register()

{

				$this->hideSensitiveRequestDetails();

				Telescope::tag(function	(IncomingEntry	$entry)	{

								if	($entry->type	===	'request')	{

												return	['status:'.$entry->content['response_status']];

								}

								return	[];

				});

	}

Available	Watchers

Telescope	watchers	gather	application	data	when	a	request	or	console	command	is	executed.	You	may
customize	the	list	of	watchers	that	you	would	like	to	enable	within	your	config/telescope.php	configuration
file:

'watchers'	=>	[

				Watchers\CacheWatcher::class	=>	true,

				Watchers\CommandWatcher::class	=>	true,

				...

],

Some	watchers	also	allow	you	to	provide	additional	customization	options:

'watchers'	=>	[

				Watchers\QueryWatcher::class	=>	[

								'enabled'	=>	env('TELESCOPE_QUERY_WATCHER',	true),

								'slow'	=>	100,

],

				...

],

Cache	Watcher

The	cache	watcher	records	data	when	a	cache	key	is	hit,	missed,	updated	and	forgotten.

Command	Watcher

The	command	watcher	records	the	arguments,	options,	exit	code,	and	output	whenever	an	Artisan	command	is
executed.	If	you	would	like	to	exclude	certain	commands	from	being	recorded	by	the	watcher,	you	may	specify
the	command	in	the	ignore	option	in	your	config/telescope.php	file:

'watchers'	=>	[

				Watchers\CommandWatcher::class	=>	[

								'enabled'	=>	env('TELESCOPE_COMMAND_WATCHER',	true),

								'ignore'	=>	['key:generate'],

],

				...

Laravel	Documentation	-	7.x	/	Telescope 633

],

Dump	Watcher

The	dump	watcher	records	and	displays	your	variable	dumps	in	Telescope.	When	using	Laravel,	variables	may
be	dumped	using	the	global	dump	function.	The	dump	watcher	tab	must	be	open	in	a	browser	for	the	recording
to	occur,	otherwise	the	dumps	will	be	ignored	by	the	watcher.

Event	Watcher

The	event	watcher	records	the	payload,	listeners,	and	broadcast	data	for	any	events	dispatched	by	your
application.	The	Laravel	framework's	internal	events	are	ignored	by	the	Event	watcher.

Exception	Watcher

The	exception	watcher	records	the	data	and	stack	trace	for	any	reportable	Exceptions	that	are	thrown	by	your
application.

Gate	Watcher

The	gate	watcher	records	the	data	and	result	of	gate	and	policy	checks	by	your	application.	If	you	would	like	to
exclude	certain	abilities	from	being	recorded	by	the	watcher,	you	may	specify	those	in	the	ignore_abilities
option	in	your	config/telescope.php	file:

'watchers'	=>	[

				Watchers\GateWatcher::class	=>	[

								'enabled'	=>	env('TELESCOPE_GATE_WATCHER',	true),

								'ignore_abilities'	=>	['viewNova'],

],

				...

],

Job	Watcher

The	job	watcher	records	the	data	and	status	of	any	jobs	dispatched	by	your	application.

Log	Watcher

The	log	watcher	records	the	log	data	for	any	logs	written	by	your	application.

Mail	Watcher

The	mail	watcher	allows	you	to	view	an	in-browser	preview	of	the	emails	along	with	their	associated	data.	You
may	also	download	the	email	as	an	.eml	file.

Model	Watcher

The	model	watcher	records	model	changes	whenever	an	Eloquent	created,	updated,	restored,	or	deleted	event
is	dispatched.	You	may	specify	which	model	events	should	be	recorded	via	the	watcher's	events	option:

'watchers'	=>	[

				Watchers\ModelWatcher::class	=>	[

								'enabled'	=>	env('TELESCOPE_MODEL_WATCHER',	true),

								'events'	=>	['eloquent.created*',	'eloquent.updated*'],

],

				...

],

Notification	Watcher

The	notification	watcher	records	all	notifications	sent	by	your	application.	If	the	notification	triggers	an	email

Laravel	Documentation	-	7.x	/	Telescope 634

and	you	have	the	mail	watcher	enabled,	the	email	will	also	be	available	for	preview	on	the	mail	watcher	screen.

Query	Watcher

The	query	watcher	records	the	raw	SQL,	bindings,	and	execution	time	for	all	queries	that	are	executed	by	your
application.	The	watcher	also	tags	any	queries	slower	than	100ms	as	slow.	You	may	customize	the	slow	query
threshold	using	the	watcher's	slow	option:

'watchers'	=>	[

				Watchers\QueryWatcher::class	=>	[

								'enabled'	=>	env('TELESCOPE_QUERY_WATCHER',	true),

								'slow'	=>	50,

],

				...

],

Redis	Watcher

The	Redis	watcher	records	all	Redis	commands	executed	by	your	application.	If	you	are	using	Redis	for
caching,	cache	commands	will	also	be	recorded	by	the	Redis	Watcher.

Request	Watcher

The	request	watcher	records	the	request,	headers,	session,	and	response	data	associated	with	any	requests
handled	by	the	application.	You	may	limit	your	response	data	via	the	size_limit	(in	KB)	option:

'watchers'	=>	[

				Watchers\RequestWatcher::class	=>	[

								'enabled'	=>	env('TELESCOPE_REQUEST_WATCHER',	true),

								'size_limit'	=>	env('TELESCOPE_RESPONSE_SIZE_LIMIT',	64),

],

				...

],

Schedule	Watcher

The	schedule	watcher	records	the	command	and	output	of	any	scheduled	tasks	run	by	your	application.

Displaying	User	Avatars

The	Telescope	dashboard	displays	the	user	avatar	for	the	user	that	was	logged	in	when	a	given	entry	was	saved.
By	default,	Telescope	will	retrieve	avatars	using	the	Gravatar	web	service.	However,	you	may	customize	the
avatar	URL	by	registering	a	callback	in	your	TelescopeServiceProvider.	The	callback	will	receive	the	user's	ID
and	email	address	and	should	return	the	user's	avatar	image	URL:

use	App\User;

use	Laravel\Telescope\Telescope;

/**

	*	Register	any	application	services.

	*

	*	@return	void

	*/

public	function	register()

{

				Telescope::avatar(function	($id,	$email)	{

								return	'/avatars/'.User::find($id)->avatar_path;

				});

}

Laravel	Documentation	-	7.x	/	Telescope 635

	Title
	Prologue
	Release Notes
	Upgrade Guide
	Contribution Guide

	Getting Started
	Installation
	Configuration
	Directory Structure
	Homestead
	Valet
	Deployment

	Architecture Concepts
	Request Lifecycle
	Service Container
	Service Providers
	Facades
	Contracts

	The Basics
	Routing
	Middleware
	CSRF Protection
	Controllers
	Requests
	Responses
	Views
	URL Generation
	Session
	Validation
	Error Handling
	Logging

	Frontend
	Blade Templates
	Localization
	Frontend Scaffolding
	Compiling Assets

	Security
	Authentication
	Authorization
	Email Verification
	Encryption
	Hashing
	Password Reset

	Digging Deeper
	Artisan Console
	Broadcasting
	Cache
	Collections
	Events
	File Storage
	Helpers
	HTTP Client
	Mail
	Notifications
	Package Development
	Queues
	Task Scheduling

	Database
	Getting Started
	Query Builder
	Pagination
	Migrations
	Seeding
	Redis

	Eloquent ORM
	Getting Started
	Relationships
	Collections
	Mutators
	API Resources
	Serialization

	Testing
	Getting Started
	HTTP Tests
	Console Tests
	Browser Tests
	Database
	Mocking

	Official Packages
	Cashier (Stripe)
	Cashier (Paddle)
	Dusk
	Envoy
	Horizon
	Passport
	Sanctum
	Scout
	Telescope

